
OpenCL

Matt Sellitto

Dana Schaa

Northeastern University

NUCAR

OpenCL Architecture

 Parallel computing for heterogenous devices

 CPUs, GPUs, other processors (Cell, DSPs, etc)

 Portable accelerated code

 Defined in four parts

 Platform Model

 Execution Model

 Memory Model

 Programming Model

 (We’re going to diverge from this structure a bit)

Host-Device Model (Platform Model)

 The model consists of a host connected to one or more OpenCL

devices

 A device is divided into one or more compute units

 Compute units are divided into one or more processing

elements

Host-Device Model

 The host is whatever the OpenCL library runs on

 Usually x86 CPUs

 Devices are processors that the library can talk to

 CPUs, GPUs, and other accelerators

 For AMD

 All CPUs are 1 device (each core is a compute unit and
processing element)

 Each GPU is a separate device

Platforms

 Platform == OpenCL implementation (AMD, NVIDIA, Intel)

 Uses an ―Installable Client Driver‖ model

 Generic OpenCL library runs and detects platforms

 The goal is to allow multiple implementations that co-exist

 However, current GPU driver model does not allow that

Discovering Platforms

 This function is usually called twice

 The first call is used to get the number of platforms

available to the implementation

 Space is then allocated for the platform objects

 The second call is used to retrieve the platform objects

* Step 1

Discovering Platforms

Discovering Devices

 We can specify which types of devices we are

interested in (e.g. all devices, CPUs only, GPUs only)

 This call is performed twice as with clGetPlatformIDs

 The first call is to determine the number of devices, the

second retrieves the device objects

 Once a platform is selected, we can then query for

the devices that it knows how to interact with

* Step 2

Discovering Devices

Contexts

 A context refers to the environment for managing

OpenCL objects and resources

 To manage OpenCL programs, the following are

associated with a context

 Devices: the things doing the execution

 Program objects: the program source that implements the

kernels

 Kernels: functions that run on OpenCL devices

 Memory objects: data that are operated on by the device

 Command queues: coordinators of execution of the kernels

on the devices

 Memory commands (data transfers)

 Synchronization

Contexts
When you create a context, you will provide a list of

devices to associate with it

 For the rest of the OpenCL resources, you will associate them

with the context as they are created

Context
Empty context

Creating a Context

This function creates a context given a list of devices

The properties argument specifies which platform to use

The function also provides a callback mechanism for

reporting errors to the user

* Step 3

Creating a Context

Command Queues

 Command queues are the mechanisms for the host to

request that a device perform an action

 Perform a memory transfer, begin executing, etc.

 A separate command queue is required for each device

 Commands can be synchronous or asynchronous

 Commands can execute in-order or out-of-order

Command Queues

 By supplying a command queue as an argument, the

device being targeted can be determined

Command Queues

Context

Creating a Command Queue

The command queue properties specify:

 If out-of-order execution of commands is allowed

 If profiling is enabled

 Profiling is done using events (discussed later)

* Step 4

Creating a Command Queue

Memory Objects

 Memory objects are OpenCL data that can be moved on

and off devices

 Objects are classified as either buffers or images

 Buffers

 Contiguous chunks of memory – stored sequentially and can

be accessed directly (arrays, pointers, structs)

 Read/write capable

 Images

 Opaque objects (2D or 3D)

 Can only be accessed via read_image() and write_image()

 Can either be read or written in a kernel, but not both

Memory Objects

 Memory objects are associated with a context

 They must be explicitly copied to a device prior to

execution (covered next)

Context

Uninitialized OpenCL memory objects—the original

data will be transferred later to/from these objects

Original input/output

 data

(not OpenCL

memory objects)

Creating a Buffer

 This function creates a buffer (cl_mem object) for the

given context

 Images are more complex and will be covered in a later

lecture

 The flags specify:

 the combination of reading and writing allowed on the data

 if the host pointer itself should be used to store the data

 if the data should be copied from the host pointer

* Step 5

Creating a Buffer

Transferring Data

 OpenCL provides commands to transfer data to and from

devices

 clEnqueue{Read|Write}{Buffer|Image}

 Copying from the host to a device is considered writing

 Copying from a device to the host is reading

 The write command both initializes the memory object

with data and places it on a device

 The validity of memory objects that are present on multiple

devices is undefined by the OpenCL spec (i.e. are vendor specific)

