
OpenCL
Events, Synchronization, and Profiling

Matt Sellitto

Dana Schaa

Northeastern University

NUCAR

Command Queues

 OpenCL command queues are used to submit work to

an OpenCL device.

 Two main types of command queues

 In Order Queue

 Out of Order Queue

 In our previous programs we passed 0 in for the “properties” argument when creating a

new command queue, all queues are in-order by default.

 Passing in CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE for the properties makes the

command queue an out-of-order queue.

Command Queue - Behavior

 All OpenCL API functions that begin with clEnque are

ones that put something on a command queue.

 When a commands queue is “in-order” it will always

finish commands one after another in the order they

are added to the queue.

 If a command queue is “out-of-order” it may execute

commands in the queue by over-lapping their

execution or re-ordering them.

Command Queue

– In-order Execution

 In an in-order command queue, each command executes after the

previous one has finished.

 For the set of commands shown, the read from the device would start

after the kernel call has finished

 Memory transactions have consistent view

 In the vectorAddition program, we first enqueued some writes, then we

executed the kernel, and then we read the result back to the host:

Command Queue

– In-order Execution - Synchronization

 When using a single in-order queue you do not have to worry about dependencies between

commands in the queue.

 However, you must remember that enqueueing a command on a queue with clEnqueXXXX does

not mean that the command is finished executing when the API function returns on the host

side.

 The command is just put into the queue, not executed!

 Exception: The cl{Read|Write}{Buffer|Image} functions take a boolean argument to determine

weather they are blocking or non-blocking.

 That is how we knew it was OK to check the output vector on the host after the

clEnqueReadBuffer API function returned.

Command Queue

– In-order Execution - Synchronization

 OpenCL provides API functions for synchronization. One such function is clFinish:

cl_int clFinish(cl_command_queue command_queue)

 clFinish blocks until all commands on a given command queue are finished.

 We could use this API function to determine when we could start to read host side data after a

clEnqueueRead if the read was non-blocking.

Command Queue

- Out of Order Execution

 If using an out-of-order command queue you must take any

dependencies into account between commands.

 You do not know what order they may execute and some may

even overlap in execution!

 We need more control over when commands are executed by

the OpenCL device…

Command Queue

- Out of Order Execution - Events

 OpenCL Event objects can be used to determine a command’s

status and to establish dependencies between commands.

 Events are only valid inside a particular context and not across

multiple contexts.

 Each clEnqueueXXXX() function returns an event object for

that command:

clEnqueueWriteBuffer(…, cl_event *event)

clEnqueueNDRangeKernel(…, cl_event *event)

 These are the objects that are used to coordinate the

execution of commands and to query their status.

Event Info

 OpenCL Event objects can be queried with clGetEventInfo() to

get information about the event:

 Using clGetEventInfo() you can query an events current

execution status (submitted, running, complete), type of

command, context that it was in, etc

Waiting for an Event

 You can wait (block) for an event to complete with

clWaitForEvents():

 This function takes an array of event objects and will

block until all the given events reach the CL_COMPLETE

status.

Waiting for an Event

 If we did a non-blocking read of the output data in

vector addition, we could use this API function to know

when the read was complete and that it was safe to use

the host-side data pointer.

 To do:

 Modify the vectorAddition program to use non-blocking

reads and writes.

 Use the clWaitForEvents() function to know when it is safe

to use the host side data after the clEnqueueReadBuffer()

Note: We are still using an in-order command queue.

Waiting for an Event

clEnqueueReadBuffer(context, d_C, CL_FALSE, 0, datasize, C, 0,

NULL, &read_event);

clWaitForEvents(1, &read_event); // block until read cmd finishes

// Use host data in pointer *op here

Event Wait Lists

 All clEnqueueXXXX commands take an event_wait_list

argument.

 This argument tells the command queue to not let this

command execute until all commands that correspond to

the events in the event_wait_list have been completed.

 These event wait lists can be used to create a sort of

dependency graph between OpenCL commands when

using an out-of-order queue (or even multiple queues).

Event Wait Lists

 Dependency graph of different commands using:

 2 contexts

 3 devices

 6 command queues

Event Wait Lists - Example

 This read will be enqueued on to the command queue

and is still non-blocking, but the read will not actually

happen until event_one and event_two have been

completed.

 To do:

 Modify the vectorAddition program to use an out-of-order

queue.

 Use event_wait_lists to synchronize between different

commands.

Other Synchronization Functions

 clEnqueueBarrier() :

 Places a barrier into a command queue. All commands that

were enqueued before the barrier must complete before any

commands enqueued after the barrier start executing.

 clEnqueueWaitForEvents():

 All events in the event_list must complete before any

commands enqueued after the barrier begin executing.

Other Synchronization Functions

 clEnqueueMarker()

 Enqueues a marker command on to the command_queue. The

marker command is not completed until all commands

enqueued before it have completed.

 The marker command returns an event which can be waited on,

i.e. this event can be waited on to ensure that all commands which

have been queued before the market command have been

completed.

Profiling

 Events can also be used to profile and time your

OpenCL kernels.

 Profiling of OpenCL programs using events has to be

enabled explicitly when creating a command queue

 CL_QUEUE_PROFILING_ENABLE flag must be set in the properties

argument in clCreateCommandQueue()

 May have a small performance penalty.

Profiling - Capabilities

 Using OpenCL Events we can:

 time execution of clEnqueue* calls like kernel execution

or explicit data transfers

 observe overhead and time consumed by a kernel in the

command queue versus actually executing

 profile an application to understand an execution flow

Capturing Event Profiling Information

 clGetEventProfilingInfo() allows us to query a

cl_event to get required counter values

 Timing information returned as cl_ulong data types

 Returns device time counter in nanoseconds

Capturing Event Profiling Information

 Table shows event types described using
cl_profiling_info enumerated type

Param_name Returned Information

CL_PROFILING_COMMAND_QUEUED The time at which the command is enqueued

in a command-queue by the host.

CL_PROFILING_COMMAND_SUBMIT The time at which the command is submitted

by the host to the device associated with the

command queue.

CL_PROFILING_COMMAND_START The time at which the command starts

execution on device.

CL_PROFILING_COMMAND_END The time at which the command has finished

execution on device.

Profiling – How To

 OpenCL events can easily be

used for timing durations of

kernels.

 This method is reliable for

performance optimizations since

it uses counters from the device

 By taking differences of the start

and end timestamps we are

discounting overheads like time

spent in the command queue

Profiling – How To

 Before getting timing information, we must make

sure that the events we are interested in have

completed.

 There are different ways of waiting for events:

 clWaitForEvents(numEvents, eventlist)

 clFinish(commandQueue)

 Timer resolution of the timeingcan be obtained

from the flag:
CL_DEVICE_PROFILING_TIMER_RESOLUTION

when calling clGetDeviceInfo()

How Profiling Can Help

 A heterogeneous application can have multiple kernels and a large

amount of host device IO

 Questions that can be answered by profiling using OpenCL events

 We need to know which kernel to optimize when multiple kernels

take similar time ?

 Small kernels that may be called multiple times vs. large slow

complicated kernel ?

 Are the kernels spending too much time in queues ?

 Understand proportion between execution time and setup time for

an application

 How much does host device IO matter ?

 By profiling an application with minimum overhead and no extra

synchronization, most of the above questions can be answered

To Do

 In our matrixMultiply program we have two kernels that run, one is a

basic naïve matrix multiply and one is a more optimized one using

local memory. Modify the program to profile these two kernels and

print the results to the screen.

