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Why are Graphics Processors of interest?Why are Graphics Processors of interest?Why are Graphics Processors of interest?Why are Graphics Processors of interest?

G hi P i U itG hi P i U it Graphics Processing Units 
 More than 65% of Americans played a video game in 2009
 High end primarily used for 3 D rendering for videogame graphics
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 High-end - primarily used for 3-D rendering for videogame graphics 
and movie animation

 Mid/low-end – primarily used for computer displays
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 Very competitive commodities market
 Manufacturers include NVIDIA, AMD/ATI, IBM-Cell 
 Very competitive commodities market
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T12 - FermiT12 Fermi

GT200 - 285

G80 

W t3GHz Xeon Westmere3GHz – Xeon
Quadcore3GHz – Core2

Duo

Source: NVIDIA



Comparison of CPU and GPU           Comparison of CPU and GPU           
Hardware ArchitecturesHardware Architectures
Comparison of CPU and GPU           Comparison of CPU and GPU           
Hardware ArchitecturesHardware Architectures

CPU/GPU Single 
precision 

Cores GFLOPs/
Watt

$/GFLOP

TFLOPs

NVIDIA 285 1.06 240 5.8 $0.09

$NVIDIA 295 1.79 480 6.2 $0.08

NVIDIA 480 1.34 480 5.4 $0.41

AMD HD 6990 5 10 3072 11 3 $0 14AMD HD 6990 5.10 3072 11.3 $0.14

AMD HD 5870 2.72 1600 14.5 $0.16

AMD HD 4890 1 36 800 7 2 $0 18AMD HD 4890 1.36 800 7.2 $0.18

Intel I-7 965 0.051 4 0.39 $11.02

S NVIDIA AMD d I t lSource: NVIDIA, AMD and Intel
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Reasoning about ParallelismReasoning about ParallelismReasoning about ParallelismReasoning about Parallelism
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exercises
 We will explore some questions that will help 

you understand the challenges we must 
t l it ll lovercome to exploit parallel resourcesovercome to exploit parallel resources
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 Cake ingredients are as follows:
 You are trying to bake 3 blueberry pound cakes
 Cake ingredients are as follows:

o 1 cup butter, softened 
o 1 cup sugar 

4 l

o 1 cup butter, softened 
o 1 cup sugar 

4 lo 4 large eggs 
o 1 teaspoon vanilla extract
o 1/2 teaspoon salt 

o 4 large eggs 
o 1 teaspoon vanilla extract
o 1/2 teaspoon salt 
o 1/4 teaspoon nutmeg 
o 1 1/2 cups flour 1 cup blueberries  
o 1/4 teaspoon nutmeg 
o 1 1/2 cups flour 1 cup blueberries  
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flour your cake pan. 

 Step 2: In large bowl beat together with a mixer butter
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 Step 2: In large bowl beat together with a mixer butterStep 2: In large bowl, beat together with a mixer butter 
and sugar at medium speed until light and fluffy. Add 
eggs, vanilla, salt and nutmeg. Beat until thoroughly 
blended. Reduce mixer speed to low and add flour, 1/2 
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 Assume now that you have three bowls, 3 cake 
pans and 3 mixers.  How much faster is the 
process now that you have additionalprocess now that you have additional 
resources?
process now that you have additional 
resources?
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 Compare the cake-making task to 
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parallel computer
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 Identify data-level parallelism and task-
level parallelism in the cake-making loop
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Ovens = $200/oven
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 Consider the following latencies
Grease and flour pan = 5 minutes
Mixing time = 40 minutes

Bowls = $5/bowl
 Consider the following latencies

Grease and flour pan = 5 minutes
Mixing time = 40 minutesg
Cooking time = 30 minutes
Cooling time = 20 minutes

 Find the best cost vs. performance given these objectives:   
P f i k / i t

g
Cooking time = 30 minutes
Cooling time = 20 minutes

 Find the best cost vs. performance given these objectives:   
P f i k / i tPerformance in cakes/minute
Performance in cakes /$
Performance in cakes/minute
Performance in cakes /$
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shower get dressed eat breakfast dry your hair)

 Can you name some of these?
 Write down a list of your daily activities (e.g., 

shower get dressed eat breakfast dry your hair)shower, get dressed, eat breakfast, dry your hair)
 Identify at least 12-15 activities

 Consider which of these activities could be carried 

shower, get dressed, eat breakfast, dry your hair)
 Identify at least 12-15 activities

 Consider which of these activities could be carried 
out concurrently 
 Identify pairs of parallelizable activities

out concurrently 
 Identify pairs of parallelizable activities
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world (e g showers cars Ipods) to allow us to

presently be carried out in parallel
 What would need to be changed in our physical 

world (e g showers cars Ipods) to allow us toworld (e.g., showers, cars, Ipods) to allow us to 
complete many of these activities in parallel

 How often is parallelism inhibited by our inability 

world (e.g., showers, cars, Ipods) to allow us to 
complete many of these activities in parallel

 How often is parallelism inhibited by our inability p y y
of carrying out two things at the same time?

 Estimate how much more quickly it would 

p y y
of carrying out two things at the same time?

 Estimate how much more quickly it would 
take to carry out these activities if you could 
change these physical systems
take to carry out these activities if you could 
change these physical systems



What is wrong with our world? Nothing!!What is wrong with our world? Nothing!!What is wrong with our world? Nothing!!What is wrong with our world? Nothing!!

There is rampant parallelism in the natural world! There is rampant parallelism in the natural world! 
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If I want to pick all the 
apples, but have only 
one picker and one 

ladder, how will I pick all 
the apples?



Let’s pick some applesLet’s pick some apples

What happens if I get a 
second picker (a shorter 

picker) but keep one 
ladder, how will I pick all 

the apples?



Let’s pick some applesLet’s pick some apples

What happens if I get a 
second picker and a 

second ladder, how will 
I pick all the apples?



Let’s pick some apples – heterogeneity…Let’s pick some apples – heterogeneity…

What changes if the 
trees have a very 

different number of 
apples on them?
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 A task is typically a program or program-like set of
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instructions that is executed by a processor 
 Serial Execution 

E ec tion of a program one statement at a time

A task is typically a program or program like set of 
instructions that is executed by a processor 

 Serial Execution 
E ec tion of a program one statement at a time Execution of a program one statement at a time

 Virtually all parallel tasks will have sections of a parallel 
program that must be executed serially
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 Virtually all parallel tasks will have sections of a parallel 

program that must be executed serially
P ll l E i Parallel Execution 
 Execution of a program by more than one task, with 

each task being able to execute the same or different 

 Parallel Execution 
 Execution of a program by more than one task, with 

each task being able to execute the same or different g
statements at the same moment in time 
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 Parallel tasks typically need to exchange data through

g
statements at the same moment in time 

 Communications 
 Parallel tasks typically need to exchange data throughParallel tasks typically need to exchange data through 

a shared memory bus or over a network
Parallel tasks typically need to exchange data through 
a shared memory bus or over a network
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between communication events
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 Parallel Overhead

between communication events 
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between communication events 
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 The amount of time required to coordinate parallel tasks, as 
opposed to doing useful work

