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OpenCL Architecture 

 Parallel computing for heterogenous devices 

 CPUs, GPUs, other processors (Cell, DSPs, etc) 

 Portable accelerated code 

 Defined in four parts 

 Platform Model 

 Execution Model 

 Memory Model 

 Programming Model 

 (We’re going to diverge from this structure a bit) 



Host-Device Model (Platform Model) 

 The model consists of a host connected to one or more OpenCL 

devices 

 A device is divided into one or more compute units 

 Compute units are divided into one or more processing 

elements 



Host-Device Model  

 The host is whatever the OpenCL library runs on   

 Usually x86 CPUs  

 Devices are processors that the library can talk to  

 CPUs, GPUs, and other accelerators 

 For AMD  

 All CPUs are 1 device (each core is a compute unit and 
processing element) 

 Each GPU is a separate device 



Platforms 

 Platform == OpenCL implementation (AMD, NVIDIA, Intel) 

 Uses an ―Installable Client Driver‖ model 

 Generic OpenCL library runs and detects platforms 

 The goal is to allow multiple implementations that co-exist 

 However, current GPU driver model does not allow that 



Discovering Platforms 

 This function is usually called twice 

 The first call is used to get the number of platforms 

available to the implementation 

 Space is then allocated for the platform objects 

 The second call is used to retrieve the platform objects 

* Step 1 



Discovering Platforms 



Discovering Devices 

 We can specify which types of devices we are 

interested in (e.g. all devices, CPUs only, GPUs only)  

 This call is performed twice as with clGetPlatformIDs 

 The first call is to determine the number of devices, the 

second retrieves the device objects 

 Once a platform is selected, we can then query for 

the devices that it knows how to interact with  

* Step 2 



Discovering Devices 



Contexts 

 A context refers to the environment for managing 

OpenCL objects and resources 

 To manage OpenCL programs, the following are 

associated with a context 

 Devices: the things doing the execution 

 Program objects: the program source that implements the 

kernels 

 Kernels: functions that run on OpenCL devices 

 Memory objects: data that are operated on by the device 

 Command queues: coordinators of execution of the kernels 

on the devices 

 Memory commands (data transfers) 

 Synchronization 



Contexts 
When you create a context, you will provide a list of 

devices to associate with it 

 For the rest of the OpenCL resources, you will associate them 

with the context as they are created 

Context 
Empty context 



Creating a Context 

This function creates a context given a list of devices 

The properties argument specifies which platform to use 

The function also provides a callback mechanism for 

reporting errors to the user  

* Step 3 



Creating a Context 



Command Queues 

 Command queues are the mechanisms for the host to 

request that a device perform an action 

 Perform a memory transfer, begin executing, etc.  

 A separate command queue is required for each device 

 Commands can be synchronous or asynchronous 

 Commands can execute in-order or out-of-order 

 



Command Queues 

 By supplying a command queue as an argument, the 

device being targeted can be determined 

Command Queues 

Context 



Creating a Command Queue 

The command queue properties specify: 

 If out-of-order execution of commands is allowed 

 If profiling is enabled 

 Profiling is done using events (discussed later) 

 

* Step 4 



Creating a Command Queue 



Memory Objects 

 Memory objects are OpenCL data that can be moved on 

and off devices 

 Objects are classified as either buffers or images 

 Buffers 

 Contiguous chunks of memory – stored sequentially and can 

be accessed directly (arrays, pointers, structs) 

 Read/write capable 

 Images 

 Opaque objects (2D or 3D) 

 Can only be accessed via read_image() and write_image() 

 Can either be read or written in a kernel, but not both  



Memory Objects 

 Memory objects are associated with a context 

 They must be explicitly copied to a device prior to 

execution (covered next) 

Context 

Uninitialized OpenCL memory objects—the original  

data will be transferred later to/from these objects 

Original input/output 

 data 

(not OpenCL 

memory objects) 



Creating a Buffer 

 This function creates a buffer (cl_mem object) for the 

given context 

 Images are more complex and will be covered in a later 

lecture 

 The flags specify:  

 the combination of reading and writing allowed on the data  

 if the host pointer itself should be used to store the data 

 if the data should be copied from the host pointer 

 
* Step 5 



Creating a Buffer 



Transferring Data 

 OpenCL provides commands to transfer data to and from 

devices  

 clEnqueue{Read|Write}{Buffer|Image} 

 Copying from the host to a device is considered writing 

 Copying from a device to the host is reading 

 The write command both initializes the memory object 

with data and places it on a device 

 The validity of memory objects that are present on multiple 

devices is undefined by the OpenCL spec (i.e. are vendor specific) 

 



Transferring Data 

 Memory objects are transferred to devices by specifying 

an action (read or write) and a command queue 

 

