Matt Sellitto
Dana Schaa

Northeastern University
NUCAR

OpenCL Architecture

e Parallel computing for heterogenous devices
e (CPUs, GPUs, other processors (Cell, DSPs, etc)
e Portable accelerated code

e Defined in four parts
e Platform Model
e Execution Model
e Memory Model
Programming Model
(We’re going to diverge from this structure a bit)

Host-Device Model (Platform Model)

¢ The model consists of a host connected to one or more OpenCL
devices

e A device is divided into one or more compute units

e Compute units are divided into one or more processing
elements

Processing
Element

Compute Unit Compute Device

Host-Device Model

e The host is whatever the OpenCL library runs on
e Usually x86 CPUs

e Devices are processors that the library can talk to
e (CPUs, GPUs, and other accelerators

e For AMD

e All CPUs are 1 device (each core is a compute unit and
processing element)

e Each GPU is a separate device

Processing
Element

Compute Unit Compute Device

Platforms

e Platform == OpenCL implementation (AMD, NVIDIA, Intel)

e Uses an “Installable Client Driver” model
e Generic OpenCL library runs and detects platforms
e The goal is to allow multiple implementations that co-exist
e However, current GPU driver model does not allow that

Discovering Platforms

cl int clGetPlatformlDs (cl uwint num entries,
cl platform id *platforms,
cl uvint *aum_platforms)

e This function is usually called twice

e The first call is used to get the number of platforms
available to the implementation

e Space is then allocated for the platform objects
e The second call is used to retrieve the platform objects

Discovering Platforms

// TODO: Use clGetPlatformIDs() to retrieve the number of platforms present
status = clGetPlatformIDs (0, NULL, &numPlatforms):;
if (status != CL SUCCESS) {
printf ("clGetPlatformIDs failedhin");
exit(=1);
}

// Make sure some platforms were found
1f (numPlatforms == 0} {
printf ("No platforms detected.\n");
exit (=1});
}

// Allocate encugh space for each platform
platforms = (cl platform id*)malloc (numPlatforms*sizecof (cl platform id)}):
if {platforms == NULL)} {
perror ("malleoc");
exit(=1);
}

// TODD: Fill in platforms with clGetPlatformIDs ()
clGetPlatformIDs (numPlatforms, platforms, NULL);
if(status != CL SUCCESS) {

printf ("clGetPlatformIDs failedin");

exit (=1):

Discovering Devices

e Once a platform is selected, we can then query for
the devices that it knows how to interact with

clGetDeviceIDs" (cl platform id platform,
cl device type device type,
cl uint num_entries,
cl device id *devices,
cl uint *num_devices)

We can specify which types of devices we are
interested in (e.g. all devices, CPUs only, GPUs only)

This call is performed twice as with clGetPlatformIDs

e The first call is to determine the nhumber of devices, the
second retrieves the device objects

Discovering Devices

// TODO: Use clGetDevicelDs() to retrive the number of devices present
status = clGetDevicelDs (platforms[0], CL DEVICE TYPE GPU, 0, NULL, é&numDevices);
if(status != CL SUCCESS) {
printf ("clGetDevicelDs failedin"};
exit (=1} ;
}

/{ Make sure some devices were found
1f (numDevices == (0} {
printf ("No devices detected.\n"):
exlit (=1);
}

// Allocate enough space for each device
devices = (cl device id*)malloc(numDevices¥*slizecf (cl device id});
if (devices == NULL) {

perror ("mallec") ;

exit (=1):

}

/f TODO: Fill in devices with clGetDevicesIDs().
status = clGetDevicelDs (platforms[0], CL DEVICE TYPE GPU, numDevices,
devices, NULL);
if (status != CL SUCCESS) {
printf ("clGetDevicelDs failedin");
exit(=1)};

Contexts

e A context refers to the environment for managing
OpenCL objects and resources

e To manage OpenCL programs, the following are
associated with a context

Devices: the things doing the execution

Program objects: the program source that implements the
kernels

Kernels: functions that run on OpenCL devices
Memory objects: data that are operated on by the device