 Synchronizations and data communication

Parallel Overhead 
 The amount of time required to coordinate parallel tasks, as 

opposed to doing useful work
 Synchronizations and data communication
 Middleware execution overhead

 Massively Parallel
 Hardware that comprises a given parallel system - having many 

 Middleware execution overhead
 Massively Parallel

 Hardware that comprises a given parallel system - having many 
processors

 The meaning of "many" keeps increasing
 Embarrassingly Parallel

S l i i il b t i d d t t k i lt l littl

processors
 The meaning of "many" keeps increasing

 Embarrassingly Parallel
S l i i il b t i d d t t k i lt l littl Solving many similar, but independent tasks simultaneously; little 
to no need for coordination between the tasks 

 Solving many similar, but independent tasks simultaneously; little 
to no need for coordination between the tasks 
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 Threads Model
 In parallel programming a single process can have

 Threads Model
 In parallel programming a single process can have In parallel programming, a single process can have 

multiple, concurrent execution paths
 The main program performs some serial work, and then 

creates a number of tasks (threads) that can be

 In parallel programming, a single process can have 
multiple, concurrent execution paths

 The main program performs some serial work, and then 
creates a number of tasks (threads) that can becreates a number of tasks (threads) that can be 
scheduled and run concurrently

 Each thread has local data, but also shares the entire 
resources of main program

creates a number of tasks (threads) that can be 
scheduled and run concurrently

 Each thread has local data, but also shares the entire 
resources of main programresources of main program

 Saves the overhead associated with replicating a 
program's resources for each thread

 Each thread also benefits from a global memory view

resources of main program
 Saves the overhead associated with replicating a 

program's resources for each thread
 Each thread also benefits from a global memory view Each thread also benefits from a global memory view 

because it shares the memory space of the main 
program 

 Each thread also benefits from a global memory view 
because it shares the memory space of the main 
program 



Parallel processing terminology Parallel processing terminology Parallel processing terminology Parallel processing terminology 

 Types of Synchronization: 
 Barrier 

 Types of Synchronization: 
 Barrier 

 Usually implies that all tasks are involved 
 Each task performs its work until it reaches the barrier. It then 

stops, or "blocks"
 When the last task reaches the barrier all tasks are

 Usually implies that all tasks are involved 
 Each task performs its work until it reaches the barrier. It then 

stops, or "blocks"
 When the last task reaches the barrier all tasks are When the last task reaches the barrier, all tasks are 

synchronized

 Lock / semaphore

 When the last task reaches the barrier, all tasks are 
synchronized

 Lock / semaphoreLock / semaphore 
 Can involve any number of tasks 
 Typically used to serialize (protect) access to global data or a 

section of code

Lock / semaphore 
 Can involve any number of tasks 
 Typically used to serialize (protect) access to global data or a 

section of code
 The first task to acquire the lock "sets" it - this task can then 

safely (serially) access the protected data or code
 The first task to acquire the lock "sets" it - this task can then 

safely (serially) access the protected data or code



Parallel processing terminology Parallel processing terminology Parallel processing terminology Parallel processing terminology 
D P ll liD P ll li Data Parallelism
 Most parallel execution 

operates on a data set 

 Data Parallelism
 Most parallel execution 

operates on a data set p
 The data set is typically 

organized as an array or multi-
dimensional matrix

p
 The data set is typically 

organized as an array or multi-
dimensional matrix

 A set of tasks work collectively 
on the same data structure

 Each task/thread works on a 

 A set of tasks work collectively 
on the same data structure

 Each task/thread works on a 
different partition of the same 
data structure

 Tasks perform the same 

different partition of the same 
data structure

 Tasks perform the same 
operation on their partition of 
work, for example, “multiply 
every array element by delta"

operation on their partition of 
work, for example, “multiply 
every array element by delta"



The grain of computation The grain of computation The grain of computation The grain of computation 
 Programs can be decomposed into:

 Processes or Threads
 Functions

 Programs can be decomposed into:
 Processes or Threads
 FunctionsFunctions
 Kernels
 Loops
 Basic blocks

Functions
 Kernels
 Loops
 Basic blocks
 Instructions

 CPUs are designed using pipelining

 Instructions

 CPUs are designed using pipelining



Decomposing computation Decomposing computation Decomposing computation Decomposing computation 

 Programs can be decomposed into parallel 
subproblems:

 Programs can be decomposed into parallel 
subproblems:



Decomposing computation Decomposing computation Decomposing computation Decomposing computation 

 Single programs can be further 
decomposed into parallel subproblems

i th d

 Single programs can be further 
decomposed into parallel subproblems

i th dusing threads:using threads:



What is a thread?What is a thread?What is a thread?What is a thread?

 Process: 
• An address space with 1 or more threads 

 Process: 
• An address space with 1 or more threads p

executing within that address space, and 
the required system resources for those 
threads

p
executing within that address space, and 
the required system resources for those 
threadsthreads

• A program that is running
 Thread:

threads
• A program that is running

 Thread:
• A sequence of control within a process
• Shares the resources of the process
• A sequence of control within a process
• Shares the resources of the process



Advantages and Drawbacks of ThreadsAdvantages and Drawbacks of ThreadsAdvantages and Drawbacks of ThreadsAdvantages and Drawbacks of Threads

 Advantages:
• The overhead for creating a thread is significantly

 Advantages:
• The overhead for creating a thread is significantlyThe overhead for creating a thread is significantly 

less than that for creating a process
• Multitasking, wherein one process serves multiple 

clients

The overhead for creating a thread is significantly 
less than that for creating a process

• Multitasking, wherein one process serves multiple 
clientsclients

• Switching between threads requires the OS to do 
much less work than switching between processes 

li ht i ht

clients
• Switching between threads requires the OS to do 

much less work than switching between processes 
li ht i ht– lightweight

• Hardware can be designed to further reduce this 
overhead

– lightweight
• Hardware can be designed to further reduce this 

overhead



Advantages and Drawbacks of ThreadsAdvantages and Drawbacks of ThreadsAdvantages and Drawbacks of ThreadsAdvantages and Drawbacks of Threads

 Drawbacks:
• Not as widely available on all platforms
• Writing multithreaded programs requires more

 Drawbacks:
• Not as widely available on all platforms
• Writing multithreaded programs requires more• Writing multithreaded programs requires more 

careful thought
• More difficult to debug than single threaded 

programs

• Writing multithreaded programs requires more 
careful thought

• More difficult to debug than single threaded 
programsprograms

• For single processor/core machines, creating 
several threads in a program may not necessarily 
produce an increase in performance (the

programs
• For single processor/core machines, creating 

several threads in a program may not necessarily 
produce an increase in performance (theproduce an increase in performance (the 
overhead of thread management may dominate)
produce an increase in performance (the 
overhead of thread management may dominate)



