
OpenCL
Using the CPU as a Compute Device

Matt Sellitto

Dana Schaa

Northeastern University

NUCAR

OpenCL and CPUs

 OpenCL can use CPUs as a compute device just it can

for GPUs.

 AMD and Intel’s OpenCL implementations support X86

CPUs (each one works with any CPU that has SSE3 +)

 The goal of heterogenous programming should not be

just to offload work from the CPU but to make the

best use of the available resources in the system.

OpenCL and CPUs

Points to note when working with OpenCL and CPUs

 There is no local memory, CPUs cache is utilized in OpenCL just like any

normal CPU program.

 Accesses to global memory may hit in the cache

 No reason to use __local memory.

 Images give no performance benefit.

 Just for convenience.

 CPUs will naturally be better at code that does a lot of branching as

compared to GPUs.

 Better off using the CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR

flags when calling clCreateBuffer()

 This tells the OpenCL library not to duplicate storage on the host side.

 Since OpenCL “host” memory and OpenCL “device” memory are one in the same

when using the CPU as a device.

OpenCL Data Parallelism + CPUs

 Explicit Data Parallelism

 Use OpenCL Vector datatypes in each work-item

 Tune vector width to that of underlying hardware

 Combine with task-parallelism to exploit multiple cores

 Requires More Tuning

 Implicit SIMD Parallelism

 Write kernel as a “scalar program”

 Use datasizes natural to your algorithm

 OpenCL will automatically map these to the cores and SIMD units

 Number of processing elements changes based on datatype used

 Both of these approaches work in OpenCL

OpenCL Explicit Data Parallelism on CPU

 Can use explicit parallel data structures like vectors to take advantage

of the CPUs SIMD units.

 In this case arrays of floats become array of float4s, each vector

addition can be performed in a SIMD fashion by the CPUs SIMD units.

 Must tune to specific device to maximize performance.

OpenCL Explicit Data Parallelism on CPU

 Each work-item uses explicit SIMD

operations to take advantage of

the CPU vector units.

 Each work-group operates in a

single compute-unit (HW thread)

 Several work-groups are executing

over the entire compute-device.

OpenCL Implicit Data Parallel on CPU

 Implicit SIMD Parallelism involved writing code as a “scalar” program the

same as the GPU

 Advanced OpenCL compiler techniques are required to map the different

threads to the CPU to maximize performance.

 Easier to code, but requires a good compiler.

 Goal of the Intel OpenCL compiler is to use these techniques.

 Intel Implicit Vectorization Module

OpenCL Implicit Data Parallel on CPU

 Each work-item maps to a

lane in the CPUs SIMD unit.

 Work-items are executed

together in SIMD-width

groups to utilize the SIMD

units effectively.

 Work-group size should be a

multiple of SIMD-width work-

items (usually 4)

Task Level Parallelism

 OpenCL can also use CPUs for task-level

parallelism.

 If you need to execute an operation that

does not do the same operation on

thousands of different data objects then a

“task” may be more appropiate.

 Use OpenCL events to create task graph.

 Tasks can be coded to take advantage of

SIMD hardware (by using vectors).

 Tasks only use one compute unit.

clEnqueueTask

 clEnqueueTask() is used to enqueue a task for execution on a

device:

 Tasks can be thought of as kernels with a single work-group

and a single work-item.

 Used the same way clEnqueueNDRangeKernel()

To Do

 Modify the vectorAddition program to run on the CPU.

 Use explicit SIMD parallelism in the kernel by using OpenCL vectors to

increase performance.

References

 Most of this presentation was derived from the Intel

presentation at SIGGRAPH 2010 “Optimizing OpenCL on

CPUs” by Offer Rosenberg