Command queues: coordinators of execution of the kernels
on the devices

e Memory commands (data transfers)
¢ Synchronization

Contexts

e When you create a context, you will provide a list of
devices to associate with it

¢ For the rest of the OpenCL resources, you will associate them
with the context as they are created

Context
Empty context

~

Creating a Context

cl context clCreateContext (const cl context properties *properties,

cl uint num_devices,

const ¢l _device 1d *devices,

void (CL_CALLBACK *pfn_notify)(const char *errinfo,
const void *private_info, size t cb,
void *user data),

vold *user data,

cl_int *errcode ret)

e This function creates a context given a list of devices

® The properties argument specifies which platform to use

¢ The function also provides a callback mechanism for
reporting errors to the user

Creating a Context

Create a context using clCreatelontext ()
oclate 1t with the devices
= clCreateContext (props, numDevices, devices, NULL, NULL, &status);
!= CL SUCCESS || context == NULL) {
failed\n");

Command Queues

e Command queues are the mechanisms for the host to
request that a device perform an action

e Perform a memory transfer, begin executing, etc.
e A separate command queue is required for each device
e Commands can be synchronous or asynchronous

e Commands can execute in-order or out-of-order

Command Queues

e By supplying a command queue as an argument, the
device being targeted can be determined

Context

Command Queues

Creating a Command Queue

¢l command queue clCreateCommandQueue (cl context context,
cl device id device,
¢l command queue properties properties,
cl_int *errcode_ret)

¢ The command queue properties specify:

o |f out-of-order execution of commands is allowed

* If profiling is enabled

¢ Profiling is done using events (discussed later)

Creating a Command Queue

// TODO: Create a command gueue using clC teCommandQueue () ,

// and associate it with the device you want to execute on
cmdQueue = clCreateCommandQueue (context, devices[0], 0, &status);
if(status != CL SUCCESS || cmdQueue == NULL) ({

printf ("clCreateCommandQueue failed\n"};
exit (=1};

Memory Objects

e Memory objects are OpenCL data that can be moved o
and off devices

e Objects are classified as either buffers or images

e Buffers

e Contiguous chunks of memory - stored sequentially and can
be accessed directly (arrays, pointers, structs)

e Read/write capable

®* Images
e Opaque objects (2D or 3D)
e Can only be accessed via read_image() and write_image()
e (Can either be read or written in a kernel, but not both

Memory Objects

e Memory objects are associated with a context

e They must be explicitly copied to a device prior to
execution (covered next)

Uninitialized OpenCL memory objects—the original
data will be transferred later to/from these objects

' W
(>

‘. cOnW
'/ iR

Original input/output
data
(not OpenCL
memory objects)

P

-~
'R
Y, |

v

/

~

A
g

.

=R

Creating a Buffer

¢l mem clCreateBuffer (cl context context,
cl mem flags flags,
size t size,
void *host ptr,
cl_int *errcode ret)

e This function creates a buffer (cl_mem object) for the

given context

®* |Images are more complex and will be covered in a later
lecture

e The flags specify:
e the combination of reading and writing allowed on the data

e if the host pointer itself should be used to store the data
¢ if the data should be copied from the host pointer

Creating a Buffer

to create a buffer object (d A)
- [CL MEM READ ONLY, datasize, NULL, &status};
sta : _A == NULL) {
Pllnftf"ClLLIﬂtLg ar failedh\n");
exit(-1);

TODO: use 2B r() to create a buffer cbject (d B)
clCreateBuffer | y CL MEM READ ONLY, datasize, NULL, &status};
!= CL SUCCES B == NULL) {
printf ("clCreatelu 1 '
exit (=1):

CO a buffer ocbject (d C}
CL_MEM READ WRITE, datasize, NULL, é&status):
_ _C == NULL) {

Pllnftf"ClLLIﬂtLg ailedin");

exit (=1):

reate

Transferring Data

¢ OpenCL provides commands to transfer data to and fro
devices

¢ clEnqueue{Read|Write}{Buffer|Image}
e Copying from the host to a device is considered writing
e Copying from a device to the host is reading

e The write command both initializes the memory object
with data and places it on a device