POSIX Threads (POSIX Threads (pthreadspthreads))POSIX Threads (POSIX Threads (pthreadspthreads))

 IEEE's POSIX Threads Model:
• Programming models for threads on a UNIX 

platform

 IEEE's POSIX Threads Model:
• Programming models for threads on a UNIX 

platformplatform
• pthreads are included in the international 

standards ISO/IEC9945-1

platform
• pthreads are included in the international 

standards ISO/IEC9945-1

 pthreads programming model:
• Creation of threads

 pthreads programming model:
• Creation of threadsCreation of threads
• Managing thread execution
• Managing the shared resources of the process

Creation of threads
• Managing thread execution
• Managing the shared resources of the process



PthreadsPthreads –– The basics: Main threadThe basics: Main threadPthreadsPthreads –– The basics: Main threadThe basics: Main thread

• Initial thread created when main() (in C) or 
PROGRAM (in Fortran) are invoked by the process 
loader

• Initial thread created when main() (in C) or 
PROGRAM (in Fortran) are invoked by the process 
loaderoade

• Once in main(), the application has the ability to 
create daughter threads

oade

• Once in main(), the application has the ability to 
create daughter threadscreate daughter threads

• If the main thread returns, the process terminates 

create daughter threads

• If the main thread returns, the process terminates , p
even if there are running threads in that process, 
unless special precautions are taken

, p
even if there are running threads in that process, 
unless special precautions are taken

• To explicitly avoid terminating the entire process, use 
pthread_exit()

• To explicitly avoid terminating the entire process, use 
pthread_exit()



PthreadsPthreads –– The basicsThe basicsPthreadsPthreads –– The basicsThe basics
 Thread termination methods:
 Implicit termination:

 thread function execution is completed

 Thread termination methods:
 Implicit termination:

 thread function execution is completedthread function execution is completed
 Explicit termination:

 calling pthread_exit() within the thread
 calling pthread cancel() to terminate other threads

thread function execution is completed
 Explicit termination:

 calling pthread_exit() within the thread
 calling pthread cancel() to terminate other threadsg pt ead_ca ce ()

 For numerically intensive routines, it is suggested 
that the application calls p threads if there are p

g pt ead_ca ce ()

 For numerically intensive routines, it is suggested 
that the application calls p threads if there are ppp p p
available processors

 The program in C++ calls the pthread h header file

pp p p
available processors

 The program in C++ calls the pthread h header fileThe program in C++ calls the pthread.h header file

 Pthreads related statements are preceded by the 
fi ( t f h )

The program in C++ calls the pthread.h header file

 Pthreads related statements are preceded by the 
fi ( t f h )pthread_ prefix (except for semaphores)pthread_ prefix (except for semaphores)



////

PthreadsPthreads –– hello.cpphello.cppPthreadsPthreads –– hello.cpphello.cpp
1. //****************************************************************
2. //   This is a sample threaded program in C++.  The main thread creates
3. //   4 daughter threads.  Each child thread simply prints out a message
4. // before exiting.  Notice that we have set the thread attributes to joinable and
5. //   of system scope.

1. //****************************************************************
2. //   This is a sample threaded program in C++.  The main thread creates
3. //   4 daughter threads.  Each child thread simply prints out a message
4. // before exiting.  Notice that we have set the thread attributes to joinable and
5. //   of system scope.
6. //****************************************************************
7. #include <iostream.h>
8. #include <stdio.h>
9. #include <pthread.h>
10.

6. //****************************************************************
7. #include <iostream.h>
8. #include <stdio.h>
9. #include <pthread.h>
10.
11. #define NUM_THREADS 4
12.
13. void *thread_function( void *arg );
14.
15. int main( void )

11. #define NUM_THREADS 4
12.
13. void *thread_function( void *arg );
14.
15. int main( void )( )
16. {
17. int i, tmp;
18. int arg[NUM_THREADS] = {0,1,2,3};
19.
20. pthread t thread[NUM THREADS];

( )
16. {
17. int i, tmp;
18. int arg[NUM_THREADS] = {0,1,2,3};
19.
20. pthread t thread[NUM THREADS];20. pthread_t thread[NUM_THREADS];
21. pthread_attr_t attr;
22.
23. // initialize and set the thread attributes
24. pthread_attr_init( &attr );
25 pthread attr setdetachstate( &attr PTHREAD CREATE JOINABLE );

20. pthread_t thread[NUM_THREADS];
21. pthread_attr_t attr;
22.
23. // initialize and set the thread attributes
24. pthread_attr_init( &attr );
25 pthread attr setdetachstate( &attr PTHREAD CREATE JOINABLE );25. pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE );
26. pthread_attr_setscope( &attr, PTHREAD_SCOPE_SYSTEM );
27.

25. pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE );
26. pthread_attr_setscope( &attr, PTHREAD_SCOPE_SYSTEM );
27.



PthreadsPthreads –– hello.cpphello.cppPthreadsPthreads –– hello.cpphello.cpp
28 // creating threads 
29 for ( i=0; i<NUM_THREADS; i++ )
30 {
31 tmp = pthread_create( &thread[i], &attr, thread_function, (void 

*)&arg[i] );

28 // creating threads 
29 for ( i=0; i<NUM_THREADS; i++ )
30 {
31 tmp = pthread_create( &thread[i], &attr, thread_function, (void 

*)&arg[i] );
32
33 if ( tmp != 0 )
34 {
35 cout << "Creating thread " << i << " failed!" << endl;
36 return 1;

32
33 if ( tmp != 0 )
34 {
35 cout << "Creating thread " << i << " failed!" << endl;
36 return 1;;
37 }
38 }
39
40 // joining threads
41 for ( i=0; i<NUM THREADS; i++ )

;
37 }
38 }
39
40 // joining threads
41 for ( i=0; i<NUM THREADS; i++ )41 for ( i 0; i<NUM_THREADS; i++ )
42 {
43 tmp = pthread_join( thread[i], NULL );
44 if ( tmp != 0 )
45 {
46 cout << "Joining thread " << i << " failed!" << endl;

41 for ( i 0; i<NUM_THREADS; i++ )
42 {
43 tmp = pthread_join( thread[i], NULL );
44 if ( tmp != 0 )
45 {
46 cout << "Joining thread " << i << " failed!" << endl;46 cout << Joining thread  << i <<  failed!  << endl;
47 return 1;
48 }
49 }
50
51 t 0

46 cout << Joining thread  << i <<  failed!  << endl;
47 return 1;
48 }
49 }
50
51 t 051 return 0;
52 }
53

51 return 0;
52 }
53



PthreadsPthreads –– hello.cpphello.cppPthreadsPthreads –– hello.cpphello.cpp

54 //***********************************************************
55 // This is the function each thread is going to run.  It simply asks
56 // the thread to print out a message.  Notice the pointer acrobatics.
57 //***********************************************************

