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OpenCL Architecture 

 Parallel computing for heterogenous devices 

 CPUs, GPUs, other processors (Cell, DSPs, etc) 

 Portable accelerated code 

 Defined in four parts 

 Platform Model 

 Execution Model 

 Memory Model 

 Programming Model 

 (We’re going to diverge from this structure a bit) 



Host-Device Model (Platform Model) 

 The model consists of a host connected to one or more OpenCL 

devices 

 A device is divided into one or more compute units 

 Compute units are divided into one or more processing 

elements 



Host-Device Model  

 The host is whatever the OpenCL library runs on   

 Usually x86 CPUs  

 Devices are processors that the library can talk to  

 CPUs, GPUs, and other accelerators 

 For AMD  

 All CPUs are 1 device (each core is a compute unit and 
processing element) 

 Each GPU is a separate device 



Platforms 

 Platform == OpenCL implementation (AMD, NVIDIA, Intel) 

 Uses an ―Installable Client Driver‖ model 

 Generic OpenCL library runs and detects platforms 

 The goal is to allow multiple implementations that co-exist 

 However, current GPU driver model does not allow that 



Discovering Platforms 

 This function is usually called twice 

 The first call is used to get the number of platforms 

available to the implementation 

 Space is then allocated for the platform objects 

 The second call is used to retrieve the platform objects 

* Step 1 



Discovering Platforms 



Discovering Devices 

 We can specify which types of devices we are 

interested in (e.g. all devices, CPUs only, GPUs only)  

 This call is performed twice as with clGetPlatformIDs 

 The first call is to determine the number of devices, the 

second retrieves the device objects 

 Once a platform is selected, we can then query for 

the devices that it knows how to interact with  

* Step 2 



Discovering Devices 



Contexts 

 A context refers to the environment for managing 

OpenCL objects and resources 

 To manage OpenCL programs, the following are 

associated with a context 

 Devices: the things doing the execution 

 Program objects: the program source that implements the 

kernels 

 Kernels: functions that run on OpenCL devices 

 Memory objects: data that are operated on by the device 

 Command queues: coordinators of execution of the kernels 

on the devices 

 Memory commands (data transfers) 

 Synchronization 



Contexts 
When you create a context, you will provide a list of 

devices to associate with it 

 For the rest of the OpenCL resources, you will associate them 

with the context as they are created 

Context 
Empty context 



Creating a Context 

This function creates a context given a list of devices 

The properties argument specifies which platform to use 

The function also provides a callback mechanism for 

reporting errors to the user  

* Step 3 



Creating a Context 



Command Queues 

 Command queues are the mechanisms for the host to 

request that a device perform an action 

 Perform a memory transfer, begin executing, etc.  

 A separate command queue is required for each device 

 Commands can be synchronous or asynchronous 

 Commands can execute in-order or out-of-order 

 



Command Queues 

 By supplying a command queue as an argument, the 

device being targeted can be determined 

Command Queues 

Context 



Creating a Command Queue 

The command queue properties specify: 

 If out-of-order execution of commands is allowed 

 If profiling is enabled 

 Profiling is done using events (discussed later) 

 

* Step 4 



Creating a Command Queue 



Memory Objects 

 Memory objects are OpenCL data that can be moved on 

and off devices 

 Objects are classified as either buffers or images 

 Buffers 

 Contiguous chunks of memory – stored sequentially and can 

be accessed directly (arrays, pointers, structs) 

 Read/write capable 

 Images 

 Opaque objects (2D or 3D) 

 Can only be accessed via read_image() and write_image() 

 Can either be read or written in a kernel, but not both  



Memory Objects 

 Memory objects are associated with a context 

 They must be explicitly copied to a device prior to 

execution (covered next) 

Context 

Uninitialized OpenCL memory objects—the original  

data will be transferred later to/from these objects 

Original input/output 

 data 

(not OpenCL 

memory objects) 



Creating a Buffer 

 This function creates a buffer (cl_mem object) for the 

given context 

 Images are more complex and will be covered in a later 

lecture 

 The flags specify:  

 the combination of reading and writing allowed on the data  

 if the host pointer itself should be used to store the data 

 if the data should be copied from the host pointer 

 
* Step 5 



Creating a Buffer 



Transferring Data 

 OpenCL provides commands to transfer data to and from 

devices  

 clEnqueue{Read|Write}{Buffer|Image} 

 Copying from the host to a device is considered writing 

 Copying from a device to the host is reading 

 The write command both initializes the memory object 

with data and places it on a device 

 The validity of memory objects that are present on multiple 

devices is undefined by the OpenCL spec (i.e. are vendor specific) 

 



Transferring Data 

 Memory objects are transferred to devices by specifying 

an action (read or write) and a command queue 

 