¢ The validity of memory objects that are present on multiple
devices is undefined by the OpenCL spec (i.e. are vendor specific)

Transferring Data

e Memory objects are transferred to devices by specifying
an action (read or write) and a command queue

'y Context

!3. -
¢
Conceptually the _—— 8

memory object is
initialized

In reality buffer is
written to a
specific device

Transferring Data

cl int clEnqueueWriteBuffer (cl command queue command queue,
cl _mem buffer,
cl_bool blocking write,
size toffset,
size tcb,
const void *ptr,
cl uint num_events in_ wait_list,
const cl_event *event wait list,
cl_event *event)

This command initializes the OpenCL memory object and

writes data to the device associated with the command
queue

e The command will write data from a host pointer (ptr) to the
device

The blocking_write parameter specifies whether or not the
command should return before the data transfer is complete

Events (discussed in another lecture) can specify which
commands should be completed before this one runs

Transferring Data

// TODO: use clEngueueWriteBuffer to write d A to the device
status = clEnqueueWriteBuffer (cmdQueuve, d A, CL TRUE, 0, datasize, A,
0, NULL, NULL):
if (status != CL SUCCESS) |
printf ("clEnqueueWriteBuffer failed\n"};
exit (=1} ;

// TODO: use clEngueueWriteBuffer to write d B to the device
status = clEnqueueWriteBuffer (cmdQueuve, 4 B, CL TRUE, 0, datasize, B,
0, NULL, NULL):
if (status != CL SUCCESS) |
printf ("clEnqueueWriteBuffer failed\n"};
exit (=1} ;

Programs and Kernels

e A program object is basically a collection of OpenCL
kernels

e (Can be source code (text) or precompiled binary
e (Can also contain constant data and auxiliary functions

e Creating a program object requires either reading in a
string (source code) or a precompiled binary

¢ To compile the program
e Specify which devices are targeted
e Program is compiled for each device
e Pass in compiler flags (optional)
e Check for compilation errors (optional, output to screen)

Programs

e A program object is created and compiled by providing
source code or a binary file and selecting which devices
to target

Program

b / Context
&“ .

Creating a Program

cl program clCreateProgramWithSource (cl context context,
¢l uint count,
const char **strings,
const size t *lengths,
cl int *errcode ret)

e This function creates a program object from strings of
source code

® count specifies the number of strings

e The user must create a function to read in the source code
to a string

e |f the strings are not NULL-terminated, the lengths fields
are used to specify the string lengths

Compiling a Program

clBuildProgram (cl program program,
cl uint num_devices,
const ¢l device id *device list,
const char *options,
void (CL_CALLBACK *pfn_notify)(cl_program program,
void *user _data),
void *user data)

e This function compiles and links an executable from the
program object for each device in the context

e |f device_list is supplied, then only those devices are
targeted

e Optional preprocessor, optimization, and other options
can be supplied by the options argument

Compiling a Program

e |[f a program fails to compile, OpenCL requires the
programmer to explicitly ask for compiler output

e A compilation failure is determined by an error value
returned from clBuildProgram()

e (Calling clGetProgramBuildinfo() with the program object
and the parameter CL_PROGRAM_BUILD_STATUS returns a
string with the compiler output

Compiling a Program

// TODO: Create a program using clCreateProgramWithSource ()
// The '"source' string is the code from the vectoradd.cl (source) file.
Program clCreateProgramWithSource {context, 1, (const char*¥*)}&scurce,
NULL, &status);
if(status != CL SUCCESS) {
printf ("clCreateProgramWithSource failedin");
exit (=1} ;

cl int buildErr:;
// TODO: Build (compile & link) the program for the devices with
// clBuildProgram(}. Save the return value in 'buildErr' (the following

// code will print any compilation errors to the screen)

buildErr = clBuildProgram{program, numDevices, devices, NULL, NULL, NULL}:

