
Vector Hardware

and

OpenCL Images

Very Long Instruction Word

 At compile time, multiple instructions are combined into

a single (long) instruction

 As many execution units as width of VLIW

 Takes advantage of ILP without complex hardware

FU

add r1, r2, r3 load r4, r5+8 mov r6, r2 mul r7, r8, r9 VLIW

FU FU FU

Vector Hardware

 AMD “Cayman” hardware (e.g., Radeon 6970)

 Each PE executes a 4-way VLIW instruction

 The compiler can pack up to 4 instructions to be executed

at a time

 The same VLIW is executed by all PEs, but the instructions

within a VLIW can vary

Compute Unit

PE0 PE1 PE15
... PE2

Registers

ALUs

Incoming VLIW

Instruction

Branch Unit

Vector Hardware

 For complete utilization, there must be enough

instruction level parallelism

 Compiler cannot always find enough instructions to pack

into a VLIW

 Data dependencies

 Conditional statements

 etc.

 If vector data types are used, compiler will be much

more likely to find instructions to pack

Vector Datatypes

 Data is expressed as a vector by adding a suffix to the

type

 float4: vector of four floating-point elements

 int2: vector of two integer elements

 Elements of the vector are accessed using XYZW

notation

float4 data = {0, 0, 0, 0};

data.x = 5.0; // access individual element

data *= 2.0; // apply to all elements

Vector Datatypes

 In OpenCL, an array of floats is specified as float4 by

setting datatype in the kernel signature

 Copy example

 Each work item copies 4 elements from input array to

output array

Vector Datatypes

 Vector operations are ideal for data transfers as well

 Comparison of vector to scalar transfer on Radeon 5870

GPU

Vector Datatypes

 Implication of vector data types

 Each work item computes multiple results (not always the

case)

 What if algorithm isn’t suited for vector hardware?

 Use scalar data types, rely on compiler for packing

 Why vector hardware? Graphics!

 Images are commonly represented as RGBA values

OpenCL Images

 Buffers are used to store 1D data (similar to arrays in C)

 Data is stored contiguously in memory

 Addressable using pointer arithmetic

A[i] = B[i] + C[i]

 Data can be scalar, vector, or user-defined structure

 Images are multidimensional, opaque data types

 Data is accessed indirectly

 Physical layout in memory is unknown

 Coordinates, etc are passed to lookup function which returns

data from desired location

 Data types and formats are predefined

OpenCL Images

 Why use images?

 GPUs automatically cache image data

 2D or 3D spatial caching (based on image dimensions)

 Automatic bounds checking and handling of out of bound

accesses

 Return 0, clamp to nearest border pixel, etc

 Very efficient to not check bounds between multiple accesses!

 Automatic hardware-based interpolation between pixels

OpenCL Images

 2D or 3D images can be created

 Similar to buffer creation except height and width is

specified

 Pitch is optionally given (to optimize for specific hardware)

 Image format must be supplied (next slide)

 Images are based on RGBA graphics format

 Most explicit example of OpenCL bending towards GPUs
instead of the other way around

Image formats

 Format descriptor defines image order and data type

 Order is the data layout (based on RGBA/vector type)

 CL_RBGA, CL_R, CL_RG, etc

 When working with non-RGBA data, only vector width is

important

 Data type defines the type and size of each element in

the vector

 CL_SIGNED_INT32, CL_FLOAT, etc.

Transferring Images

 An array on the host is written to an image on the device

using clEnqueueWriteImage()

 Images are read using clEnqueueReadImage()

 Similar to clEnqueue{Read|Write}Buffer except

 Instead of offset, origin is provided

 Instead of number of bytes to access, a dimensions for a

region are provided

 Pitch is also provided if used when creating image

Reading Images

 On the device, images are accessed using

read_image<type>

 read_imagef() for floating point data

 read_imagei() for integer data

 A pointer to the image, the coordinates to access, and

information about how to read the image (called a

sampler) are all provided

 Regardless of how many channels are used (CL_R = 1

channel, CL_RGBA = 4 channels), the function to read

data from an image returns a 4-element vector

Samplers

 Consist of three options describing how data should be
accessed

1. Normalized coordinates

 Should the data be treated as coordinates from 0 to width-1
(FALSE), or normalized between 0.0 and 1.0 (TRUE)