Transferring Data

 Memory objects are transferred to devices by specifying

an action (read or write) and a command queue

Context

In reality buffer is

 written to a

specific device

Conceptually the

memory object is

initialized

Transferring Data

 This command initializes the OpenCL memory object and
writes data to the device associated with the command
queue

 The command will write data from a host pointer (ptr) to the
device

 The blocking_write parameter specifies whether or not the
command should return before the data transfer is complete

 Events (discussed in another lecture) can specify which
commands should be completed before this one runs

* Step 6

Transferring Data

Programs and Kernels

 A program object is basically a collection of OpenCL

kernels

 Can be source code (text) or precompiled binary

 Can also contain constant data and auxiliary functions

 Creating a program object requires either reading in a

string (source code) or a precompiled binary

 To compile the program

 Specify which devices are targeted

 Program is compiled for each device

 Pass in compiler flags (optional)

 Check for compilation errors (optional, output to screen)

Programs

 A program object is created and compiled by providing

source code or a binary file and selecting which devices

to target

Context

Program

Creating a Program

 This function creates a program object from strings of

source code

 count specifies the number of strings

 The user must create a function to read in the source code

to a string

 If the strings are not NULL-terminated, the lengths fields

are used to specify the string lengths

Compiling a Program

 This function compiles and links an executable from the

program object for each device in the context

 If device_list is supplied, then only those devices are

targeted

 Optional preprocessor, optimization, and other options

can be supplied by the options argument

Compiling a Program

 If a program fails to compile, OpenCL requires the

programmer to explicitly ask for compiler output

 A compilation failure is determined by an error value

returned from clBuildProgram()

 Calling clGetProgramBuildInfo() with the program object

and the parameter CL_PROGRAM_BUILD_STATUS returns a

string with the compiler output

* Step 7

Compiling a Program

Creating a Kernel

 A kernel is a function declared in a program that is

executed on an OpenCL device

 A kernel object is a kernel function along with its associated

arguments

 A kernel object is created from a compiled program

 Must explicitly associate arguments (memory objects,

primitives, etc) with the kernel object

Creating a Kernel

 Kernel objects are created from a program object by

specifying the name of the kernel function

Context

Kernels

Setting Kernel Arguments

 Kernel arguments are set by repeated calls to clSetKernelArgs()

 Each call must specify:

 The index of the argument as it appears in the function signature, the

size, and a pointer to the data

 Examples:

 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&d_iImage);

 clSetKernelArg(kernel, 1, sizeof(int), (void*)&a);

 CUDA avoids this by using a preprocessor

Setting Kernel Arguments

 Memory objects and individual data values can be set as

kernel arguments

Context

Kernels args

are set

* Step 8

Creating a Kernel

Runtime Compilation

 There is a high overhead for compiling programs and

creating kernels

 Each operation only has to be performed once (at the

beginning of the program)

 The kernel objects can be reused any number of times by

setting different arguments

clCreateProgramWithSource()

clCreateProgramWithBinary()

clBuildProgram() clCreateKernel()

Read source

code into

char array

Kernel Threading Model

 Massively parallel programs are usually written so that

each thread computes one part of a problem

 For vector addition, we will add corresponding elements

from two arrays, so each thread will perform one addition

 If we think about the thread structure visually, the threads

will usually be arranged in the same shape as the data

Thread Structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

B

C

=

+

Array Indices

Vector Addition:

 Consider a simple vector addition of 16 elements

 2 input buffers (A, B) and 1 output buffer (C) are required

Thread Structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Thread structure:

Thread IDs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

B

C

=

+

Vector Addition:

 Create thread structure to match the problem

 1-dimensional problem in this case

Thread Structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Thread structure:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

B

C

=

+

Vector Addition:

 Each thread is responsible for adding the indices

corresponding to its ID

Thread Structure

 OpenCL’s thread structure is designed to be scalable

 Each instance of a kernel is called a work-item (though

―thread‖ is commonly used as well)

 Work-items are organized as work-groups

 Work-groups are independent from one-another (this is

where scalability comes from)

 An index space defines a hierarchy of work-groups and

work-items

Thread Structure

 Work-items can uniquely identify themselves based on:

 A global id (unique within the index space)

 A work-group ID and a local ID within the work-group

CUDA Comparison
C for CUDA OpenCL

Thread Work Item

Block Work Group

Grid Index space/NDRange

Thread Structure

 API calls allow threads to identify themselves

 Threads can determine their global ID in each dimension

 get_global_id(dim)

 get_global_size(dim)