Context 

In reality buffer is 

 written to a  

specific device 

Conceptually the  

memory object is 

initialized 



Transferring Data 

 This command initializes the OpenCL memory object and 
writes data to the device associated with the command 
queue 

 The command will write data from a host pointer (ptr) to the 
device 

 The blocking_write parameter specifies whether or not the 
command should return before the data transfer is complete 

 Events (discussed in another lecture) can specify which 
commands should be completed before this one runs 

 
* Step 6 



Transferring Data 



Programs and Kernels 

 A program object is basically a collection of OpenCL 

kernels 

 Can be source code (text) or precompiled binary 

 Can also contain constant data and auxiliary functions 

 Creating a program object requires either reading in a 

string (source code) or a precompiled binary 

 To compile the program 

 Specify which devices are targeted 

 Program is compiled for each device  

 Pass in compiler flags (optional) 

 Check for compilation errors (optional, output to screen) 



Programs 

 A program object is created and compiled by providing 

source code or a binary file and selecting which devices 

to target 

 

Context 

Program 



Creating a Program 

 This function creates a program object from strings of 

source code 

 count specifies the number of strings 

 The user must create a function to read in the source code 

to a string 

 If the strings are not NULL-terminated, the lengths fields 

are used to specify the string lengths 

 



Compiling a Program 

 This function compiles and links an executable from the 

program object for each device in the context 

 If device_list is supplied, then only those devices are 

targeted 

 Optional preprocessor, optimization, and other options 

can be supplied by the options argument    



Compiling a Program 

 If a program fails to compile, OpenCL requires the 

programmer to explicitly ask for compiler output 

 A compilation failure is determined by an error value 

returned from clBuildProgram() 

 Calling clGetProgramBuildInfo() with the program object 

and the parameter CL_PROGRAM_BUILD_STATUS returns a 

string with the compiler output 

 

* Step 7 



Compiling a Program 



Creating a Kernel 

 A kernel is a function declared in a program that is 

executed on an OpenCL device 

 A kernel object is a kernel function along with its associated 

arguments 

 A kernel object is created from a compiled program 

 Must explicitly associate arguments (memory objects, 

primitives, etc) with the kernel object 

 

 



Creating a Kernel 

 Kernel objects are created from a program object by 

specifying the name of the kernel function 

Context 

Kernels 



Setting Kernel Arguments 

 Kernel arguments are set by repeated calls to clSetKernelArgs() 

 Each call must specify:  

 The index of the argument as it appears in the function signature, the 

size, and a pointer to the data 

 Examples: 

 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&d_iImage); 

 clSetKernelArg(kernel, 1, sizeof(int), (void*)&a); 

 CUDA avoids this by using a preprocessor 

 



Setting Kernel Arguments 

 Memory objects and individual data values can be set as 

kernel arguments 

 

Context 

Kernels args 

are set 

* Step 8 



Creating a Kernel 



Runtime Compilation 

 There is a high overhead for compiling programs and 

creating kernels  

 Each operation only has to be performed once (at the 

beginning of the program) 

 The kernel objects can be reused any number of times by 

setting different arguments 

clCreateProgramWithSource() 

clCreateProgramWithBinary()  

clBuildProgram()  clCreateKernel()  

Read source 

code into 

char array 



Kernel Threading Model 

 Massively parallel programs are usually written so that 

each thread computes one part of a problem 

 For vector addition, we will add corresponding elements 

from two arrays, so each thread will perform one addition 

 If we think about the thread structure visually, the threads 

will usually be arranged in the same shape as the data 



Thread Structure 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A 

B 

C 

= 

+ 

Array Indices 

Vector Addition: 

 Consider a simple vector addition of 16 elements 

 2 input buffers (A, B) and 1 output buffer (C) are required 



Thread Structure 

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Thread structure: 

Thread IDs 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A 

B 

C 

= 

+ 

Vector Addition: 

 Create thread structure to match the problem 

 1-dimensional problem in this case 



Thread Structure 

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Thread structure: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A 

B 

C 

= 

+ 

Vector Addition: 

 Each thread is responsible for adding the indices 

corresponding to its ID 



Thread Structure 

 OpenCL’s thread structure is designed to be scalable 

 Each instance of a kernel is called a work-item (though 

―thread‖ is commonly used as well) 

 Work-items are organized as work-groups 

 Work-groups are independent from one-another (this is 

where scalability comes from) 

 An index space defines a hierarchy of work-groups and 

work-items 



Thread Structure 

 Work-items can uniquely identify themselves based on: 

 A global id (unique within the index space) 

 A work-group ID and a local ID within the work-group 



CUDA Comparison 
C for CUDA OpenCL 

Thread Work Item 

Block Work Group 

Grid Index space/NDRange  



Thread Structure 

 API calls allow threads to identify themselves 

 Threads can determine their global ID in each dimension 

 get_global_id(dim)  

 get_global_size(dim) 

