
CUDA-GDB

NVIDIA CUDA Debugger

What is CUDA-GDB?

• Command-line debugger

• GDB extension, open-sourced (GPL)

• Linux (GDB 6.6) and MAC (GDB 6.3.5)

• 32-bit and 64-bit applications

• C and C++ (v4.0) applications

• Simultaneously debug host and device code

• No OpenCL debugging

What does CUDA-GDB do?

• Control the execution of the application
– Breakpoints

– Single-step

– CTRL-C

• Inspect the current state of the application
– Kernels, blocks, threads

– Devices, SMs, warps

• Inspect and Modify
– Code memory (disassemble)

– Global, shared, and local memory

– Hardware registers

– Textures (read-only)

New features in 4.0

• Mac OS

• C++ debugging

• Fermi disassembly

• Automatic breakpoints on kernel entries

• Conditional breakpoints

• Texture access

• Debugging kernels with textures

• Three-dimensional grid support

Installation and Usage

• Part of the CUDA Toolkit, available at
– http://www.nvidia.com/object/cuda_get.html

• Add cuda-gdb to your $PATH

– export PATH=/usr/local/cuda/bin:$PATH

• Compile the application
– Include debug information with nvcc –g (host) and -G (dev)

– Include statically compiled kernels for Tesla
• -gencode arch=compute_10, code=sm_10

– Include statically compiled kernels for Fermi
• -gencode arch=compute_20, code=sm_20

• Invoke the debugger
– cuda-gdb my_application

Usage Scenarios

• Restriction
– Desktop manager and application cannot share GPUs

– Otherwise, hitting a breakpoint would freeze the desktop
manager

• Single-GPU systems
– console mode only

• Multi-GPU systems
– without desktop manager (console mode)

• all GPUs visible to the application

– with desktop manager
• Linux: device used by X11 is hidden from the application

• MAC: device used by Aqua must be manually hidden:
– CUDA_VISIBLE_DEVICES=0,1,…

Workshop 1

Workshop 1

$ cuda-gdb -q vectorAdd

Using host libthread_db library “…”

(cuda-gdb) break vectorAdd

Breakpoint 1 at 0x400fa0: file vectorAdd.cu, line 4

(cuda-gdb) run

Starting program: …/workshop1/vectorAdd

[Thread debugging using libthread_db enabled]

[New process 17091]

[New thread …]

[Launch of CUDA Kernel 0 (vectorAdd) on Device 0]

[Switching to CUDA Kernel 0 (<<<(0,0),(0,0,0)>>>)]

Breakpoint 1, vectorAdd<<<(2,1), (512, 1, 1)>>> (A=0x…, B=0x…, C=0x…) at vectorAdd.cu: 5

5 int tid = threadIdx.x;

Workshop 1

(cuda-gdb) next

6 C[tid] = A[tid] + B[tid];

(cuda-gdb) info cuda threads

<<<(0,0),(0,0,0)>>> … <<<(0,0),(31,0,0)>>> vectorAdd<<<(2,1), (512, 1, 1)>>> (A=0x…,

B=0x…, C=0x…) at vectorAdd.cu:6

<<<(0,0),(32,0,0)>>> … <<<(1,0),(511,0,0)>>> vectorAdd<<<(2,1), (512, 1, 1)>>> (A=0x…,

B=0x…, C=0x…) at vectorAdd.cu:5

(cuda-gdb) info locals

tid = 0

A = (@global int * @parameter) 0x100000

B = (@global int * @parameter) 0x101000

C = (@global int * @parameter) 0x102000

Workshop 1

(cuda-gdb) print tid

$1 = 0

(cuda-gdb) continue

Continuing.

[Termination of CUDA Kernel 0 (vectorAdd) on Device 0]

Program exited normally

GDB Command Extension Philosophy

• Command behaves the same on device and host
– Reuse existing GDB commands

– Examples: info stack, break, …

• Command is new or behaves differently on device
– new command

– use the cuda prefix

– Example: info cuda threads

• Command-line help
– use the help command

– Examples: help info cuda, help cuda, help set cuda

Execution Control

• Execution control is identical to host debugging:
– launch the application

• (cuda-gdb) run [arguments]

– resume the application (all host and dev threads)
• (cuda-gdb) continue

– kill the application
• (cuda-gdb) kill

– interrupt the application
• CTRL-C

– single-step warp(s)