54 //***********************************************************
55 // This is the function each thread is going to run.  It simply asks
56 // the thread to print out a message.  Notice the pointer acrobatics.
57 //***********************************************************57 //***********************************************************
58 void *thread_function( void *arg )
59 {
60 int id;
61

57 //***********************************************************
58 void *thread_function( void *arg )
59 {
60 int id;
6161
62 id = *((int *)arg);
63
64 printf( "Hello from thread %d!\n", id );
65 pthread exit( NULL );

61
62 id = *((int *)arg);
63
64 printf( "Hello from thread %d!\n", id );
65 pthread exit( NULL );65 pthread_exit( NULL );
66 }
65 pthread_exit( NULL );
66 }



Discussion on hello.cppDiscussion on hello.cppDiscussion on hello.cppDiscussion on hello.cpp

 How to compile:
• On our Redhat Linux system, use: 

g++ -pthread filename cpp –o filename

 How to compile:
• On our Redhat Linux system, use: 

g++ -pthread filename cpp –o filenameg++ pthread filename.cpp o filename

 Creating a thread:

g++ pthread filename.cpp o filename

 Creating a thread:

int pthread_create( pthread_t *thread, pthread_attr_t *attr,       
void *(*thread_function)(void *), void *arg );

• First argument – pointer to the identifier of the created thread

int pthread_create( pthread_t *thread, pthread_attr_t *attr,       
void *(*thread_function)(void *), void *arg );

• First argument – pointer to the identifier of the created threadFirst argument pointer to the identifier of the created thread
• Second argument – thread attributes
• Third argument – pointer to the function the thread will execute
• Fourth argument – the argument of the executed function 

First argument pointer to the identifier of the created thread
• Second argument – thread attributes
• Third argument – pointer to the function the thread will execute
• Fourth argument – the argument of the executed function g g

(usually a struct)
• Returns 0 for success

g g
(usually a struct)

• Returns 0 for success



Discussion on hello.cppDiscussion on hello.cppDiscussion on hello.cppDiscussion on hello.cpp

 Waiting for the threads to finish:

int pthread join(pthread t thread void **thread return)

 Waiting for the threads to finish:

int pthread join(pthread t thread void **thread return)int pthread_join(pthread_t thread, void **thread_return)

• Main thread will wait for daughter thread thread to finish
• First argument the thread to wait for

int pthread_join(pthread_t thread, void **thread_return)

• Main thread will wait for daughter thread thread to finish
• First argument the thread to wait for• First argument – the thread to wait for
• Second argument – pointer to a pointer to the return 

value from the thread
Returns 0 for success

• First argument – the thread to wait for
• Second argument – pointer to a pointer to the return 

value from the thread
Returns 0 for success• Returns 0 for success

• Threads should always be joined; otherwise, a thread 
might keep on running even when the main thread has 
already terminated

• Returns 0 for success
• Threads should always be joined; otherwise, a thread 

might keep on running even when the main thread has 
already terminatedalready terminated

• Compile and run the example

already terminated

• Compile and run the examplep pp p



Threads Programming Threads Programming ModelsModelsThreads Programming Threads Programming ModelsModels

 Pipeline model – threads are run one after 
the other

 Pipeline model – threads are run one after 
the other

 Master-slave model – master (main) thread 
doesn't do any work, it just waits for the slave 
th d t fi i h ki

 Master-slave model – master (main) thread 
doesn't do any work, it just waits for the slave 
th d t fi i h kithreads to finish working

 Equal-worker model – all threads do the

threads to finish working

 Equal-worker model – all threads do the Equal-worker model – all threads do the 
same work

 Equal-worker model – all threads do the 
same work



Thread Synchronization MechanismsThread Synchronization Mechanisms

 Mutual exclusion (mutex):
• Guards against multiple threads modifying the 

same shared data simultaneously

 Mutual exclusion (mutex):
• Guards against multiple threads modifying the 

same shared data simultaneouslyy

• Provides locking/unlocking critical code sections 
where shared data is modified

y

• Provides locking/unlocking critical code sections 
where shared data is modifiedwhere shared data is modified

• Each thread waits for the mutex to be unlocked 
(by the thread who locked it) before performing the

where shared data is modified

• Each thread waits for the mutex to be unlocked 
(by the thread who locked it) before performing the(by the thread who locked it) before performing the 
code section
(by the thread who locked it) before performing the 
code section



Thread Synchronization MechanismsThread Synchronization Mechanisms

 Basic Mutex Functions:
int pthread_mutex_init(pthread_mutex_t *mutex, const 

pthread mutexattr t *mutexattr);

 Basic Mutex Functions:
int pthread_mutex_init(pthread_mutex_t *mutex, const 

pthread mutexattr t *mutexattr);_ _
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

_ _
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

• A new data type named pthread_mutex_t is 
designated for mutexes
A t i lik k (t th d ti )

• A new data type named pthread_mutex_t is 
designated for mutexes
A t i lik k (t th d ti )• A mutex is like a key (to access the code section) 
that is handed to only one thread at a time

• The attribute of a mutex can be controlled by 
i th f ti

• A mutex is like a key (to access the code section) 
that is handed to only one thread at a time

• The attribute of a mutex can be controlled by 
i th f tiusing the pthread_mutex_init()function

• The lock/unlock functions work in tandem
using the pthread_mutex_init()function

• The lock/unlock functions work in tandem



#i l d h d h#i l d h d h

Thread Synchronization MechanismsThread Synchronization Mechanisms
#include <pthread.h>
pthread_mutex_t my_mutex;     // should be of global scope
...
int main()
{

#include <pthread.h>
pthread_mutex_t my_mutex;     // should be of global scope
...
int main()
{{

int tmp;
...
// initialize the mutex
tmp = pthread mutex init( &my mutex, NULL );

{
int tmp;
...
// initialize the mutex
tmp = pthread mutex init( &my mutex, NULL );tmp  pthread_mutex_init( &my_mutex, NULL );
...
// create threads
...
pthread mutex lock( &my mutex );

tmp  pthread_mutex_init( &my_mutex, NULL );
...
// create threads
...
pthread mutex lock( &my mutex );p _ _ ( y_ );

do_something_private();
pthread_mutex_unlock( &my_mutex );

...
return 0;

p _ _ ( y_ );
do_something_private();

pthread_mutex_unlock( &my_mutex );
...

return 0;
}

 Whenever a thread reaches the lock/unlock block, it first 
determines if the mutex is locked.  If locked, it waits until it is 
unlocked Otherwise it takes the mutex locks the succeeding

}

 Whenever a thread reaches the lock/unlock block, it first 
determines if the mutex is locked.  If locked, it waits until it is 
unlocked Otherwise it takes the mutex locks the succeedingunlocked.  Otherwise, it takes the mutex, locks the succeeding 
code, then frees the mutex and unlocks the code when it's done.
unlocked.  Otherwise, it takes the mutex, locks the succeeding 
code, then frees the mutex and unlocks the code when it's done.