 Or they can determine their work-group ID and ID within 

the workgroup 

 get_group_id(dim) 

 get_num_groups(dim) 

 get_local_id(dim) 

 get_local_size(dim) 

 get_global_id(0) = column, get_global_id(1) = row 

 get_num_groups(0) * get_local_size(0) == get_global_size(0) 



CUDA Comparison 



Memory Model 
 The OpenCL memory model defines the various types of 

memories (closely related to GPU memory hierarchy) 

Memory Description 

Global 
Accessible by all work-

items 

Constant Read-only, global 

Local Local to a work-group 

Private Private to a work-item 



CUDA Comparison 



Memory Model 

 Memory management is explicit  

 Must move data from host memory to device global memory, 

from global memory to local memory, and back 

 Work-groups are assigned to execute on compute-units 

 No guaranteed communication/coherency between 

different work-groups (no software mechanism in the 

OpenCL specification) 



Writing a Kernel 

 One instance of the kernel is created for each thread 

 Kernels: 

 Must begin with keyword __kernel 

 Must have return type void 

 Must declare the address space of each argument that is a 

memory object (next slide) 

 Use API calls (such as get_global_id()) to determine which 

data a thread will work on 



Address Space Identifiers 

 __global – memory allocated from global address space 

 __constant – a special type of read-only memory 

 __local – memory shared by a work-group 

 __private – private per work-item memory 

 __read_only/__write_only – used for images 

 Kernel arguments that are memory objects must be 

global, local, or constant 



CUDA Comparison 



Example Kernel 

 Simple kernel to copy data from input to output buffer 

 Input and output data live in global memory 

 get_global_id(0) returns the thread ID in the X direction 

 Since the data is treated as an array, the thread structure will 

only be in one dimension 

* Write kernel 



Writing a Kernel 



Executing the Kernel 

 Need to set the dimensions of the index space, and 

(optionally) of the work-group sizes 

 Kernels execute asynchronously from the host  

 clEnqueueNDRangeKernel just adds is to the queue, but 

doesn’t guarantee that it will start executing 



Executing the Kernel 

 Tells the device associated with a command queue to 

begin executing the specified kernel 

 The global (index space) must be specified and the local 

(work-group) sizes are optionally specified 

 A list of events can be used to specify prerequisite 

operations that must be complete before executing 



Executing the Kernel 

 A thread structure defined by the index-space that is 

created 

 Each thread executes the same kernel on different data 

Context 

An index space of  

work items is created  

(dimension match  

data) 



Executing the Kernel 

 A thread structure defined by the index-space that is 

created 

 Each thread executes the same kernel on different data 

Context 



Executing the Kernel 

 Tells the device associated with a command queue to 

begin executing the specified kernel 

 The global (index space) must be specified and the local 

(work-group) sizes are optionally specified 

 A list of events can be used to specify prerequisite 

operations that must be complete before executing 

* Step 9 



Executing the Kernel 



Copying Data Back 

 The last step is to copy the data back from the device to 

the host 

 Similar call as writing a buffer to a device, but data will 

be transferred back to the host 



Copying Data Back 

 A thread structure defined by the index-space that is 

created 

 Each thread executes the same kernel on different data 

Context 

* Step 10 

Data copied back 

from GPU 



Copying Data Back 



Big Picture 



Releasing Resources 

 Most OpenCL resources/objects are pointers that should 

be freed after they are done being used 

 There is a clRelase{Resource} command for most OpenCL 

types 

 Ex: clReleaseProgram(), clReleaseMemObject() 



Error Checking 

 OpenCL commands return error codes as negative 

integer values 

 Return value of 0 indicates CL_SUCCESS 

 Negative values indicates an error  

 cl.h defines meaning of each return value 

 

 

 

 

 

 Note: Errors are sometimes reported asynchronously 

CL_DEVICE_NOT_FOUND                  -1 

CL_DEVICE_NOT_AVAILABLE              -2 

CL_COMPILER_NOT_AVAILABLE            -3 

CL_MEM_OBJECT_ALLOCATION_FAILURE     -4 

CL_OUT_OF_RESOURCES                  -5 



OpenCL vs. CUDA (runtime) 

clGetPlatformIDs 

clGetDeviceIDs 

clCreateContext 

clCreateCommandQueue 

clCreateBuffer 

clEnqueueWriteBuffer 

clCreateProgramWithSource 

clBuildProgram 

clCreateKernel 

clSetKernelArg 

clEnqueueNDRangeKernel 

clEnqueueReadBuffer 

clRelease* 

 

<not needed> 

 

cudaMalloc 

 

cudaMemcpy 

 

kernel <<< dims >>> args 

 

cudaMemcpy 

 

cudaFree 


