
Vector Hardware 

and 

OpenCL Images 



Very Long Instruction Word 

 At compile time, multiple instructions are combined into 

a single (long) instruction 

 As many execution units as width of VLIW 

 Takes advantage of ILP without complex hardware 

 

FU 

add r1, r2, r3 load r4, r5+8 mov r6, r2 mul r7, r8, r9 VLIW 

FU FU FU 



Vector Hardware 

 AMD “Cayman” hardware (e.g., Radeon 6970) 

 Each PE executes a 4-way VLIW instruction 

 The compiler can pack up to 4 instructions to be executed 

at a time  

 The same VLIW is executed by all PEs, but the instructions 

within a VLIW can vary 

Compute Unit 

PE0 PE1 PE15 
... PE2 

Registers 

ALUs 

Incoming VLIW 

Instruction 

Branch Unit 



Vector Hardware  

 For complete utilization, there must be enough 

instruction level parallelism 

 Compiler cannot always find enough instructions to pack 

into a VLIW 

 Data dependencies 

 Conditional statements 

 etc. 

 If vector data types are used, compiler will be much 

more likely to find instructions to pack 



Vector Datatypes  

 Data is expressed as a vector by adding a suffix to the 

type 

 float4: vector of four floating-point elements 

 int2: vector of two integer elements 

 Elements of the vector are accessed using XYZW 

notation 

float4 data = {0, 0, 0, 0}; 

data.x = 5.0;  // access individual element 

data *= 2.0;   // apply to all elements 

 

 

 



Vector Datatypes 

 In OpenCL, an array of floats is specified as float4 by 

setting datatype in the kernel signature 

 Copy example 

 Each work item copies 4 elements from input array to 

output array 



Vector Datatypes 

 Vector operations are ideal for data transfers as well 

 Comparison of vector to scalar transfer on Radeon 5870 

GPU 



Vector Datatypes  

 Implication of vector data types 

 Each work item computes multiple results (not always the 

case) 

 What if algorithm isn’t suited for vector hardware? 

 Use scalar data types, rely on compiler for packing 

 Why vector hardware?  Graphics! 

 Images are commonly represented as RGBA values  



OpenCL Images 

 Buffers are used to store 1D data (similar to arrays in C) 

 Data is stored contiguously in memory 

 Addressable using pointer arithmetic 

A[i] = B[i] + C[i] 

 Data can be scalar, vector, or user-defined structure 

 Images are multidimensional, opaque data types 

 Data is accessed indirectly 

 Physical layout in memory is unknown 

 Coordinates, etc are passed to lookup function which returns 

data from desired location 

 Data types and formats are predefined 



OpenCL Images 

 Why use images? 

 GPUs automatically cache image data  

 2D or 3D spatial caching (based on image dimensions) 

 Automatic bounds checking and handling of out of bound 

accesses  

 Return 0, clamp to nearest border pixel, etc 

 Very efficient to not check bounds between multiple accesses! 

 Automatic hardware-based interpolation between pixels 



OpenCL Images 

 2D or 3D images can be created 

 Similar to buffer creation except height and width is 

specified 

 Pitch is optionally given (to optimize for specific hardware) 

 Image format must be supplied (next slide) 

 Images are based on RGBA graphics format 

 Most explicit example of OpenCL bending towards GPUs 
instead of the other way around 



Image formats 

 Format descriptor defines image order and data type 

 Order is the data layout (based on RGBA/vector type) 

 CL_RBGA, CL_R, CL_RG, etc 

 When working with non-RGBA data, only vector width is 

important 

 Data type defines the type and size of each element in 

the vector 

 CL_SIGNED_INT32, CL_FLOAT, etc. 



Transferring Images 

 An array on the host is written to an image on the device 

using clEnqueueWriteImage() 

 Images are read using clEnqueueReadImage() 

 Similar to clEnqueue{Read|Write}Buffer except 

 Instead of offset, origin is provided 

 Instead of number of bytes to access, a dimensions for a 

region are provided 

 Pitch is also provided if used when creating image 



Reading Images 

 On the device, images are accessed using 

read_image<type> 

 read_imagef() for floating point data 

 read_imagei() for integer data 

 A pointer to the image, the coordinates to access, and 

information about how to read the image (called a 

sampler) are all provided 

 Regardless of how many channels are used (CL_R = 1 

channel, CL_RGBA = 4 channels), the function to read 

data from an image returns a 4-element vector 



Samplers 

 Consist of three options describing how data should be 
accessed 

1. Normalized coordinates  

 Should the data be treated as coordinates from 0 to width-1 
(FALSE), or normalized between 0.0 and 1.0 (TRUE) 