Thread Synchronization MechanismsThread Synchronization Mechanisms

 Consider the code in the mutex example

O th d i t th h d i bl

 Consider the code in the mutex example

O th d i t th h d i bl One thread increments the shared variable 
(shared_target) and the other decrements

 One thread increments the shared variable 
(shared_target) and the other decrements

 Illustrates many of the basics for managing 
shared data

 Illustrates many of the basics for managing 
shared data

 Experiment with the number of threads and the 
number of iterations

 Experiment with the number of threads and the 
number of iterations

 What is the relationship between these parms? What is the relationship between these parms?



Thread Synchronization MechanismsThread Synchronization Mechanisms

 Counting Semaphores: Counting Semaphores:

• Permit a limited number of threads to execute a 
section of the code

• Permit a limited number of threads to execute a 
section of the code

• Similar to mutexes• Similar to mutexes

• Should include the semaphore.h header file

• Semaphore functions do not have pthread

• Should include the semaphore.h header file

• Semaphore functions do not have pthreadSemaphore functions do not have pthread_
prefixes; instead, they have sem_ prefixes
Semaphore functions do not have pthread_
prefixes; instead, they have sem_ prefixes



Thread Synchronization MechanismsThread Synchronization Mechanisms

 Basic Semaphore Functions:
• Creating a semaphore:

 Basic Semaphore Functions:
• Creating a semaphore:
int sem_init(sem_t *sem, int pshared, unsigned int

value);

 initializes a semaphore object pointed to by sem

int sem_init(sem_t *sem, int pshared, unsigned int
value);

 initializes a semaphore object pointed to by sem
 pshared is a sharing option; a value of 0 means the 

semaphore is local to the calling process
 gives an initial value value to the semaphore

 pshared is a sharing option; a value of 0 means the 
semaphore is local to the calling process
 gives an initial value value to the semaphoreg p

• Terminating a semaphore:
int sem_destroy(sem_t *sem);

f th ll t d t th h

g p
• Terminating a semaphore:
int sem_destroy(sem_t *sem);

f th ll t d t th h frees the resources allocated to the semaphore sem

 usually called after pthread_join()
 an error will occur if a semaphore is destroyed for

 frees the resources allocated to the semaphore sem

 usually called after pthread_join()
 an error will occur if a semaphore is destroyed foran error will occur if a semaphore is destroyed for 

which a thread is waiting
an error will occur if a semaphore is destroyed for 
which a thread is waiting
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Thread Synchronization MechanismsThread Synchronization Mechanisms
• Semaphore control:

int sem_post(sem_t *sem);
int sem wait(sem t *sem);

• Semaphore control:
int sem_post(sem_t *sem);
int sem wait(sem t *sem);int sem_wait(sem_t sem);

 sem_post atomically increases the value of a 
semaphore by 1, i.e., when 2 threads call 

int sem_wait(sem_t sem);

 sem_post atomically increases the value of a 
semaphore by 1, i.e., when 2 threads call p y , ,
sem_post simultaneously, the semaphore's value 
will also be increased by 2 (there are 2 atoms 
calling)

p y , ,
sem_post simultaneously, the semaphore's value 
will also be increased by 2 (there are 2 atoms 
calling)

 sem_wait atomically decreases the value of a 
semaphore by 1; but always waits until the 
semaphore has a non-zero value first

 sem_wait atomically decreases the value of a 
semaphore by 1; but always waits until the 
semaphore has a non-zero value first



Thread Synchronization MechanismsThread Synchronization Mechanisms
#include <pthread.h>
#include <semaphore.h>
void *thread_function( void *arg );
...
sem_t semaphore;        // also a global variable just like mutexes

#include <pthread.h>
#include <semaphore.h>
void *thread_function( void *arg );
...
sem_t semaphore;        // also a global variable just like mutexes
...
int main()
{

int tmp;
...

...
int main()
{

int tmp;
...

// initialize the semaphore
tmp = sem_init( &semaphore, 0, 0 );
...
// create threads
pthread create( &thread[i], NULL, thread function, NULL );

// initialize the semaphore
tmp = sem_init( &semaphore, 0, 0 );
...
// create threads
pthread create( &thread[i], NULL, thread function, NULL );pthread_create( &thread[i], NULL, thread_function, NULL );
...
while ( still_has_something_to_do() )
{

sem_post( &semaphore );

pthread_create( &thread[i], NULL, thread_function, NULL );
...
while ( still_has_something_to_do() )
{

sem_post( &semaphore );
...

}
...
pthread_join( thread[i], NULL );
sem_destroy( &semaphore );
return 0;

...
}
...
pthread_join( thread[i], NULL );
sem_destroy( &semaphore );
return 0;return 0;

} 
return 0;

} 



Thread Synchronization MechanismsThread Synchronization Mechanisms

void *thread_function( void *arg )
{

sem_wait( &semaphore );

void *thread_function( void *arg )
{

sem_wait( &semaphore );
perform_task_when_sem_open();
...
pthread_exit( NULL );

}

perform_task_when_sem_open();
...
pthread_exit( NULL );

}}

• The main thread increments the semaphore's 
count value in the while loop

}

• The main thread increments the semaphore's 
count value in the while loop

• The threads wait until the semaphore's count 
value is non-zero before performing 

f k h ()

• The threads wait until the semaphore's count 
value is non-zero before performing 

f k h ()perform_task_when_sem_open()

• Daughter thread activities stop only when 
is called

perform_task_when_sem_open()

• Daughter thread activities stop only when 
is calledpthread_join()is calledpthread_join()is called



Thread Synchronization MechanismsThread Synchronization Mechanisms

 Look through the semaphore code provided

 The application performs a simple simulation of a

 Look through the semaphore code provided

 The application performs a simple simulation of a The application performs a simple simulation of a 
producer/consumer: producing and buying milk

E i t ith i i th b f th d

 The application performs a simple simulation of a 
producer/consumer: producing and buying milk

E i t ith i i th b f th d Experiment with increasing the number of threads Experiment with increasing the number of threads



Condition VariablesCondition Variables

• Used for communicating information about 
the state of shared data

• Used for communicating information about 
the state of shared data

• Can make the execution of sections of a 
code by a thread depend on the state of a

• Can make the execution of sections of a 
code by a thread depend on the state of acode by a thread depend on the state of a 
data structure or another running thread
code by a thread depend on the state of a 
data structure or another running thread

• Condition variables are used for signaling, 
not for mutual exclusion; a mutex is 
needed to synchronize access to shared

• Condition variables are used for signaling, 
not for mutual exclusion; a mutex is 
needed to synchronize access to sharedneeded to synchronize access to shared 
data
needed to synchronize access to shared 
data



Another pthreads exampleAnother pthreads example

• Run the pthreads matmul.cpp program• Run the pthreads matmul.cpp program

• Experiment with its performance• Experiment with its performance

• Compile and run the serial pi program 
(make sure to pass an input parameter –
an integer)

• Compile and run the serial pi program 
(make sure to pass an input parameter –
an integer)a tege )