Creating a Kernel

e A kernel is a function declared in a program that is
executed on an OpenCL device

e Akernel object is a kernel function along with its associated
arguments

e A kernel object is created from a compiled program

o Must explicitly associate arguments (memory objects,
primitives, etc) with the kernel object

Creating a Kernel

e Kernel objects are created from a program object by
specifying the name of the kernel function

Kernels

‘ . Context

Setting Kernel Arguments

cl int clSetKernelArg (cl kernel kernel,
cl uint arg index,
size targ size,
const void *arg value)

e Kernel arguments are set by repeated calls to clSetKernelArgs()

e Each call must specify:

e The index of the argument as it appears in the function signature, the
size, and a pointer to the data

e Examples:

o clSetKernelArg(kernel, 0O, sizeof(cl_mem), (void*)&d_ilmage);

o clSetKernelArg(kernel, 1, sizeof(int), (void*)&a);

e CUDA avoids this by using a preprocessor

Setting Kernel Arguments

e Memory objects and individual data values can be set &
kernel arguments

b ,} Context
&“ .

Kernels args
are set

Creating a Kernel

/f TODO: use clCreateKernel to create a kernel from the wvecto
// addition funection (named "vecadd")
kernel = clCreateKernel (program, "wvecadd", &status);
if (status != CL SUCCESS) {
printf ("clCreateKernel failed\n");

// TODO: Tod the input and ocutput buffers with the kernel
// using c rnelhrg ()
status = clSe tEELnElﬂlq{kELnEl O, sizecfcl mem), &d A};
status |= cl‘&tEELHElﬂlq{kELHEl 1, sizeof(cl mem), &d B};
status |= clSetKernelArg(kernel, 2, sizeof(cl mem), &d C};
if (status != CL SUCCESS) {

pllnft{”clqn tKernelhArg failed\n"};

exit(=1):;

Runtime Compilation

e There is a high overhead for compiling programs and
creating kernels

e Each operation only has to be performed once (at the
beginning of the program)
e The kernel objects can be reused any number of times by
setting different arguments

Read source :
code into clCreateProgramWithSource()

char array clBuildProgram() clCreateKernel()

clCreateProgramWithBinary()

Kernel Threading Model

e Massively parallel programs are usually written so that
each thread computes one part of a problem

e For vector addition, we will add corresponding elements
from two arrays, so each thread will perform one addition

e |f we think about the thread structure visually, the threads
will usually be arranged in the same shape as the data

Thread Structure

e Consider a simple vector addition of 16 elements
e 2 input buffers (A, B) and 1 output buffer (C) are required

/ Array Indices

VectorAddition: 4, 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread Structure

e Create thread structure to match the proble
e 1-dimensional problem in this case

Thread IDs
Thread structure: 4% 7 [8 |9

Vector Addition: 6 7 8 9 10 11 12 13 14 15

Thread Structure

e Each thread is responsible for adding the indices
corresponding to its ID

Thread structure:

Vector Addition:

Thread Structure

e OpenCLl’s thread structure is desighed to be scalable

e Each instance of a kernel is called a work-item (though
“thread” is commonly used as well)

e Work-items are organized as work-groups

e Work-groups are independent from one-another (this is
where scalability comes from)

¢ An index space defines a hierarchy of work-groups and
work-items

Thread Structure

e Work-items can uniquely identify themselves based on:
e Aglobal id (unique within the index space)

e A work-group ID and a local ID within the work-group

WOrk-group size Sx

work-group (Wx : wy)

work-group size Sy

- work-item
NDRange size Wy Sy#5y. Wy S 45 (Wy Sy#sy . W, S #5)

NDRange size G,

CUDA Comparison

C for CUDA

OpenCL

work-group size Sy

work-item
fwy Sx"sx 5 wy Syvs))

{Sy+ syl =(0, 0)

work-item
NDRange size G Wy Sy+8,. w, Sy+sy/

(Sy+ s} =(0, Sy-l)

NDRange size Gy

work-item
Wy S48, wy sy+sy]

