
Vector Hardware

and

OpenCL Images

Very Long Instruction Word

 At compile time, multiple instructions are combined into

a single (long) instruction

 As many execution units as width of VLIW

 Takes advantage of ILP without complex hardware

FU

add r1, r2, r3 load r4, r5+8 mov r6, r2 mul r7, r8, r9 VLIW

FU FU FU

Vector Hardware

 AMD “Cayman” hardware (e.g., Radeon 6970)

 Each PE executes a 4-way VLIW instruction

 The compiler can pack up to 4 instructions to be executed

at a time

 The same VLIW is executed by all PEs, but the instructions

within a VLIW can vary

Compute Unit

PE0 PE1 PE15
... PE2

Registers

ALUs

Incoming VLIW

Instruction

Branch Unit

Vector Hardware

 For complete utilization, there must be enough

instruction level parallelism

 Compiler cannot always find enough instructions to pack

into a VLIW

 Data dependencies

 Conditional statements

 etc.

 If vector data types are used, compiler will be much

more likely to find instructions to pack

Vector Datatypes

 Data is expressed as a vector by adding a suffix to the

type

 float4: vector of four floating-point elements

 int2: vector of two integer elements

 Elements of the vector are accessed using XYZW

notation

float4 data = {0, 0, 0, 0};

data.x = 5.0; // access individual element

data *= 2.0; // apply to all elements

Vector Datatypes

 In OpenCL, an array of floats is specified as float4 by

setting datatype in the kernel signature

 Copy example

 Each work item copies 4 elements from input array to

output array

Vector Datatypes

 Vector operations are ideal for data transfers as well

 Comparison of vector to scalar transfer on Radeon 5870

GPU

Vector Datatypes

 Implication of vector data types

 Each work item computes multiple results (not always the

case)

 What if algorithm isn’t suited for vector hardware?

 Use scalar data types, rely on compiler for packing

 Why vector hardware? Graphics!

 Images are commonly represented as RGBA values

OpenCL Images

 Buffers are used to store 1D data (similar to arrays in C)

 Data is stored contiguously in memory

 Addressable using pointer arithmetic

A[i] = B[i] + C[i]

 Data can be scalar, vector, or user-defined structure

 Images are multidimensional, opaque data types

 Data is accessed indirectly

 Physical layout in memory is unknown

 Coordinates, etc are passed to lookup function which returns

data from desired location

 Data types and formats are predefined

OpenCL Images

 Why use images?

 GPUs automatically cache image data

 2D or 3D spatial caching (based on image dimensions)

 Automatic bounds checking and handling of out of bound

accesses

 Return 0, clamp to nearest border pixel, etc

 Very efficient to not check bounds between multiple accesses!

 Automatic hardware-based interpolation between pixels

OpenCL Images

 2D or 3D images can be created

 Similar to buffer creation except height and width is

specified

 Pitch is optionally given (to optimize for specific hardware)

 Image format must be supplied (next slide)

 Images are based on RGBA graphics format

 Most explicit example of OpenCL bending towards GPUs
instead of the other way around

Image formats

 Format descriptor defines image order and data type

 Order is the data layout (based on RGBA/vector type)

 CL_RBGA, CL_R, CL_RG, etc

 When working with non-RGBA data, only vector width is

important

 Data type defines the type and size of each element in

the vector

 CL_SIGNED_INT32, CL_FLOAT, etc.

Transferring Images

 An array on the host is written to an image on the device

using clEnqueueWriteImage()

 Images are read using clEnqueueReadImage()

 Similar to clEnqueue{Read|Write}Buffer except

 Instead of offset, origin is provided

 Instead of number of bytes to access, a dimensions for a

region are provided

 Pitch is also provided if used when creating image

Reading Images

 On the device, images are accessed using

read_image<type>

 read_imagef() for floating point data

 read_imagei() for integer data

 A pointer to the image, the coordinates to access, and

information about how to read the image (called a

sampler) are all provided

 Regardless of how many channels are used (CL_R = 1

channel, CL_RGBA = 4 channels), the function to read

data from an image returns a 4-element vector

Samplers

 Consist of three options describing how data should be
accessed

1. Normalized coordinates

 Should the data be treated as coordinates from 0 to width-1
(FALSE), or normalized between 0.0 and 1.0 (TRUE)

