
OpenCL

Matt Sellitto

Dana Schaa

Northeastern University

NUCAR

OpenCL Architecture

 Parallel computing for heterogenous devices

 CPUs, GPUs, other processors (Cell, DSPs, etc)

 Portable accelerated code

 Defined in four parts

 Platform Model

 Execution Model

 Memory Model

 Programming Model

 (We’re going to diverge from this structure a bit)

Host-Device Model (Platform Model)

 The model consists of a host connected to one or more OpenCL

devices

 A device is divided into one or more compute units

 Compute units are divided into one or more processing

elements

Host-Device Model

 The host is whatever the OpenCL library runs on

 Usually x86 CPUs

 Devices are processors that the library can talk to

 CPUs, GPUs, and other accelerators

 For AMD

 All CPUs are 1 device (each core is a compute unit and
processing element)

 Each GPU is a separate device

Platforms

 Platform == OpenCL implementation (AMD, NVIDIA, Intel)

 Uses an ―Installable Client Driver‖ model

 Generic OpenCL library runs and detects platforms

 The goal is to allow multiple implementations that co-exist

 However, current GPU driver model does not allow that

Discovering Platforms

 This function is usually called twice

 The first call is used to get the number of platforms

available to the implementation

 Space is then allocated for the platform objects

 The second call is used to retrieve the platform objects

* Step 1

Discovering Platforms

Discovering Devices

 We can specify which types of devices we are

interested in (e.g. all devices, CPUs only, GPUs only)

 This call is performed twice as with clGetPlatformIDs

 The first call is to determine the number of devices, the

second retrieves the device objects

 Once a platform is selected, we can then query for

the devices that it knows how to interact with

* Step 2

Discovering Devices

Contexts

 A context refers to the environment for managing

OpenCL objects and resources

 To manage OpenCL programs, the following are

associated with a context

 Devices: the things doing the execution

 Program objects: the program source that implements the

kernels

 Kernels: functions that run on OpenCL devices

 Memory objects: data that are operated on by the device

 Command queues: coordinators of execution of the kernels

on the devices

 Memory commands (data transfers)

 Synchronization

Contexts
When you create a context, you will provide a list of

devices to associate with it

 For the rest of the OpenCL resources, you will associate them

with the context as they are created

Context
Empty context

Creating a Context

This function creates a context given a list of devices

The properties argument specifies which platform to use

The function also provides a callback mechanism for

reporting errors to the user

* Step 3

Creating a Context

Command Queues

 Command queues are the mechanisms for the host to

request that a device perform an action

 Perform a memory transfer, begin executing, etc.

 A separate command queue is required for each device

 Commands can be synchronous or asynchronous

 Commands can execute in-order or out-of-order

Command Queues

 By supplying a command queue as an argument, the

device being targeted can be determined

Command Queues

Context

Creating a Command Queue

The command queue properties specify:

 If out-of-order execution of commands is allowed

 If profiling is enabled

 Profiling is done using events (discussed later)

* Step 4

Creating a Command Queue

Memory Objects

 Memory objects are OpenCL data that can be moved on

and off devices

 Objects are classified as either buffers or images

 Buffers

 Contiguous chunks of memory – stored sequentially and can

be accessed directly (arrays, pointers, structs)

 Read/write capable

 Images

 Opaque objects (2D or 3D)

 Can only be accessed via read_image() and write_image()

 Can either be read or written in a kernel, but not both

Memory Objects

 Memory objects are associated with a context

 They must be explicitly copied to a device prior to

execution (covered next)

Context

Uninitialized OpenCL memory objects—the original

data will be transferred later to/from these objects

Original input/output

 data

(not OpenCL

memory objects)

Creating a Buffer

 This function creates a buffer (cl_mem object) for the

given context

 Images are more complex and will be covered in a later

lecture

 The flags specify:

 the combination of reading and writing allowed on the data

 if the host pointer itself should be used to store the data

 if the data should be copied from the host pointer

* Step 5

Creating a Buffer

Transferring Data

 OpenCL provides commands to transfer data to and from

devices

 clEnqueue{Read|Write}{Buffer|Image}

 Copying from the host to a device is considered writing

 Copying from a device to the host is reading

 The write command both initializes the memory object

with data and places it on a device

 The validity of memory objects that are present on multiple

devices is undefined by the OpenCL spec (i.e. are vendor specific)