Sy s}) = (Sx-,f. o)

work-group size Sy

work-item

(W, Sx»sx. wy S,,*sy‘

{5y s = (81, sy- 1)

Thread Structure

e AP] calls allow threads to identify themselves

¢ Threads can determine their global ID in each dimension
e get_global_id(dim)
e get_global_size(dim)

e Or they can determine their work-group ID and ID within
the workgroup

e get_group_id(dim)

e get_num_groups(dim)
e get_local_id(dim)

e get_local_size(dim)

e get_global_id(0) = column, get_global_id(1) = row

e get_num_groups(0) * get_local_size(0) == get_global_size(0)

CUDA Comparison

C for CUDA terminology

OpenCL terminology

gridDim

get_num_groups()

blockDim

get_local_size()

blockIdx

get_group_id()

threadldx

get_local_id

Mo direct equivalent. Combine blockDim, blockIdx,
and threadIdx to calculate a global index.

get_global_id()

Mo direct equivalent. Combine gridDim and
blockDim to calculate the global size.

get_global_size()

Memory Model

e The OpenCL memory model defines the various types of
memories (closely related to GPU memory hierarchy)

Memory
Global

Constant
Local

Private

Description

Accessible by all work-
items

Read-only, global
Local to a work-group

Private to a work-item

Compute Device
Compute unit 7 Compute unit &

Private
memory 1

| PE1

Local
memory N

Global/Constant Memory Data Cache

Global Memory

Constant Memory

Compute Device Memory

CUDA Comparison

C for CUDA terminology OpenCL terminology

Global memory Global memory

Constant memory Constant memory

Shared memory Local memory

Local memory Private memory

Compute Device
Compute unit 7 Compute unit N

Private Private
memory 1 memory 1

1
PE 1

Local
memory

4

Global/Constant Memory Data Cache

h A

h 4

Global Memory

Constant Memory

Compute Device Memory

Memory Model

¢ Memory management is explicit

e Must move data from host memory to device global memory,
from global memory to local memory, and back

e Work-groups are assigned to execute on compute-units

e No guaranteed communication/coherency between
different work-groups (no software mechanism in the
OpenCL specification)

Writing a Kernel

® One instance of the kernel is created for each thread

e Kernels:
Must begin with keyword __kernel
Must have return type void

Must declare the address space of each argument that is a
memory object (next slide)

Use API calls (such as get_global_id()) to determine which
data a thread will work on

Address Space ldentifiers

__global - memory allocated from global address space
__constant - a special type of read-only memory
__local - memory shared by a work-group

__private - private per work-item memory
__read_only/__write_only - used for images

Kernel arguments that are memory objects must be
global, local, or constant

CUDA Comparison

__global___ function (callable from host, not callable | __kernel function {callable fromdevice, includingCPU
from device) device)

__device___ function (not callable from host) Mo annotation necessary
__constant___ variable declaration ___constant variable declaration
__device___ variable declaration __global variable declaration

__shared___ variable declaration ___local variable declaration

Example Kernel

e Simple kernel to copy data from input to output buffe
¢ |nput and output data live in global memory

o get_global_id(0) returns the thread ID in the X direction

e Since the data is treated as an array, the thread structure will
only be in one dimension

__kernel woid
Copyl{ global const float * input, global float * output)
{

uint gid = get global id(0);

output [gid] = input [gid];

return;

}

* Write kernel

Writing a Kernel

vold wecadd |:

" TODO: Fill in the kernel so that a work-item
" adds the Lcrrnﬂrcnu¢nq locations of "A'" and "B
// steres the result in 'C'.

int i1dx = get global 1d({0};

Clidx] = A[idx] 4 B[idx];

Executing the Kernel

e Need to set the dimensions of the index space, and
(optionally) of the work-group sizes

e Kernels execute asynchronously from the host

¢ clEnqueueNDRangeKernel just adds is to the queue, but
doesn’t guarantee that it will start executing

Executing the Kernel

clEnqueueNDRangeKernel (cI command queue command queue,
cl_kernel kernel,
cl uint work dim,
const size t *global work offset,
const size t *global work_size,
const size t *local work_size,
cl uint num _events in_wait list,
const cl_event *event wait list,
cl_event *event)

e Tells the device associated with a command queue to
begin executing the specified kernel

e The global (index space) must be specified and the local
(work-group) sizes are optionally specified

e A list of events can be used to specify prerequisite
operations that must be complete before executing

Executing the Kernel

e A thread structure defined by the index-space that is
created

e Each thread executes the same kernel on different data

b ,, Context
&“ .