• Now attempt to parallelize it with pthreads! 
(h k)

a tege )

• Now attempt to parallelize it with pthreads! 
(h k)(homework)(homework)



A parallel implementation of pi.cppA parallel implementation of pi.cpp
#include <stdio.h> 
#include <pthread.h> 
int n, num_threads; 
double d pi;

#include <stdio.h> 
#include <pthread.h> 
int n, num_threads; 
double d pi;double d, pi; 
pthread_mutex_t reduction_mutex; 
pthread_t *tid; 
void *PIworker(void *arg) { int i myid;

double d, pi; 
pthread_mutex_t reduction_mutex; 
pthread_t *tid; 
void *PIworker(void *arg) { int i myid;void PIworker(void arg) { int i, myid; 
double s, x, mypi; myid = *(int *)arg; 

s = 0.0; 
for (i=myid+1; i<=n; i+=num_threads) 

void PIworker(void arg) { int i, myid; 
double s, x, mypi; myid = *(int *)arg; 

s = 0.0; 
for (i=myid+1; i<=n; i+=num_threads) 

{ x = (i-0.5)*d; s += 4.0/(1.0+x*x);
} 

mypi = d*s; 
h d l k( d i )

{ x = (i-0.5)*d; s += 4.0/(1.0+x*x);
} 

mypi = d*s; 
h d l k( d i )pthread_mutex_lock(&reduction_mutex); 

pi += mypi; 
pthread_mutex_unlock(&reduction_mutex); 

pthread_mutex_lock(&reduction_mutex); 
pi += mypi; 
pthread_mutex_unlock(&reduction_mutex); 



pthread exit(0);pthread exit(0);

A parallel implementation of pi.cppA parallel implementation of pi.cpp
pthread_exit(0); 
} 
main(int argc, char **argv) { int i; int *id; n = 

atoi(argv[1]); 
h d i( [2])

pthread_exit(0); 
} 
main(int argc, char **argv) { int i; int *id; n = 

atoi(argv[1]); 
h d i( [2])num_threads = atoi(argv[2]); 

d = 1.0/n; 
pi = 0.0; 
id = (int *) calloc(n,sizeof(int)); t

num_threads = atoi(argv[2]); 
d = 1.0/n; 
pi = 0.0; 
id = (int *) calloc(n,sizeof(int)); t( ) ( , ( ));
id = (pthread_t *) calloc(num_threads, 
sizeof(pthread_t)); 
if(pthread_mutex_init(&reduction_mutex,NULL)) 

{ fprintf(stderr, "Cannot init lock\n"); exit(0); }; 

( ) ( , ( ));
id = (pthread_t *) calloc(num_threads, 
sizeof(pthread_t)); 
if(pthread_mutex_init(&reduction_mutex,NULL)) 

{ fprintf(stderr, "Cannot init lock\n"); exit(0); }; { p ( , \ ); ( ); };

for (i=0; i<num+_threads; i++) 
{ id[i] = i; 
if(pthread_create(&tid[i],NULL, PIworker,(void 
*)&id[i])) { exit(1);

{ p ( , \ ); ( ); };

for (i=0; i<num+_threads; i++) 
{ id[i] = i; 
if(pthread_create(&tid[i],NULL, PIworker,(void 
*)&id[i])) { exit(1);)&id[i])) { exit(1); 
}; 

}; 
for (i=0; i<num_threads; i++)   
th d j i (tid[i] NULL)

)&id[i])) { exit(1); 
}; 

}; 
for (i=0; i<num_threads; i++)   
th d j i (tid[i] NULL)pthread_join(tid[i],NULL); 
printf("pi=%.15f\n", pi); } 
pthread_join(tid[i],NULL); 
printf("pi=%.15f\n", pi); } 
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• Also referred to as vectorization
• Effectively used for over 35 years to exploit data level
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• Effectively used for over 35 years to exploit data level• Effectively used for over 35 years to exploit data-level 

parallelism (CDC Star100 and ILLIAC-IV)
• Execute the same instruction on different data

X86 extensions MMX SSE 3DNow AVX

• Effectively used for over 35 years to exploit data-level 
parallelism (CDC Star100 and ILLIAC-IV)

• Execute the same instruction on different data
X86 extensions MMX SSE 3DNow AVX• X86 extensions MMX, SSE, 3DNow, AVX

• AltiVEC (PowerPC), Vis (SPARC) 
• X86 extensions MMX, SSE, 3DNow, AVX
• AltiVEC (PowerPC), Vis (SPARC) 



SIMD Execution – AdvantagesSIMD Execution – Advantages

• Exploits rampant data parallelism
• Better code density
• Exploits rampant data parallelism
• Better code densityBetter code density
• Lower code decoding overhead
• Potentially better memory efficiency –

i li it d t l lit

Better code density
• Lower code decoding overhead
• Potentially better memory efficiency –

i li it d t l litimplicit data locality
• Efficient for streaming and multimedia 

applications

implicit data locality
• Efficient for streaming and multimedia 

applicationsapplications
• Can effectively handle irregular data 

patterns (e.g., swizzles)

applications
• Can effectively handle irregular data 

patterns (e.g., swizzles)



SIMD Execution – DisadvantagesSIMD Execution – Disadvantages

 Not all algorithms can be vectorized
 Gathering data into SIMD registers and scattering it to 
 Not all algorithms can be vectorized
 Gathering data into SIMD registers and scattering it to 

the correct destination locations is tricky and can be 
inefficient (swizzles start to address this issue)

 Specific instructions like rotations and three-operand 
dd i SIMD i t ti t

the correct destination locations is tricky and can be 
inefficient (swizzles start to address this issue)

 Specific instructions like rotations and three-operand 
dd i SIMD i t ti tadds are uncommon in SIMD instruction sets

 Instruction sets are architecture-specific: old processors 
and non-x86 processors lack SSE entirely -

t id t i d

adds are uncommon in SIMD instruction sets
 Instruction sets are architecture-specific: old processors 

and non-x86 processors lack SSE entirely -
t id t i dprogrammers must provide non-vectorized

implementations (or different vectorized
implementations) for them

 The early MMX instruction set shared a register file with

programmers must provide non-vectorized
implementations (or different vectorized
implementations) for them

 The early MMX instruction set shared a register file with The early MMX instruction set shared a register file with 
the floating-point stack, which caused inefficiencies 
when mixing floating-point and MMX code

 The early MMX instruction set shared a register file with 
the floating-point stack, which caused inefficiencies 
when mixing floating-point and MMX code



SIMD Execution – SSESIMD Execution – SSE

 Supported by most C/C++/Fortran 
compilers

 Supported by most C/C++/Fortran 
compilers

 On our Linux system, use the –msse
switch

 On our Linux system, use the –msse
switch

 Using pi serial code, experiment with 
using this switch

 Using pi serial code, experiment with 
using this switchg

 Increase the number of loops to get timing 
statistics 

g

 Increase the number of loops to get timing 
statistics 



Comparison of CPU and GPU           Comparison of CPU and GPU           
Hardware ArchitecturesHardware Architectures
Comparison of CPU and GPU           Comparison of CPU and GPU           
Hardware ArchitecturesHardware Architectures

