CUDA-GDB

NVIDIA CUDA Debugger



What is CUDA-GDB?

Command-line debugger

GDB extension, open-sourced (GPL)

Linux (GDB 6.6) and MAC (GDB 6.3.5)

32-bit and 64-bit applications

C and C++ (v4.0) applications
Simultaneously debug host and device code
No OpenCL debugging



What does CUDA-GDB do?

* Control the execution of the application
— Breakpoints
— Single-step
— CTRL-C
* |nspect the current state of the application
— Kernels, blocks, threads
— Devices, SMs, warps
* |nspect and Modify
— Code memory (disassemble)
— Global, shared, and local memory
— Hardware registers
— Textures (read-only)



New features in 4.0

Mac OS

C++ debugging
Fermi disassembly
Automatic breakpoints on kernel entries
Conditional breakpoints

Texture access

Debugging kernels with textures
Three-dimensional grid support




Installation and Usage

Part of the CUDA Toolkit, available at
— http://www.nvidia.com/object/cuda get.html

Add cuda-gdb to your SPATH
— export PATH=/usr/local/cuda/bin:SPATH

Compile the application
— Include debug information with nvcc —g (host) and -G (dev)

— Include statically compiled kernels for Tesla
e -gencode arch=compute_10, code=sm_10

— Include statically compiled kernels for Fermi
e -gencode arch=compute_20, code=sm_20

Invoke the debugger
— cuda-gdb my_application




Usage Scenarios

* Restriction
— Desktop manager and application cannot share GPUs
— Otherwise, hitting a breakpoint would freeze the desktop
manager
* Single-GPU systems
— console mode only

 Multi-GPU systems

— without desktop manager (console mode)
* all GPUs visible to the application
— with desktop manager
* Linux: device used by X11 is hidden from the application

 MAC: device used by Aqua must be manually hidden:
— CUDA _VISIBLE_DEVICES=0,1,...



Workshop 1



Workshop 1

S cuda-gdb -q vectorAdd
Using host libthread_db library “...”

(cuda-gdb) break vectorAdd
Breakpoint 1 at 0x400fa0: file vectorAdd.cu, line 4

(cuda-gdb) run

Starting program: .../workshop1/vectorAdd
[Thread debugging using libthread_db enabled]
[New process 17091]

[New thread ...]

[Launch of CUDA Kernel O (vectorAdd) on Device 0]
[Switching to CUDA Kernel 0 (<<<(0,0),(0,0,0)>>>)]

Breakpoint 1, vectorAdd<<<(2,1), (512, 1, 1)>>> (A=0x..., B=0x..., C=0x...) at vectorAdd.cu: 5

5 int tid = threadldx.x;



Workshop 1

(cuda-gdb) next
6 C[tid] = A[tid] + B[tid];

(cuda-gdb) info cuda threads

<<<(0,0),(0,0,0)>>> ... <<<(0,0),(31,0,0)>>> vectorAdd<<<(2,1), (512, 1, 1)>>> (A=0x...,
B=0x..., C=0x...) at vectorAdd.cu:6

<<<(0,0),(32,0,0)>>> ... <<<(1,0),(511,0,0)>>> vectorAdd<<<(2,1), (512, 1, 1)>>> (A=0x...,
B=0x..., C=0x...) at vectorAdd.cu:5

(cuda-gdb) info locals

tid=0

A = (@global int * @parameter) 0x100000
B = (@global int * @parameter) 0x101000
C = (@global int * @parameter) 0x102000



Workshop 1

(cuda-gdb) print tid
S1=0

(cuda-gdb) continue
Continuing.

[Termination of CUDA Kernel O (vectorAdd) on Device 0]

Program exited normally



GDB Command Extension Philosophy

e Command behaves the same on device and host
— Reuse existing GDB commands
— Examples: info stack, break, ...

e Command is new or behaves differently on device
— new command
— use the cuda prefix
— Example: info cuda threads

e Command-line help

— use the help command
— Examples: help info cuda, help cuda, help set cuda



Execution Control

Execution control is identical to host debugging:
— launch the application
* (cuda-gdb) run [arguments]
— resume the application (all host and dev threads)
* (cuda-gdb) continue
— kill the application
* (cuda-gdb) kill
— interrupt the application
e CTRL-C
— single-step warp(s)