An index space of
work items is created
(dimension match
data)

Executing the Kernel

e A thread structure defined by the index-space that is
created

e Each thread executes the same kernel on different data

‘ . Context

‘l/\

‘r &,
- ot %
T
¢
i

Executing the Kernel

clEnqueueNDRangeKernel (cl command queue command queue,
cl kernel kernel,
cl uint work _dim,
const size t *global work offset,
const size t *global work _size,
const size t *local work size,
cl uint num_events in_wait list,
const cl_event *event wait list,
cl event *event)

e Tells the device associated with a command queue to
begin executing the specified kernel

e The global (index space) must be specified and the local
(work-group) sizes are optionally specified

e A list of events can be used to specify prerequisite
operations that must be complete before executing

Executing the Kernel

' TODO: Execute the kernel by using clEngueueNDRangeKernel ().
"globalWeorkSize' 1s the 1D dimensicon of the work-items
= clEnqueueNDRangeKernel (cmdQueue, kernel, 1, NULL, glecbalWorkSize,
NULL, 0, NULL, NULL):
if (status != CL SUCCESS) ({
printf ("clEnqueueNDRangeKernel failed\n");
exit (=1} ;

Copying Data Back

e The last step is to copy the data back from the device to
the host

e Similar call as writing a buffer to a device, but data will
be transferred back to the host

cl int clEnqueueReadBuffer (cl command queue command queue,
cl_mem buffer,
cl_bool blocking read,
size t offset,
size tcbh,
void *pir,
cl uvint num_events in_wait list,
const cl_event *event wait list,
cl_event *event)

Copying Data Back

e A thread structure defined by the index-space that is
created

e Each thread executes the same kernel on different data

Context

J i ;
: 2 %
~ v ¢ :
= o :
" |
N,
(). [
; ' e %
_ i :
= o V
SEa?

Data copied back
from GPU

Copying Data Back

// TODO: Use clEngueueReadBuffer () read the OpenCL cutput buffer (d C)
ff TODO: Us lEngueueReadBuffer () d OpenCL cutpu nff (d C)
// to the host output array (C)

clEnqueueReadBuffer (cmdQueue, 4 C, CL TRUE, 0, datasize, C,
0, NULL, NULL):

Big Picture

OpenCL w w

. N C:raa.- . : \ N
Compile code arguments / e

& Copyright Khronos Growp, 20048 - Page 15

Releasing Resources

e Most OpenCL resources/objects are pointers that shoulc
be freed after they are done being used

e There is a clRelase{Resource} command for most OpenCL
types
e Ex: clReleaseProgram(), clReleaseMemObject()

Error Checking

OpenCL commands return error codes as negative
integer values

e Return value of 0 indicates CL_SUCCESS

e Negative values indicates an error
e cl.h defines meaning of each return value

CL DEVICE NOT FOUND

CL DEVICE NOT AVAILABLE

CL COMPILER NOT AVAILABLE

CL MEM OBJECT ALLOCATION FAILURE
CL OUT OF RESOURCES

Note: Errors are sometimes reported asynchronously

OpenCL vs. CUDA (runtime)

clGetPlatformIDs

clGetDevicelDs <not neededs
clCreateContext
clCreateCommandQueue

clCreateBuffer — — cudaMalloc
clEnqueueWriteBuffer —

— cudaMemcpy

clCreateProgramWithSource
c.BuildProgram} kernel <<< dims >>> args
clCreateKernel
clSetKernelArg
clEnqueueNDRangeKernel /CUdaMemCPy

clEnqueueReadBuffer
clRelease™ —

—cudaFree