2. Address mode 

 What to do if data access is out of bounds (repeat border 
pixel, return 0, etc.). Very useful (avoids conditional checks) 

3. Filter mode 

 Pick the nearest pixel, or linearly interpolate between pixels 



Image Example (Host code) 

// host array 

float *A = (float*)malloc(sizeof(float)*16); 

 

// Image format (single channel floats) 

cl_image_format imgFmt = {CL_R, CL_FLOAT}; 

 

// Create image (4 rows by 4 cols) 

cl_mem imgA = clCreateImage2D(.., imgFmt, 4, 4, ...) 

 

// Copy image to device  

float[3] origin = {0,0,0}; 

float[3] region = {4,4,1}; 

clEnqueueWriteImage(..., imgA, ..., origin, region, A, ...); 



Image Example (Kernel code) 

const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |  

                          CLK_ADDRESS_CLAMP_TO_EDGE   | 

                          CLK_FILTER_NEAREST; 

 

__kernel  

void imgCopy(__read_only image2d_t input,  

             ... 

{ 

 

  int2 coords; 

  coords.x = get_global_id(0); 

  coords.y = get_global_id(1);  

 

  float4 data = read_imagef(input, sampler, coords); 

 

  ... 

} 



Writing Images 

 Writing to an image requires a 4-element vector, color, 

that matches the image format defined for the image 

 The coordinates must be valid (in bounds) and non-

normalized 



Example: Convolution 

 Convolution processes an image by weighting pixels in a 

neighborhood 

 The matrix of the weights is a filter 

 



Convolution: Algorithm 

 In OpenCL, outer two loops map to work items 
 

// hfw == half filter width 

// Iterate over the rows of the source image 

for(int i = 0; i < rows; i++) { 

    

   // Iterate over the columns of the source image 

   for(int j = 0; j < cols; j++) { 

      sum = 0; // Reset sum for new source pixel 

 

      // Apply the filter to the neighborhood 

      for(int k = -hfw; k <= hfw; k++) { 

         for(int l = -hfw; l <= hfw; l++) { 

            if(i+k >= 0 && i+k < rows && j+l >= 0 && j+l < cols) { 

               sum += Image[i+k][j+l] * Filter[k+hfw][l+hfw]; 

            } 

         } 

      } 

      outputImage[i][j] = sum; 

   } 

} 

 



Convolution: Challenges 

 Challenges of convolution 

 Since work group sizes are fixed, there may be more work 

items created than pixels to be computed 

 We need to ensure each work item is not reading out of 

bounds 

 



Convolution: Challenges 

 Challenges of convolution 

 The border pixels (half of the filter size) will read out of 

bounds 

 These either needed to be treated as a special case (requiring 

conditional checks) or not produce values (information is lost) 

 



Convolution: Using Buffers 

 Buffer implementation 

 Exactly the right data can be manually cached  

 Potentially better performance 

 Requires detailed knowledge of memory architecture 

 Architecture-specific code 

 Error prone 

 Bounds checking must be done using conditional statements 

 Padding can be used to avoid conditional checks 

 Potentially time consuming 

 



Convolution: Using Images 

 Image implementation 

 Automatic bounds checking 

 Return zero or clamp to border pixel 

 Cleaner/fewer lines of code 

 Automatic caching of data 

 Cleaner/fewer lines of code  

 Get good performance for little effort 

 



Convolution: 

 Write an image-based implementation of convolution for 

OpenCL 

 Skeleton code provided 

 Reads in image from file 

 Compares against known result 

 Saves output image to file 

 Bonus exercises (using events to measure performance) 

 Try loop unrolling the inner loop in the convolution 

 Try loop unrolling both loops 

 Use mul24 for multiplications inside the kernel 



Convolution: Algorithm 
i == row 

j == col 

 

// Apply the filter to the neighborhood 

for(int k = -hfw; k <= hfw; k++) { 

   for(int l = -hfw; l <= hfw; l++) { 

      sum += Image[i+k][j+l] * Filter[k+hfw][l+hfw]; 

   } 

} 

 

// Write the output value 

outputImage[i][j] = sum; 

 