Single-stepping At the source level | At the assembly level

Over function calls next nexti

Into function calls step stepi



Single-Stepping Scope

* The behavior of single-stepping depends on
the presence of a thread synchronization
instruction

Yes Warp in focus and all the warps  Required to step over
that are running the same block the barrier

No Warp in focus only



Breakpoints

Symbolic breakpoints
— (cuda-gdb) break my_kernel
— (cuda-gdb) break _Z6kernellfiEvPT_PTO _
— (cuda-gdb) break int function<int>(int)
Line number breakpoints
— will create multiple breakpoints if inside template functions
— (cuda-gdb) break my_app.cu:380
Address breakpoints
— (cuda-gdb) break *0x3e840a8
— (cuda-gdb) break *Spc
Kernel entry breakpoints
— (cuda-gdb) set cuda break_on_launch application
List of breakpoints
— (cuda-gdb) info breakpoints



Conditional Breakpoints (v4.0)

* Only reports hit breakpoints if the condition is
met

— all the breakpoints are still hit
— condition is evaluated every time for all the threads
— may slow down execution

e Set at breakpoint creation time
— (cuda-gdb) break my_kernel if threadldx.x == 13
* Set after the breakpoint is created (1 is the
breakpoint number)
— (cuda-gdb) condition 1 blockldx.x == 0 && n >3



Focus

 Many threads to deal with
— how to decide which one the user wants?

* Concept of current focus
— either host thread or device thread
— which kernel/block/thread the user is looking at
— cuda-gdb commands apply to the current focus

 Two different views for a device thread
— hardware coordinates: device, SM, warp, lane

— software coordinates: kernel, block, thread
— mapping between the two sets of coordinates



Mapping Between Software and
Hardware Coordinates

* a device may execute multiple kernels

* a block may run on multiple warps

n:1
kernel > device
SM
v 1:n l
block > warp
l 1:1 v
thread > lane




Focus Query

 Query commands

— cuda <list of coordinates>
— thread

* If focus set to device thread
— (cuda-gdb) cuda kernel block thread
* kernel 1, block (0, 0, 0), thread (0, O, 0)
— (cuda-gdb) cuda device kernel block warp thread
* kernel 1, block (0, 0, 0), thread (0, 0,0), device O,warp O
* If focus set to host thread

— (cuda-gdb) thread
e [Current threadis 1 ...]

— (cuda-gdb) cuda thread

* Focus not set on any active CUDA kernel



Focus Switch

e Switch command

— cuda <list of coordinate-value pairs>
— thread <host thread id>

* Only switch the specified coordinates

— current coordinates are assumed in case of non-
specified coordinates

— if no current coordinates, best effort to match
request

— error if cannot match request



Focus Switch

(cuda-gdb) cuda kernel 1 block 1 thread 2,0

— [Switching focus to CUDA kernel 1, grid 2, block (1, O, 0), thread
(2, 0, 0), device 0, sm 5, warp O, lane 2]

(cuda-gdb) cuda block (1, 0, 0) lane 7 sm 5

— [Switching focus to CUDA kernel 1, grid 2, block (1, O, 0), thread
(7, 0, 0), device 0, sm 5, warp O, lane 7]

(cuda-gdb) cuda kernel 1

— [Switching focus to CUDA kernel 1, grid 2, block (0, 0, 0), thread
(0, 0, 0), device 0, sm 1, warp O, lane 0]

(cuda-gdb) cuda thread 256

— Request cannot be satisfied. CUDA focus unchanged.



Workshop 2



Workshop 2

S cuda-gdb -q matrixMul
(cuda-gdb) break matrixMul
[Breakpoint 1 at ...]

(cuda-gdb) run

[Switching to CUDA kernel 0]

Breakpoint 1, matrixMul<<<(5,6),(16,16,1)>>>
4  int bx = blockldx.x;

(cuda-gdb) cuda thread
[Current CUDA kernel O (thread (0,0,0))]



Workshop 2

(cuda-gdb) info cuda threads
<<<(0,0)(0,0,0)>>> ... <<<(4,5)(15,15,0)>>>matrixMul

(cuda-gdb) next

(cuda-gdb) info cuda threads

(cuda-gdb) cuda thread (0,2,0)
[Switching to CUDA kernel O (device O, ..., thread(0,2,0)

(cuda-gdb) cuda block (0,1)