CPU: Cache heavy, 
focused on individual 
thread performance 

GPU: ALU heavy, 
massively parallel, 
throughput-oriented



Traditional CPU/GPU Relationship Traditional CPU/GPU Relationship Traditional CPU/GPU Relationship Traditional CPU/GPU Relationship 
CPU

(host)
GPU w/GPU w/ 

local DRAM
(device)



A wide range of GPU applicationsA wide range of GPU applicationsA wide range of GPU applicationsA wide range of GPU applications
Protein folding3D image analysis

Adaptive radiation therapy
Acoustics
Astronomy

Film
Financial
GIS
Holographics cinema

Protein folding
Quantum chemistry
Ray tracing
RadarAstronomy

Audio
Automobile vision
Bioinfomatics

Holographics cinema
Intrusion detection
Machine learning
Mathematics research

Reservoir simulation
Robotic vision / AI
Robotic surgeryBioinfomatics

Biological simulation
Broadcast
Cellular automata

Mathematics research
Military
Mine planning
Molecular dynamics

Satellite data 
analysis

Seismic imaging
Surgery simulation

Fluid dynamics
Computer vision
Cryptography
CT t ti

MRI reconstruction
Multispectral imaging
N-body simulation
Net ork processing

Surgery simulation
Surveillance
Ultrasound
Video conferencing

CT reconstruction
Data mining
Digital cinema / projections
Electromagnetic simulation

Network processing
Neural network
Oceanographic research
Optical inspection

Telescope
Video
Visualization
Wi lElectromagnetic simulation

Equity trading
Optical inspection
Particle physics

Wireless
X-Ray



GPU as a General Purpose GPU as a General Purpose 
Computing PlatformComputing Platform
GPU as a General Purpose GPU as a General Purpose 
Computing PlatformComputing Platform

Speedups are impressive and ever increasing! Speedups are impressive and ever increasing! 

Genetic Algorithm

2600 X

Real Time Elimination
of Undersampling Artifacts

2300 X

Lattice-Boltzmann Method
for Numerical Fluid Mechanics

1840 X

Total Variation Modeling

1000 X

Fast Total Variation for
Computer Vision

1000 X

Monte Carlo Simulation
Of Photon Migration

1000 X

Stochastic Differential
Equations

675 X

K-Nearest Neighbor
Search
470 X

Source: CUDA Zone at www.nvidia.com/cuda/



Streaming Processor Array
NVIDIA NVIDIA 
GT200 GT200 

architecturearchitecture
TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC

architecturearchitectureGrid of thread blocks

Multiple thread blocks

Texture Processor
Cluster Streaming Multiprocessor

Multiple thread blocks,      
many warps of threads

SP

SP

SP

SP

Cluster

SM

Streaming Multiprocessor
• 240 shader cores
• 1.4B transistors
• Up to 2GB onboard 

SP

SP
SFU

SP

SP
SFU

SM

e 
U

ni
t

p
memory
• ~150GB/sec BW
• 1.06 SP TFLOPS
• CUDA and OpenCL 

Te
xt

ur
e

SM
p

support
• Programmable 
memory spaces
• Tesla S1070 

SM

Individual threads
provides 4 GPUs in a 
1U unit



AMD GPU ArchitectureAMD GPU ArchitectureAMD GPU ArchitectureAMD GPU Architecture

• 5-way VLIW Architecture

• 4 Stream Cores and 1 special 
function Stream Core

• Separate Branch Unit
Special 

functions
1 32 bit FP

Stream Cores

p

• All 5 cores co-issue

• Scheduling across the cores is 
done by the compiler

1 32-bit FP 
MAD

per clock

done by the compiler

• Each core delivers a 32-bit result 
per clock

4 32 bit FP MAD per clock • Thread processor writes 5 results 
per clock

4 32-bit FP MAD per clock
2 64-bit FP MUL or ADD per clock

1 64-bit FP MAD per clock
4 24-bit Int MUL or ADD per clock4 24 bit Int MUL or ADD per clock



AMD/ATI AMD/ATI RadeonRadeon HD 5870HD 5870AMD/ATI AMD/ATI RadeonRadeon HD 5870HD 5870

• Codename “Evergreen”

• 20 SIMD Engines 
• 1600 SIMD cores1600 SIMD cores

• L1/L2 memory architecture

• 153GB/sec memory bandwidth153GB/sec memory bandwidth

• 2.72 TFLOPS SP

• OpenCL and DirectX11Ope C a d ect

• Provides for vectorized operation



AMD Memory SystemAMD Memory SystemAMD Memory SystemAMD Memory System

Distributed memory controller
O ti i d f l t hidi Optimized for latency hiding 

and memory access efficiency
 GDDR5 memory at 150GB/s GDDR5 memory at 150GB/s
 Up to 272 billion 32-bit 
fetches/secondfetches/second
 Up to 1 TB/sec L1 texture 
fetch bandwidthfetch bandwidth
 Up to 435 GB/sec between 
L1 & L2



C for CUDAC for CUDAC for CUDAC for CUDA

 The language that started the GPGPU 
excitement

 The language that started the GPGPU 
excitement

 CUDA only runs on NVIDIA GPUs CUDA only runs on NVIDIA GPUs

 Highest performance programming 
framework for NVIDIA GPUs presently

 Highest performance programming 
framework for NVIDIA GPUs presentlyp y

 Learning curve similar to threaded C 
programming

p y

 Learning curve similar to threaded C 
programmingprogramming
 Large performance gains require mapping 

program to specific underlying architecture

programming
 Large performance gains require mapping 

program to specific underlying architecture



OpenCL OpenCL –– The future for manyThe future for many--core computing core computing OpenCL OpenCL –– The future for manyThe future for many--core computing core computing 

 Open Compute Language

 A framework for writing programs that execute on 
h t t
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 Very similar to CUDA

heterogeneous systems
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 Being developed by Khronos Group – a non-profit
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 Modeled as four parts
• Platform Model

 Being developed by Khronos Group a non-profit

 Modeled as four parts
• Platform Model• Platform Model
• Execution Model
• Memory Model

• Platform Model
• Execution Model
• Memory Model
• Programming Model• Programming Model



OpenCLOpenCL Platform ModelPlatform ModelOpenCLOpenCL Platform ModelPlatform Model

 The model consists of a host connected to 
one or more OpenCL devices

 A device is divided into one or more compute

 The model consists of a host connected to 
one or more OpenCL devices

 A device is divided into one or more compute A device is divided into one or more compute 
units

 Compute units are divided into one or more 
i l t

 A device is divided into one or more compute 
units

 Compute units are divided into one or more 
i l tprocessing elementsprocessing elements



OpenCLOpenCL Execution ModelExecution ModelOpenCLOpenCL Execution ModelExecution Model

