
OpenCL C

Matt Sellitto

Dana Schaa

Northeastern University

NUCAR

OpenCL C

 Is used to write kernels when working with OpenCL

 Used to code the part that runs on the device

 Based on C99 with some extensions and restrictions

 Compiled by the OpenCL compiler (with clBuildProgram)

Some Restrictions

 No C standard library (no stdio.h, stdlib.h etc)

 No variable length arrays (declared within a kernel)

 No variable number of arguments in functions

 No recursive function support

 No extern, static, auto, or register keyword support

 No function pointers

Kernels

 Kernels are similar to functions that are called from the

host and run on the OpenCL device.

 They are executed by many instances of parallel work-items

(or threads)

 They have no return type (void)

 They must be defined with the __kernel qualifier:

__kernel void k()

 {

 //kernel code, executed by many parallel threads

 }

Non-kernel Functions

 Other functions not declared with the __kernel qualifier

are just regular functions

 They can only be called from code running on the device

(such as a kernel function or other non-kernel function)

// may be called from the host, run with many parallel threads

__kernel void k()

 {

 f() // each thread calls function f

 }

// just like a normal C function

// can not be called from the host

int f()

 {

 //do stuff

 }

Datatype Support - Scalars

 Work the same way they do in C:

Datatype Support - Vectors

 Work similar to structs with n number fields.

 Vectors of length 2,3,4,8, and 16 supported

 Elements accessed similar to C structs (vec.x, vec.y etc)

 Used for convenience and/or performance

 (will talk more about later)

Datatype Support - Others

 Supports special image types (2d and 3d)

 (will talk more about later)

 Also supports fixed length arrays, structs, unions

Address Spaces

 All variables live in 1 of 4 mutually exclusive address

spaces:

Address Spaces

 Address space qualifiers are used when a variable is

declared to specify which region of memory a variable

lives in:

 __private

 __local

 __constant

 __global

 If no qualifier is used the variable defaults to the private

address space.

Global Variables
 Visible to all threads within a kernel.

 Space is allocated and initialized before the kernel launch by API calls (clCreateBuffer etc)

 Stored in device main memory

 Images are always implicitly stored in the global address space

 Buffers are usually stored in global memory (but can also be in constant if specified)

/* The array that “x” points to is located

global memory.

Space was allocated with clCreateBuffer() */

__kernel void k(__global int *x)

 {

 }

Constant Variables
 Visible to all threads within a kernel.

 Read-only

 Space is allocated and initialized either

 1. before the kernel launch by API calls (clCreateBuffer etc).

 Use CL_MEM_READ_ONLY flag.

 2. At program scope

 Stored in device main memory

__constant C = 4; // program scope, cannot be accessed from host

/* The array that “x” points to is located in constant mem

Space was allocated with clCreateBuffer() */

__kernel void k(__constant int *x)

 {

 }

Private Variables
 Generic default address space for variables inside OpenCL code.

 Variables in the private address space are “private” to a work-item
(thread)

 Space is allocated automatically

 All kernel and function arguments are in the private address space

 Will usually be stored in registers if possible, may spill into main memory

/* The array that “x” points to is located in global mem
However, the pointer itself is in private mem */

__kernel void k(__global int *x)

 {

 int p; //in private memory

 int array[4]; //also in private mem

 }

Local Variables
 Visible to all threads within a work-group.

 Space is allocated by either

 1. At kernel scope

 2. Before kernel launches when passed as an argument

 Use clSetKernelArg to allocate space()

 Stored in compute-unit memory

 Can not be directly accessed by the host

/* The array that “x” points to is located in local mem

Space was allocated with clSetKernelArg() */

__kernel void k(__local int *x)

 {

 __local array[4] // kernel scope local var

 }

Memory Size Limitations

 Private – if too many registers are used per thread, will
start to spill into thread-visible main memory

 Global – limited by the amount of main memory of
device

 Constant – device limited, usually 64KB per device

 Local – device limited, usually 32KB per compute-unit

Movement between memory spaces

 Movement between memory spaces is explicit

 Simply use the = (assignment) operator.

 Movement between any combinations is fine

 (except writing to constant memory of course)

__kernel void k(__global int *x)

 {

 int p = x[0] // global to private

 }

Kernel Arguments

 All arguments passed by pointer to a kernel must be in

the __global, __constant, or __local address spaces

 If they are just scalars they can simply be passed via

private memory

__kernel void k(__global int *x, __constant int *y, __local int *z, int p)

 {

 }

Converting Between Types

 Can use regular C casts:

int x;

float y = 1.0f;

x = (int) y;

 Safer, more explicit built-in conversion functions:

 Also supports saturation and rounding modes

convert_<destType>(sourceType)

convert_<destType>[_sat][<_rnd>](sourceType) //more general

// example:

int x = 50000;

char c = convert_char_sat(x) // c will saturate and become CHAR_MAX

Work-item Functions
Work-item Functions

Function Description

get_work_dim() Gets number of dimensions

get_global_size(uint dimIdx) Get global work-item size

get_global_id(uint dimIdx) Gets global work-item ID

get_local_size(uint dimIdx) Gets work-group size

get_local_id(uint dimIdx) Gets local work-item ID

get_num_groups (uint dimIdx) Gets number of work-groups

get_group_id(uint dimIdx) Gets work-group ID

Synchronization Function
 barrier(cl_mem_fence_flags flags)

 Synchronizes all work-items within a workgroup

 All work-items within a group must reach the barrier() before they

continue

 All memory writes before the barrier() from all work-items within the

work-group will be visible after the barrier()

 (for local and/or global memory, depending on flags used)

Other Built-in Functions

 OpenCL C comes with all sorts of built-in functions

 Math

 Vectors

 Comparison

 Integer

 Images

 And more (all documented in the spec)

Preprocessor

 Supports preprocessor macros

 #define, #include, #ifdef, etc

 Macros can also be defined when compiling

 (with clBuildProgram)

 #pragma OPENCL <xxxx> is used to enable things like

extensions (will talk more about that next class)

Matrix Multiplication Exercise
 In the Class4 folder there is a matrixMultiplication project

for you to copy to your home directory.

 The goal is to write a parallel matrix multiplication kernel to
run on the GPU.

 Almost all the host side code in matrixMultiplication.cpp is
complete, you only need to write the kernel “matmul” in
matmul.cl (currently blank)

 The kernel takes two int matrices A and B (as single arrays),
the matrix width N (matrix is square) and stores the result in
matrix C

Matrix Multiplication Exercise

 Some variables in the code you may want to change:

 N – dimensions of the matrix

 Weather or not to check result against CPU version

(host_check)

 The program also prints out the time it takes to execute

 Optional: Once you get a working matrix multiply

kernel, can you improve it? Call this kernel “matmul2”

and see if you can make it faster than the first one.

Serial Matrix Multiplication

Parallel Matrix Multiply in OpenCL

Matrix Multiplication 2

- Tiled Using Local Memory

 Each tile can be made out of a

work-group.

 Since the threads in that work-

group will use some of the same

elements of A and B they can be

brought in to local memory to

get better memory performance.

Matrix Multiplication 2

- Tiled Using Local Memory

 Some of the work-items

use duplicate elements

from A and B as other

work-items in their group:

Matrix Multiplication 2

- Tiled Using Local Memory

 Therefore, we can work on one work-group

sized tile of A and B at a time by bringing it

into local memory and operating on it.

Matrix Multiplication 2

- Tiled Using Local Memory

Matrix Multiplication 2

- Tiled Using Local Memory

 Using local memory I was able to get about 35-

40% performance improvement when using

N = 4096 and work-group size of 16x16

 Questions?