Single-stepping At the source level At the assembly level

Over function calls next nexti

Into function calls step stepi

Single-Stepping Scope

• The behavior of single-stepping depends on

the presence of a thread synchronization

instruction

PC at a barrier? Single-stepping applies to Notes

Yes Warp in focus and all the warps

that are running the same block

Required to step over

the barrier

No Warp in focus only

Breakpoints

• Symbolic breakpoints
– (cuda-gdb) break my_kernel

– (cuda-gdb) break _Z6kernelIfiEvPT_PT0_

– (cuda-gdb) break int function<int>(int)

• Line number breakpoints
– will create multiple breakpoints if inside template functions

– (cuda-gdb) break my_app.cu:380

• Address breakpoints
– (cuda-gdb) break *0x3e840a8

– (cuda-gdb) break *$pc

• Kernel entry breakpoints
– (cuda-gdb) set cuda break_on_launch application

• List of breakpoints
– (cuda-gdb) info breakpoints

Conditional Breakpoints (v4.0)

• Only reports hit breakpoints if the condition is
met

– all the breakpoints are still hit

– condition is evaluated every time for all the threads

– may slow down execution

• Set at breakpoint creation time

– (cuda-gdb) break my_kernel if threadIdx.x == 13

• Set after the breakpoint is created (1 is the
breakpoint number)

– (cuda-gdb) condition 1 blockIdx.x == 0 && n > 3

Focus

• Many threads to deal with
– how to decide which one the user wants?

• Concept of current focus
– either host thread or device thread

– which kernel/block/thread the user is looking at

– cuda-gdb commands apply to the current focus

• Two different views for a device thread
– hardware coordinates: device, SM, warp, lane

– software coordinates: kernel, block, thread

– mapping between the two sets of coordinates

Mapping Between Software and

Hardware Coordinates

• a device may execute multiple kernels

• a block may run on multiple warps

kernel

block

thread

device

SM

warp

lane

n : 1

1 : n

1 : 1

Focus Query

• Query commands
– cuda <list of coordinates>

– thread

• If focus set to device thread
– (cuda-gdb) cuda kernel block thread

• kernel 1, block (0, 0, 0), thread (0, 0, 0)

– (cuda-gdb) cuda device kernel block warp thread
• kernel 1, block (0, 0, 0), thread (0, 0 ,0), device 0,warp 0

• If focus set to host thread
– (cuda-gdb) thread

• [Current thread is 1 …]

– (cuda-gdb) cuda thread
• Focus not set on any active CUDA kernel

Focus Switch

• Switch command

– cuda <list of coordinate-value pairs>

– thread <host thread id>

• Only switch the specified coordinates

– current coordinates are assumed in case of non-
specified coordinates

– if no current coordinates, best effort to match
request

– error if cannot match request

Focus Switch

• (cuda-gdb) cuda kernel 1 block 1 thread 2,0
– [Switching focus to CUDA kernel 1, grid 2, block (1, 0, 0), thread

(2, 0, 0), device 0, sm 5, warp 0, lane 2]

• (cuda-gdb) cuda block (1, 0, 0) lane 7 sm 5
– [Switching focus to CUDA kernel 1, grid 2, block (1, 0, 0), thread

(7, 0, 0), device 0, sm 5, warp 0, lane 7]

• (cuda-gdb) cuda kernel 1
– [Switching focus to CUDA kernel 1, grid 2, block (0, 0, 0), thread

(0, 0, 0), device 0, sm 1, warp 0, lane 0]

• (cuda-gdb) cuda thread 256
– Request cannot be satisfied. CUDA focus unchanged.

Workshop 2

Workshop 2

$ cuda-gdb -q matrixMul

(cuda-gdb) break matrixMul

[Breakpoint 1 at …]

(cuda-gdb) run

…

[Switching to CUDA kernel 0]

Breakpoint 1, matrixMul<<<(5,6),(16,16,1)>>>

4 int bx = blockIdx.x;

(cuda-gdb) cuda thread

[Current CUDA kernel 0 (thread (0,0,0))]

Workshop 2

(cuda-gdb) info cuda threads

<<<(0,0)(0,0,0)>>> … <<<(4,5)(15,15,0)>>>matrixMul

(cuda-gdb) next

(cuda-gdb) info cuda threads

(cuda-gdb) cuda thread (0,2,0)

[Switching to CUDA kernel 0 (device 0, …, thread(0,2,0)

(cuda-gdb) cuda block (0,1)