Context 

In reality buffer is 

 written to a  

specific device 

Conceptually the  

memory object is 

initialized 



Transferring Data 

 This command initializes the OpenCL memory object and 
writes data to the device associated with the command 
queue 

 The command will write data from a host pointer (ptr) to the 
device 

 The blocking_write parameter specifies whether or not the 
command should return before the data transfer is complete 

 Events (discussed in another lecture) can specify which 
commands should be completed before this one runs 

 
* Step 6 



Transferring Data 



Programs and Kernels 

 A program object is basically a collection of OpenCL 

kernels 

 Can be source code (text) or precompiled binary 

 Can also contain constant data and auxiliary functions 

 Creating a program object requires either reading in a 

string (source code) or a precompiled binary 

 To compile the program 

 Specify which devices are targeted 

 Program is compiled for each device  

 Pass in compiler flags (optional) 

 Check for compilation errors (optional, output to screen) 



Programs 

 A program object is created and compiled by providing 

source code or a binary file and selecting which devices 

to target 

 

Context 

Program 



Creating a Program 

 This function creates a program object from strings of 

source code 

 count specifies the number of strings 

 The user must create a function to read in the source code 

to a string 

 If the strings are not NULL-terminated, the lengths fields 

are used to specify the string lengths 

 



Compiling a Program 

 This function compiles and links an executable from the 

program object for each device in the context 

 If device_list is supplied, then only those devices are 

targeted 

 Optional preprocessor, optimization, and other options 

can be supplied by the options argument    



Compiling a Program 

 If a program fails to compile, OpenCL requires the 

programmer to explicitly ask for compiler output 

 A compilation failure is determined by an error value 

returned from clBuildProgram() 

 Calling clGetProgramBuildInfo() with the program object 

and the parameter CL_PROGRAM_BUILD_STATUS returns a 

string with the compiler output 

 

* Step 7 



Compiling a Program 



Creating a Kernel 

 A kernel is a function declared in a program that is 

executed on an OpenCL device 

 A kernel object is a kernel function along with its associated 

arguments 

 A kernel object is created from a compiled program 

 Must explicitly associate arguments (memory objects, 

primitives, etc) with the kernel object 

 

 



Creating a Kernel 

 Kernel objects are created from a program object by 

specifying the name of the kernel function 

Context 

Kernels 



Setting Kernel Arguments 

 Kernel arguments are set by repeated calls to clSetKernelArgs() 

 Each call must specify:  

 The index of the argument as it appears in the function signature, the 

size, and a pointer to the data 

 Examples: 

 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&d_iImage); 

 clSetKernelArg(kernel, 1, sizeof(int), (void*)&a); 

 CUDA avoids this by using a preprocessor 

 



Setting Kernel Arguments 

 Memory objects and individual data values can be set as 

kernel arguments 

 

Context 

Kernels args 

are set 

* Step 8 



Creating a Kernel 



Runtime Compilation 

 There is a high overhead for compiling programs and 

creating kernels  

 Each operation only has to be performed once (at the 

beginning of the program) 

 The kernel objects can be reused any number of times by 

setting different arguments 

clCreateProgramWithSource() 

clCreateProgramWithBinary()  

clBuildProgram()  clCreateKernel()  

Read source 

code into 

char array 



Kernel Threading Model 

 Massively parallel programs are usually written so that 

each thread computes one part of a problem 

 For vector addition, we will add corresponding elements 

from two arrays, so each thread will perform one addition 

 If we think about the thread structure visually, the threads 

will usually be arranged in the same shape as the data 



Thread Structure 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A 

B 

C 

= 

+ 

Array Indices 

Vector Addition: 

 Consider a simple vector addition of 16 elements 

 2 input buffers (A, B) and 1 output buffer (C) are required 



Thread Structure 

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Thread structure: 

Thread IDs 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A 

B 

C 

= 

+ 

Vector Addition: 

 Create thread structure to match the problem 

 1-dimensional problem in this case 



Thread Structure 

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Thread structure: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A 

B 

C 

= 

+ 

Vector Addition: 

 Each thread is responsible for adding the indices 

corresponding to its ID 



Thread Structure 

 OpenCL’s thread structure is designed to be scalable 

 Each instance of a kernel is called a work-item (though 

―thread‖ is commonly used as well) 

 Work-items are organized as work-groups 

 Work-groups are independent from one-another (this is 

where scalability comes from) 

 An index space defines a hierarchy of work-groups and 

work-items 



Thread Structure 

 Work-items can uniquely identify themselves based on: 

 A global id (unique within the index space) 

 A work-group ID and a local ID within the work-group 



CUDA Comparison 
C for CUDA OpenCL 

Thread Work Item 

Block Work Group 

Grid Index space/NDRange  



Thread Structure 

 API calls allow threads to identify themselves 

 Threads can determine their global ID in each dimension 

 get_global_id(dim)  

 get_global_size(dim) 