Program State Inspection
(Terminology)

 PC (program counter)

— virtual PC

e address in the host virtual address space
 always use virtual PC in cuda-gdb commands

— physical PC
* physical offset from the kernel entry point
e useful when comparing to cuobjdump ouput
* Divergence

— if 2 threads on the same warp must execute different
instructions, the other must wait

— active lanes: lanes currently executing device code

— divergent lanes: lanes that are waiting for their turn or are
done with their turn



Stack Trace

Same (aliased) commands as in gdb:
— where, backtrace, info stack

Device stack trace detached from host stack trace
— because the kernel launches are asynchronous

Applies to the thread in focus

Example
— (cuda-gdb) info stack

e #0 function<int> (t = 3)a t foo.cu:7

* #1 0x0910a868 in
kernel<int,float><<<(1,1,1),(1,1,1)>>>(out=0x2) at foo.cu:18

On Tesla, all the functions are always inlined



State of the Application

gdb command to get information about a topic:
— (cuda-gdb) info <topic>
cuda-gdb command to get information about a CUDA topic:
— (cuda-gdb) info cuda <topic>
info cuda topics:
— kernels
— blocks
— threads
— devices
— sms
— warps
— lanes
Useful to get the picture of the current state of the application



State: Software Point of View

* (cuda-gdb) info cuda kernels

mmmmmmm

0x000002  (1,1,1) (1,1,1) krnl0 data0=20
1 1 1 0x000001  (1,1,1) (1,1,1) krnll  datal=12

* (cuda-gdb) info cuda blocks (v4.0)

*(0,0,0) (97,0,0) running
(102,0,0) (111,0,0) 10 running

. (cuda-gdb) info cuda threads

Blockids | Threacid | Blockids | Threadix | nt | VirtualPC_| Fiename | Line.

*(0,0,00  (0,0,0) (0,0,0) (0,0,0) 1 0x05ae3168 foo.cu 383
(1,0,0) (0,0,00 (98,000 (0,00) 98 O0x05ae30a8 foo.cu 380
(102,0,0) (0,000 (111,0,0) (0,0,00 10 O0x05ae30a8 foo.cu 380



State: Hardware Point of View

* (cuda-gdb) info cuda devices

oo Lo [ oe v Lt v icpne e st

*0 gfl00 sm_20 0x00003fff
1 gt200 sm_13 30 32 32 128 0x00000000

* (cuda-gdb) info cuda sms

*0 0x000000000000003f

* (cuda-gdb) info cuda warps

*0 OxffffffeO 0x0000001f 0x0000638 (0,0,0)
1  0x00000000 (0x00000000 n/a n/a n/a

* (cuda-gdb) info cuda lanes

—m Physical PC_| _Threadldx

divergent 0x000000c8 (0,0,0)



Accessing Variables Contents

* Use the standard print GDB command
— (cuda-gdb) print my_variable
¢« S1=3
* Variable must be live
— compiler optimizes code, even with debug builds
— required because of resource constraints

— if variable not live at some location, try at another
location

* Write a variable
— (cuda-gdb) print my_variable =5
¢ $2=5



Accessing Memory Contents

 Use the standard print GDB command
— (cuda-gdb) print *my_pointer
e S1=3
 May require storage specifier when ambiguous
— (@generic
— @global
— @shared
— @local
— (@texture
— @parameter
* Textures
— read-only
— must be cast to the type of the array they are bound to
— indexed like standard multi-dimensional C arrays



Accessing Memory Contents

* (cuda-gdb) print my_local _variable

—51=3

e (cuda-gdb) print * (@global int *) my_pointer

—S$2=5

* (cuda-gdb) print ((@texture float **) my_texture)[0][3]

—53=25



Accessing Hardware Registers

CUDA Registers
— virtual PC: Spc (read-only)
— SASS registers: SRO, SR1, ...

Show all registers

— (cuda-gdb) info registers

Show a list of registers

— (cuda-gdb) info registers R2 R35

Modify one register
— (cuda-gdb) print SR3 =3



Tips

Always check the return code of the CUDA API
routines

Use printf from the device code

— make sure to synchronize so buffers are flushed

To hide devices, launch the application with
CUDA _VISIBLE _DEVICES =0, 1

To increase determinism, launch the kernels
synchronously with the environment variable
CUDA_LAUNCH BLOCKING =1