2. Address mode

 What to do if data access is out of bounds (repeat border
pixel, return 0, etc.). Very useful (avoids conditional checks)

3. Filter mode

 Pick the nearest pixel, or linearly interpolate between pixels

Image Example (Host code)

// host array

float *A = (float*)malloc(sizeof(float)*16);

// Image format (single channel floats)

cl_image_format imgFmt = {CL_R, CL_FLOAT};

// Create image (4 rows by 4 cols)

cl_mem imgA = clCreateImage2D(.., imgFmt, 4, 4, ...)

// Copy image to device

float[3] origin = {0,0,0};

float[3] region = {4,4,1};

clEnqueueWriteImage(..., imgA, ..., origin, region, A, ...);

Image Example (Kernel code)

const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |

 CLK_ADDRESS_CLAMP_TO_EDGE |

 CLK_FILTER_NEAREST;

__kernel

void imgCopy(__read_only image2d_t input,

 ...

{

 int2 coords;

 coords.x = get_global_id(0);

 coords.y = get_global_id(1);

 float4 data = read_imagef(input, sampler, coords);

 ...

}

Writing Images

 Writing to an image requires a 4-element vector, color,

that matches the image format defined for the image

 The coordinates must be valid (in bounds) and non-

normalized

Example: Convolution

 Convolution processes an image by weighting pixels in a

neighborhood

 The matrix of the weights is a filter

Convolution: Algorithm

 In OpenCL, outer two loops map to work items

// hfw == half filter width

// Iterate over the rows of the source image

for(int i = 0; i < rows; i++) {

 // Iterate over the columns of the source image

 for(int j = 0; j < cols; j++) {

 sum = 0; // Reset sum for new source pixel

 // Apply the filter to the neighborhood

 for(int k = -hfw; k <= hfw; k++) {

 for(int l = -hfw; l <= hfw; l++) {

 if(i+k >= 0 && i+k < rows && j+l >= 0 && j+l < cols) {

 sum += Image[i+k][j+l] * Filter[k+hfw][l+hfw];

 }

 }

 }

 outputImage[i][j] = sum;

 }

}

Convolution: Challenges

 Challenges of convolution

 Since work group sizes are fixed, there may be more work

items created than pixels to be computed

 We need to ensure each work item is not reading out of

bounds

Convolution: Challenges

 Challenges of convolution

 The border pixels (half of the filter size) will read out of

bounds

 These either needed to be treated as a special case (requiring

conditional checks) or not produce values (information is lost)

Convolution: Using Buffers

 Buffer implementation

 Exactly the right data can be manually cached

 Potentially better performance

 Requires detailed knowledge of memory architecture

 Architecture-specific code

 Error prone

 Bounds checking must be done using conditional statements

 Padding can be used to avoid conditional checks

 Potentially time consuming

Convolution: Using Images

 Image implementation

 Automatic bounds checking

 Return zero or clamp to border pixel

 Cleaner/fewer lines of code

 Automatic caching of data

 Cleaner/fewer lines of code

 Get good performance for little effort

Convolution:

 Write an image-based implementation of convolution for

OpenCL

 Skeleton code provided

 Reads in image from file

 Compares against known result

 Saves output image to file

 Bonus exercises (using events to measure performance)

 Try loop unrolling the inner loop in the convolution

 Try loop unrolling both loops

 Use mul24 for multiplications inside the kernel

Convolution: Algorithm
i == row

j == col

// Apply the filter to the neighborhood

for(int k = -hfw; k <= hfw; k++) {

 for(int l = -hfw; l <= hfw; l++) {

 sum += Image[i+k][j+l] * Filter[k+hfw][l+hfw];

 }

}

// Write the output value

outputImage[i][j] = sum;