 Or they can determine their work-group ID and ID within

the workgroup

 get_group_id(dim)

 get_num_groups(dim)

 get_local_id(dim)

 get_local_size(dim)

 get_global_id(0) = column, get_global_id(1) = row

 get_num_groups(0) * get_local_size(0) == get_global_size(0)

CUDA Comparison

Memory Model
 The OpenCL memory model defines the various types of

memories (closely related to GPU memory hierarchy)

Memory Description

Global
Accessible by all work-

items

Constant Read-only, global

Local Local to a work-group

Private Private to a work-item

CUDA Comparison

Memory Model

 Memory management is explicit

 Must move data from host memory to device global memory,

from global memory to local memory, and back

 Work-groups are assigned to execute on compute-units

 No guaranteed communication/coherency between

different work-groups (no software mechanism in the

OpenCL specification)

Writing a Kernel

 One instance of the kernel is created for each thread

 Kernels:

 Must begin with keyword __kernel

 Must have return type void

 Must declare the address space of each argument that is a

memory object (next slide)

 Use API calls (such as get_global_id()) to determine which

data a thread will work on

Address Space Identifiers

 __global – memory allocated from global address space

 __constant – a special type of read-only memory

 __local – memory shared by a work-group

 __private – private per work-item memory

 __read_only/__write_only – used for images

 Kernel arguments that are memory objects must be

global, local, or constant

CUDA Comparison

Example Kernel

 Simple kernel to copy data from input to output buffer

 Input and output data live in global memory

 get_global_id(0) returns the thread ID in the X direction

 Since the data is treated as an array, the thread structure will

only be in one dimension

* Write kernel

Writing a Kernel

Executing the Kernel

 Need to set the dimensions of the index space, and

(optionally) of the work-group sizes

 Kernels execute asynchronously from the host

 clEnqueueNDRangeKernel just adds is to the queue, but

doesn’t guarantee that it will start executing

Executing the Kernel

 Tells the device associated with a command queue to

begin executing the specified kernel

 The global (index space) must be specified and the local

(work-group) sizes are optionally specified

 A list of events can be used to specify prerequisite

operations that must be complete before executing

Executing the Kernel

 A thread structure defined by the index-space that is

created

 Each thread executes the same kernel on different data

Context

An index space of

work items is created

(dimension match

data)

Executing the Kernel

 A thread structure defined by the index-space that is

created

 Each thread executes the same kernel on different data

Context

Executing the Kernel

 Tells the device associated with a command queue to

begin executing the specified kernel

 The global (index space) must be specified and the local

(work-group) sizes are optionally specified

 A list of events can be used to specify prerequisite

operations that must be complete before executing

* Step 9

Executing the Kernel

Copying Data Back

 The last step is to copy the data back from the device to

the host

 Similar call as writing a buffer to a device, but data will

be transferred back to the host

Copying Data Back

 A thread structure defined by the index-space that is

created

 Each thread executes the same kernel on different data

Context

* Step 10

Data copied back

from GPU

Copying Data Back

Big Picture

Releasing Resources

 Most OpenCL resources/objects are pointers that should

be freed after they are done being used

 There is a clRelase{Resource} command for most OpenCL

types

 Ex: clReleaseProgram(), clReleaseMemObject()

Error Checking

 OpenCL commands return error codes as negative

integer values

 Return value of 0 indicates CL_SUCCESS

 Negative values indicates an error

 cl.h defines meaning of each return value

 Note: Errors are sometimes reported asynchronously

CL_DEVICE_NOT_FOUND -1

CL_DEVICE_NOT_AVAILABLE -2

CL_COMPILER_NOT_AVAILABLE -3

CL_MEM_OBJECT_ALLOCATION_FAILURE -4

CL_OUT_OF_RESOURCES -5

OpenCL vs. CUDA (runtime)

clGetPlatformIDs

clGetDeviceIDs

clCreateContext

clCreateCommandQueue

clCreateBuffer

clEnqueueWriteBuffer

clCreateProgramWithSource

clBuildProgram

clCreateKernel

clSetKernelArg

clEnqueueNDRangeKernel

clEnqueueReadBuffer

clRelease*

<not needed>

cudaMalloc

cudaMemcpy

kernel <<< dims >>> args

cudaMemcpy

cudaFree