Program State Inspection

(Terminology)
• PC (program counter)
– virtual PC

• address in the host virtual address space

• always use virtual PC in cuda-gdb commands

– physical PC
• physical offset from the kernel entry point

• useful when comparing to cuobjdump ouput

• Divergence
– if 2 threads on the same warp must execute different

instructions, the other must wait

– active lanes: lanes currently executing device code

– divergent lanes: lanes that are waiting for their turn or are
done with their turn

Stack Trace

• Same (aliased) commands as in gdb:
– where, backtrace, info stack

• Device stack trace detached from host stack trace
– because the kernel launches are asynchronous

• Applies to the thread in focus

• Example
– (cuda-gdb) info stack

• #0 function<int> (t = 3)a t foo.cu:7

• #1 0x0910a868 in
kernel<int,float><<<(1,1,1),(1,1,1)>>>(out=0x2) at foo.cu:18

• On Tesla, all the functions are always inlined

State of the Application

• gdb command to get information about a topic:
– (cuda-gdb) info <topic>

• cuda-gdb command to get information about a CUDA topic:
– (cuda-gdb) info cuda <topic>

• info cuda topics:
– kernels

– blocks

– threads

– devices

– sms

– warps

– lanes

• Useful to get the picture of the current state of the application

State: Software Point of View
• (cuda-gdb) info cuda kernels

Kernel Dev Grid SMs Mask GridDim BlockDim Name Args

* 0 0 1 0x000002 (1,1,1) (1,1,1) krnl0 data0=20

1 1 1 0x000001 (1,1,1) (1,1,1) krnl1 data1=12

• (cuda-gdb) info cuda blocks (v4.0)

BlockIdx To BlockIdx Count State

* (0,0,0) (97,0,0) 98 running

(102,0,0) (111,0,0) 10 running

• (cuda-gdb) info cuda threads

Blockidx ThreadIdx BlockIdx ThreadIdx Cnt Virtual PC Filename Line

* (0,0,0) (0,0,0) (0,0,0) (0,0,0) 1 0x05ae3168 foo.cu 383

(1,0,0) (0,0,0) (98,0,0) (0,0,0) 98 0x05ae30a8 foo.cu 380

(102,0,0) (0,0,0) (111,0,0) (0,0,0) 10 0x05ae30a8 foo.cu 380

State: Hardware Point of View
• (cuda-gdb) info cuda devices

Dev Desc SM Type SMs Warps/SM Lanes/Warp Regs/Lane Active Mask

* 0 gf100 sm_20 14 48 32 64 0x00003fff

1 gt200 sm_13 30 32 32 128 0x00000000

• (cuda-gdb) info cuda sms

SM Active Mask

* 0 0x000000000000003f

• (cuda-gdb) info cuda warps

Wp Active Mask Diverg Mask Active PC Kernel BlockIdx

* 0 0xffffffe0 0x0000001f 0x0000638 1 (0,0,0)

1 0x00000000 0x00000000 n/a n/a n/a

• (cuda-gdb) info cuda lanes

Ln State Physical PC ThreadIdx

0 divergent 0x000000c8 (0,0,0)

Accessing Variables Contents

• Use the standard print GDB command
– (cuda-gdb) print my_variable

• $1 = 3

• Variable must be live
– compiler optimizes code, even with debug builds

– required because of resource constraints

– if variable not live at some location, try at another
location

• Write a variable
– (cuda-gdb) print my_variable = 5

• $2 = 5

Accessing Memory Contents

• Use the standard print GDB command
– (cuda-gdb) print *my_pointer

• $1 = 3

• May require storage specifier when ambiguous
– @generic

– @global

– @shared

– @local

– @texture

– @parameter

• Textures
– read-only

– must be cast to the type of the array they are bound to

– indexed like standard multi-dimensional C arrays

Accessing Memory Contents

• (cuda-gdb) print my_local_variable

– $1 = 3

• (cuda-gdb) print * (@global int *) my_pointer

– $2 = 5

• (cuda-gdb) print ((@texture float **) my_texture)[0][3]

– $3 = 2.5

Accessing Hardware Registers

• CUDA Registers

– virtual PC: $pc (read-only)

– SASS registers: $R0, $R1, …

• Show all registers

– (cuda-gdb) info registers

• Show a list of registers

– (cuda-gdb) info registers R2 R35

• Modify one register

– (cuda-gdb) print $R3 = 3

Tips

• Always check the return code of the CUDA API
routines

• Use printf from the device code

– make sure to synchronize so buffers are flushed

• To hide devices, launch the application with
CUDA_VISIBLE_DEVICES = 0, 1

• To increase determinism, launch the kernels
synchronously with the environment variable
CUDA_LAUNCH_BLOCKING = 1