 2 main parts:
 Host programs execute on the host
 Kernels execute on one or more OpenCL

 2 main parts:
 Host programs execute on the host
 Kernels execute on one or more OpenCL Kernels execute on one or more OpenCL

devices
 Each instance of a kernel is called a work-

 Kernels execute on one or more OpenCL
devices

 Each instance of a kernel is called a work-
item

 Work-items are organized as work-groups
 When a kernel is submitted an index space

item
 Work-items are organized as work-groups
 When a kernel is submitted an index space When a kernel is submitted, an index space

of work-groups and work-items is defined
 Work-items can identify themselves based on 

 When a kernel is submitted, an index space
of work-groups and work-items is defined

 Work-items can identify themselves based on y
their work-group ID and their local ID within 
the work-group

y
their work-group ID and their local ID within 
the work-group



OpenCLOpenCL Execution ModelExecution ModelOpenCLOpenCL Execution ModelExecution Model
A f h i i hi hA f h i i hi h A context refers to the environment in which 
kernels execute
 Devices (the elements performing the execution)

 A context refers to the environment in which 
kernels execute
 Devices (the elements performing the execution)( p g )
 Program objects (the program source that implements 

the kernel)
 Kernels (OpenCL functions that run on OpenCL

( p g )
 Program objects (the program source that implements 

the kernel)
 Kernels (OpenCL functions that run on OpenCLKernels (OpenCL functions that run on OpenCL

devices)
 Memory objects (data that can be operated on by the 

device)

Kernels (OpenCL functions that run on OpenCL
devices)

 Memory objects (data that can be operated on by the 
device)device)

 Command queues are used to coordinate execution of 
the kernels on the devices
 Memory commands (data transfers)

device)
 Command queues are used to coordinate execution of 

the kernels on the devices
 Memory commands (data transfers)Memory commands (data transfers)
 Synchronization

 Execution between host and device(s) is 

Memory commands (data transfers)
 Synchronization

 Execution between host and device(s) is ( )
asynchronous

( )
asynchronous



OpenCLOpenCL Memory ModelMemory ModelOpenCLOpenCL Memory ModelMemory Model

 Multilevel memory exposed 
to programmer

 Registers (per thread)

 Multilevel memory exposed 
to programmer

 Registers (per thread) Registers (per thread) 
 Local memory
 Shared among threads in a 

 Registers (per thread) 
 Local memory
 Shared among threads in a g

single block 
 On-chip, small 
 As fast as registers

g
single block 

 On-chip, small 
 As fast as registersAs fast as registers

 Global memory 
 Kernel inputs and outputs 

Off hi l

As fast as registers
 Global memory 
 Kernel inputs and outputs 

Off hi l Off-chip, large
 Uncached (use coalescing)
 Off-chip, large
 Uncached (use coalescing)



OpenCLOpenCL Programming ModelProgramming ModelOpenCLOpenCL Programming ModelProgramming Model

 Data parallel
 One-to-one mapping between work-items and 

elements in a memory object

 Data parallel
 One-to-one mapping between work-items and 

elements in a memory objectelements in a memory object
 Work-groups can be defined explicitly (like CUDA) or 

implicitly (specify the number of work-items and 
OpenCL creates the work-groups)

elements in a memory object
 Work-groups can be defined explicitly (like CUDA) or 

implicitly (specify the number of work-items and 
OpenCL creates the work-groups)OpenCL creates the work groups)

 Task parallel
 Kernel is executed independent of an index space

OpenCL creates the work groups)
 Task parallel
 Kernel is executed independent of an index space
 Other ways to express parallelism: enqueueing

multiple tasks, using device-specific vector types, etc.
 Synchronization

 Other ways to express parallelism: enqueueing
multiple tasks, using device-specific vector types, etc.

 Synchronization Synchronization
 Possible between items in a work-group
 Possible between commands in a context command 

 Synchronization
 Possible between items in a work-group
 Possible between commands in a context command 

queuequeue



Putting it all together…..Putting it all together…..Putting it all together…..Putting it all together…..



A Look at the Future for GPUsA Look at the Future for GPUs

 AMD Fusion
CPU/GPU i l hi
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CPU/GPU i l hi CPU/GPU on a single chip
 Shared-memory model
 Reduces communication overhead

 CPU/GPU on a single chip
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 Reduces communication overhead

 NVIDIA FermiNVIDIA Fermi
 ECC on device memory
 20X speedup on atomic sync operations

NVIDIA Fermi
 ECC on device memory
 20X speedup on atomic sync operations
 Programmable caching Programmable caching



AMD Fusion – The Future for CPU/GPU 
Computing 
AMD Fusion – The Future for CPU/GPU 
Computing 

x86 CPU owns 
the Software World

GPU Optimized for 
Modern Workloads

 Windows, MacOS 
and Linux franchises

 Thousands of apps

 Enormous parallel 
computing capacity

 Outstanding Thousands of apps
 Established 

programming and 
memory model

 Outstanding 
performance-per -
watt-per-dollar

 Very efficient 
hardware threading Mature tool chain

 Extensive backward 
compatibility for 
applications and OSs

hardware threading
 SIMD architecture well 

matched to modern 
workloads: video, 
audio, graphics

 High barrier to entry
audio, graphics



PC with a Discrete GPU

15GB/sec
Memory

PCIe 12GB/sec

150GB/sec

GPU
Device

Memory

150GB/sec



PC with a Discrete GPU

Memory
20 GB/sec

Memory

20GB/sec20GB/sec

Fusion
GPU

150GB/sec

PCIe 12GB/sec

Discrete
GPU

Device
Memory



Two  New AMD Cores Tuned for 
Target Markets
Two  New AMD Cores Tuned for 
Target Markets

Performance & Performance & 
ScalabilityScalability

Mainstream Mainstream 
Client and Client and 

Server MarketsServer Markets
“Bulldozer”

“Bobcat” Flexibility, Flexibility, 
Low Power &Low Power &Low Power & Low Power & 

Low CostLow Cost Low PowerLow Power
MarketsMarkets

LowerLower
CostCost

Cloud Cloud 
OptimizedOptimized



NVIDIA Fermi NVIDIA Fermi –– Dedicated GPGPU device Dedicated GPGPU device NVIDIA Fermi NVIDIA Fermi –– Dedicated GPGPU device Dedicated GPGPU device 

 Fermi Fermi
 480 CUDA cores
 8X the current double 

i i FP

 480 CUDA cores
 8X the current double 

i i FPprecision  FP 
performance

 16 Concurrent kernels

precision  FP 
performance

 16 Concurrent kernels
 ECC support ECC support
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M lti CPU d GPU
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everywhere
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 This class first provided background in 
parallel thinking and computation

 pthreads parallel programming was coveredpthreads parallel programming was covered 
was introduced

 Our next class will focus on the CUDA 

pthreads parallel programming was covered 
was introduced

 Our next class will focus on the CUDA 
programming environment and NVIDIA 
hardware
programming environment and NVIDIA 
hardware