Transferring Data

 Memory objects are transferred to devices by specifying

an action (read or write) and a command queue

Context

In reality buffer is

 written to a

specific device

Conceptually the

memory object is

initialized

Transferring Data

 This command initializes the OpenCL memory object and
writes data to the device associated with the command
queue

 The command will write data from a host pointer (ptr) to the
device

 The blocking_write parameter specifies whether or not the
command should return before the data transfer is complete

 Events (discussed in another lecture) can specify which
commands should be completed before this one runs

* Step 6

Transferring Data

Programs and Kernels

 A program object is basically a collection of OpenCL

kernels

 Can be source code (text) or precompiled binary

 Can also contain constant data and auxiliary functions

 Creating a program object requires either reading in a

string (source code) or a precompiled binary

 To compile the program

 Specify which devices are targeted

 Program is compiled for each device

 Pass in compiler flags (optional)

 Check for compilation errors (optional, output to screen)

Programs

 A program object is created and compiled by providing

source code or a binary file and selecting which devices

to target

Context

Program

Creating a Program

 This function creates a program object from strings of

source code

 count specifies the number of strings

 The user must create a function to read in the source code

to a string

 If the strings are not NULL-terminated, the lengths fields

are used to specify the string lengths

Compiling a Program

 This function compiles and links an executable from the

program object for each device in the context

 If device_list is supplied, then only those devices are

targeted

 Optional preprocessor, optimization, and other options

can be supplied by the options argument

Compiling a Program

 If a program fails to compile, OpenCL requires the

programmer to explicitly ask for compiler output

 A compilation failure is determined by an error value

returned from clBuildProgram()

 Calling clGetProgramBuildInfo() with the program object

and the parameter CL_PROGRAM_BUILD_STATUS returns a

string with the compiler output

* Step 7

Compiling a Program

Creating a Kernel

 A kernel is a function declared in a program that is

executed on an OpenCL device

 A kernel object is a kernel function along with its associated

arguments

 A kernel object is created from a compiled program

 Must explicitly associate arguments (memory objects,

primitives, etc) with the kernel object

Creating a Kernel

 Kernel objects are created from a program object by

specifying the name of the kernel function

Context

Kernels

Setting Kernel Arguments

 Kernel arguments are set by repeated calls to clSetKernelArgs()

 Each call must specify:

 The index of the argument as it appears in the function signature, the

size, and a pointer to the data

 Examples:

 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&d_iImage);

 clSetKernelArg(kernel, 1, sizeof(int), (void*)&a);

 CUDA avoids this by using a preprocessor

Setting Kernel Arguments

 Memory objects and individual data values can be set as

kernel arguments

Context

Kernels args

are set

* Step 8

Creating a Kernel

Runtime Compilation

 There is a high overhead for compiling programs and

creating kernels

 Each operation only has to be performed once (at the

beginning of the program)

 The kernel objects can be reused any number of times by

setting different arguments

clCreateProgramWithSource()

clCreateProgramWithBinary()

clBuildProgram() clCreateKernel()

Read source

code into

char array

Kernel Threading Model

 Massively parallel programs are usually written so that

each thread computes one part of a problem

 For vector addition, we will add corresponding elements

from two arrays, so each thread will perform one addition

 If we think about the thread structure visually, the threads

will usually be arranged in the same shape as the data

Thread Structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

B

C

=

+

Array Indices

Vector Addition:

 Consider a simple vector addition of 16 elements

 2 input buffers (A, B) and 1 output buffer (C) are required

Thread Structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Thread structure:

Thread IDs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

B

C

=

+

Vector Addition:

 Create thread structure to match the problem

 1-dimensional problem in this case

Thread Structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Thread structure:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

B

C

=

+

Vector Addition:

 Each thread is responsible for adding the indices

corresponding to its ID

Thread Structure

 OpenCL’s thread structure is designed to be scalable

 Each instance of a kernel is called a work-item (though

―thread‖ is commonly used as well)

 Work-items are organized as work-groups

 Work-groups are independent from one-another (this is

where scalability comes from)

 An index space defines a hierarchy of work-groups and

work-items

Thread Structure

 Work-items can uniquely identify themselves based on:

 A global id (unique within the index space)

 A work-group ID and a local ID within the work-group

CUDA Comparison
C for CUDA OpenCL

Thread Work Item

Block Work Group

Grid Index space/NDRange

Thread Structure

 API calls allow threads to identify themselves

 Threads can determine their global ID in each dimension

 get_global_id(dim)

 get_global_size(dim)