 Or they can determine their work-group ID and ID within 

the workgroup 

 get_group_id(dim) 

 get_num_groups(dim) 

 get_local_id(dim) 

 get_local_size(dim) 

 get_global_id(0) = column, get_global_id(1) = row 

 get_num_groups(0) * get_local_size(0) == get_global_size(0) 



CUDA Comparison 



Memory Model 
 The OpenCL memory model defines the various types of 

memories (closely related to GPU memory hierarchy) 

Memory Description 

Global 
Accessible by all work-

items 

Constant Read-only, global 

Local Local to a work-group 

Private Private to a work-item 



CUDA Comparison 



Memory Model 

 Memory management is explicit  

 Must move data from host memory to device global memory, 

from global memory to local memory, and back 

 Work-groups are assigned to execute on compute-units 

 No guaranteed communication/coherency between 

different work-groups (no software mechanism in the 

OpenCL specification) 



Writing a Kernel 

 One instance of the kernel is created for each thread 

 Kernels: 

 Must begin with keyword __kernel 

 Must have return type void 

 Must declare the address space of each argument that is a 

memory object (next slide) 

 Use API calls (such as get_global_id()) to determine which 

data a thread will work on 



Address Space Identifiers 

 __global – memory allocated from global address space 

 __constant – a special type of read-only memory 

 __local – memory shared by a work-group 

 __private – private per work-item memory 

 __read_only/__write_only – used for images 

 Kernel arguments that are memory objects must be 

global, local, or constant 



CUDA Comparison 



Example Kernel 

 Simple kernel to copy data from input to output buffer 

 Input and output data live in global memory 

 get_global_id(0) returns the thread ID in the X direction 

 Since the data is treated as an array, the thread structure will 

only be in one dimension 

* Write kernel 



Writing a Kernel 



Executing the Kernel 

 Need to set the dimensions of the index space, and 

(optionally) of the work-group sizes 

 Kernels execute asynchronously from the host  

 clEnqueueNDRangeKernel just adds is to the queue, but 

doesn’t guarantee that it will start executing 



Executing the Kernel 

 Tells the device associated with a command queue to 

begin executing the specified kernel 

 The global (index space) must be specified and the local 

(work-group) sizes are optionally specified 

 A list of events can be used to specify prerequisite 

operations that must be complete before executing 



Executing the Kernel 

 A thread structure defined by the index-space that is 

created 

 Each thread executes the same kernel on different data 

Context 

An index space of  

work items is created  

(dimension match  

data) 



Executing the Kernel 

 A thread structure defined by the index-space that is 

created 

 Each thread executes the same kernel on different data 

Context 



Executing the Kernel 

 Tells the device associated with a command queue to 

begin executing the specified kernel 

 The global (index space) must be specified and the local 

(work-group) sizes are optionally specified 

 A list of events can be used to specify prerequisite 

operations that must be complete before executing 

* Step 9 



Executing the Kernel 



Copying Data Back 

 The last step is to copy the data back from the device to 

the host 

 Similar call as writing a buffer to a device, but data will 

be transferred back to the host 



Copying Data Back 

 A thread structure defined by the index-space that is 

created 

 Each thread executes the same kernel on different data 

Context 

* Step 10 

Data copied back 

from GPU 



Copying Data Back 



Big Picture 



Releasing Resources 

 Most OpenCL resources/objects are pointers that should 

be freed after they are done being used 

 There is a clRelase{Resource} command for most OpenCL 

types 

 Ex: clReleaseProgram(), clReleaseMemObject() 



Error Checking 

 OpenCL commands return error codes as negative 

integer values 

 Return value of 0 indicates CL_SUCCESS 

 Negative values indicates an error  

 cl.h defines meaning of each return value 

 

 

 

 

 

 Note: Errors are sometimes reported asynchronously 

CL_DEVICE_NOT_FOUND                  -1 

CL_DEVICE_NOT_AVAILABLE              -2 

CL_COMPILER_NOT_AVAILABLE            -3 

CL_MEM_OBJECT_ALLOCATION_FAILURE     -4 

CL_OUT_OF_RESOURCES                  -5 



OpenCL vs. CUDA (runtime) 

clGetPlatformIDs 

clGetDeviceIDs 

clCreateContext 

clCreateCommandQueue 

clCreateBuffer 

clEnqueueWriteBuffer 

clCreateProgramWithSource 

clBuildProgram 

clCreateKernel 

clSetKernelArg 

clEnqueueNDRangeKernel 

clEnqueueReadBuffer 

clRelease* 

 

<not needed> 

 

cudaMalloc 

 

cudaMemcpy 

 

kernel <<< dims >>> args 

 

cudaMemcpy 

 

cudaFree 