2. Address mode

 What to do if data access is out of bounds (repeat border
pixel, return 0, etc.). Very useful (avoids conditional checks)

3. Filter mode

 Pick the nearest pixel, or linearly interpolate between pixels

Image Example (Host code)

// host array

float *A = (float*)malloc(sizeof(float)*16);

// Image format (single channel floats)

cl_image_format imgFmt = {CL_R, CL_FLOAT};

// Create image (4 rows by 4 cols)

cl_mem imgA = clCreateImage2D(.., imgFmt, 4, 4, ...)

// Copy image to device

float[3] origin = {0,0,0};

float[3] region = {4,4,1};

clEnqueueWriteImage(..., imgA, ..., origin, region, A, ...);

Image Example (Kernel code)

const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |

 CLK_ADDRESS_CLAMP_TO_EDGE |

 CLK_FILTER_NEAREST;

__kernel

void imgCopy(__read_only image2d_t input,

 ...

{

 int2 coords;

 coords.x = get_global_id(0);

 coords.y = get_global_id(1);

 float4 data = read_imagef(input, sampler, coords);

 ...

}

Writing Images

 Writing to an image requires a 4-element vector, color,

that matches the image format defined for the image

 The coordinates must be valid (in bounds) and non-

normalized

Example: Convolution

 Convolution processes an image by weighting pixels in a

neighborhood

 The matrix of the weights is a filter

Convolution: Algorithm

 In OpenCL, outer two loops map to work items

// hfw == half filter width

// Iterate over the rows of the source image

for(int i = 0; i < rows; i++) {

 // Iterate over the columns of the source image

 for(int j = 0; j < cols; j++) {

 sum = 0; // Reset sum for new source pixel

 // Apply the filter to the neighborhood

 for(int k = -hfw; k <= hfw; k++) {

 for(int l = -hfw; l <= hfw; l++) {

 if(i+k >= 0 && i+k < rows && j+l >= 0 && j+l < cols) {

 sum += Image[i+k][j+l] * Filter[k+hfw][l+hfw];

 }

 }

 }

 outputImage[i][j] = sum;

 }

}

Convolution: Challenges

 Challenges of convolution

 Since work group sizes are fixed, there may be more work

items created than pixels to be computed

 We need to ensure each work item is not reading out of

bounds

Convolution: Challenges

 Challenges of convolution

 The border pixels (half of the filter size) will read out of

bounds

 These either needed to be treated as a special case (requiring

conditional checks) or not produce values (information is lost)

Convolution: Using Buffers

 Buffer implementation

 Exactly the right data can be manually cached

 Potentially better performance

 Requires detailed knowledge of memory architecture

 Architecture-specific code

 Error prone

 Bounds checking must be done using conditional statements

 Padding can be used to avoid conditional checks

 Potentially time consuming

Convolution: Using Images

 Image implementation

 Automatic bounds checking

 Return zero or clamp to border pixel

 Cleaner/fewer lines of code

 Automatic caching of data

 Cleaner/fewer lines of code

 Get good performance for little effort

Convolution:

 Write an image-based implementation of convolution for

OpenCL

 Skeleton code provided

 Reads in image from file

 Compares against known result

 Saves output image to file

 Bonus exercises (using events to measure performance)

 Try loop unrolling the inner loop in the convolution

 Try loop unrolling both loops

 Use mul24 for multiplications inside the kernel

Convolution: Algorithm
i == row

j == col

// Apply the filter to the neighborhood

for(int k = -hfw; k <= hfw; k++) {

 for(int l = -hfw; l <= hfw; l++) {

 sum += Image[i+k][j+l] * Filter[k+hfw][l+hfw];

 }

}

// Write the output value

outputImage[i][j] = sum;