 Or they can determine their work-group ID and ID within

the workgroup

 get_group_id(dim)

 get_num_groups(dim)

 get_local_id(dim)

 get_local_size(dim)

 get_global_id(0) = column, get_global_id(1) = row

 get_num_groups(0) * get_local_size(0) == get_global_size(0)

CUDA Comparison

Memory Model
 The OpenCL memory model defines the various types of

memories (closely related to GPU memory hierarchy)

Memory Description

Global
Accessible by all work-

items

Constant Read-only, global

Local Local to a work-group

Private Private to a work-item

CUDA Comparison

Memory Model

 Memory management is explicit

 Must move data from host memory to device global memory,

from global memory to local memory, and back

 Work-groups are assigned to execute on compute-units

 No guaranteed communication/coherency between

different work-groups (no software mechanism in the

OpenCL specification)

Writing a Kernel

 One instance of the kernel is created for each thread

 Kernels:

 Must begin with keyword __kernel

 Must have return type void

 Must declare the address space of each argument that is a

memory object (next slide)

 Use API calls (such as get_global_id()) to determine which

data a thread will work on

Address Space Identifiers

 __global – memory allocated from global address space

 __constant – a special type of read-only memory

 __local – memory shared by a work-group

 __private – private per work-item memory

 __read_only/__write_only – used for images

 Kernel arguments that are memory objects must be

global, local, or constant

CUDA Comparison

Example Kernel

 Simple kernel to copy data from input to output buffer

 Input and output data live in global memory

 get_global_id(0) returns the thread ID in the X direction

 Since the data is treated as an array, the thread structure will

only be in one dimension

* Write kernel

Writing a Kernel

Executing the Kernel

 Need to set the dimensions of the index space, and

(optionally) of the work-group sizes

 Kernels execute asynchronously from the host

 clEnqueueNDRangeKernel just adds is to the queue, but

doesn’t guarantee that it will start executing

Executing the Kernel

 Tells the device associated with a command queue to

begin executing the specified kernel

 The global (index space) must be specified and the local

(work-group) sizes are optionally specified

 A list of events can be used to specify prerequisite

operations that must be complete before executing

Executing the Kernel

 A thread structure defined by the index-space that is

created

 Each thread executes the same kernel on different data

Context

An index space of

work items is created

(dimension match

data)

Executing the Kernel

 A thread structure defined by the index-space that is

created

 Each thread executes the same kernel on different data

Context

Executing the Kernel

 Tells the device associated with a command queue to

begin executing the specified kernel

 The global (index space) must be specified and the local

(work-group) sizes are optionally specified

 A list of events can be used to specify prerequisite

operations that must be complete before executing

* Step 9

Executing the Kernel

Copying Data Back

 The last step is to copy the data back from the device to

the host

 Similar call as writing a buffer to a device, but data will

be transferred back to the host

Copying Data Back

 A thread structure defined by the index-space that is

created

 Each thread executes the same kernel on different data

Context

* Step 10

Data copied back

from GPU

Copying Data Back

Big Picture

Releasing Resources

 Most OpenCL resources/objects are pointers that should

be freed after they are done being used

 There is a clRelase{Resource} command for most OpenCL

types

 Ex: clReleaseProgram(), clReleaseMemObject()

Error Checking

 OpenCL commands return error codes as negative

integer values

 Return value of 0 indicates CL_SUCCESS

 Negative values indicates an error

 cl.h defines meaning of each return value

 Note: Errors are sometimes reported asynchronously

CL_DEVICE_NOT_FOUND -1

CL_DEVICE_NOT_AVAILABLE -2

CL_COMPILER_NOT_AVAILABLE -3

CL_MEM_OBJECT_ALLOCATION_FAILURE -4

CL_OUT_OF_RESOURCES -5

OpenCL vs. CUDA (runtime)

clGetPlatformIDs

clGetDeviceIDs

clCreateContext

clCreateCommandQueue

clCreateBuffer

clEnqueueWriteBuffer

clCreateProgramWithSource

clBuildProgram

clCreateKernel

clSetKernelArg

clEnqueueNDRangeKernel

clEnqueueReadBuffer

clRelease*

<not needed>

cudaMalloc

cudaMemcpy

kernel <<< dims >>> args

cudaMemcpy

cudaFree

