
GPU Computing with Nvidia CUDA

1

Analogic Corp. 4/14/2011

David Kaeli, Perhaad Mistry, Rodrigo Dominguez,
Dana Schaa, Matthew Sellitto,

Department of Electrical and Computer Engineering
Northeastern University

Boston, MA

GPU Computing Course – Lecture 2

Please make sure you join

https://groups.google.com/group/analogic-gpu-course

Mail Questions to
analogic-gpu-course@googlegroups.com

3 4/14/11

Topics – Lecture 2
  Review of Lecture 1 and introduction to GPU Computing

  Overview of GPU Architecture

  Nvidia CUDA Syntax

  Basic CUDA optimization steps

  Nvidia Fermi

  Kernel optimizations and host – device IO

  Pointers to useful CUDA tools

  Conclusions and Discussion

4 4/14/11

Motivation to study CUDA

Source: NVIDIA

T12 - Fermi

GT200 - 285

G80

Westmere 3GHz – Xeon
Quadcore 3GHz – Core2

Duo

5 4/14/11

Motivation to study CUDA
T12 - Fermi

GT200 - 285

G80

Westmere 3GHz – Xeon
Quadcore 3GHz – Core2

Duo

Source: NVIDIA

Theoretical Peaks Don’t matter Much
How do you write an application that performs well ??

6 4/14/11

CPU vs GPU Architectures

Irregular data accesses
More cache + Control
Focus on per thread performance

Regular data accesses
More ALUs and massively parallel
Throughput oriented

7 4/14/11

The System
CPU
(host) GPU w/

local DRAM
(device)

MCH: Memory Controller Hub

ICH: I/O Controller Hub

DDR: Double Data Rate

8 4/14/11

Nvidia GPU Compute Architecture
  Compute Unified Device Architecture

  Hierarchical architecture
  A device contains many

multiprocessors

  Many scalar “cuda cores” per
multiprocessor (32 for Fermi)

  Single instruction issue unit

  Many memory spaces

9 4/14/11

GPU Memory Architecture
  Device Memory (GDDR):

  Large memory with a high
bandwidth link to multiprocessor

  Registers on chip (~16k)

  Shared memory (on chip)
  Shared between scalar cores

  Low latency and banked

  Constant and texture memory

  Read only and cached

10 4/14/11

A “Transparently” Scalable Architecture

Same program will be
scalable across devices

The CUDA programming
model maps easily to
underlying architecture

11 4/14/11

Array Addition (CPU)
void arrayAdd(float *A, float *B, float *C, int N) {
 for(int i = 0; i < N; i++)
 C[i] = A[i] + B[i];
}

int main() {
 int N = 4096;
 float *A = (float *)malloc(sizeof(float)*N);
 float *B = (float *)malloc(sizeof(float)*N);
 float *C = (float *)malloc(sizeof(float)*N);

 init(A); init(B);

 arrayAdd(A, B, C, N);

 free(A); free(B); free(C);
}

Computational kernel	

Allocate memory	

Initialize memory	

Deallocate memory	

12 4/14/11

CUDA Programming – High Level View
  Initialize the GPU – done implicitly in CUDA
  Allocate Data on GPU
  Transfer data from CPU to GPU
  Decide how many threads and blocks
  Run the GPU program
  Transfer back the results from GPU to CPU

13 4/14/11

CUDA terminology
  A Kernel is the computation

offloaded to GPUs

  The kernel is executed by a grid
of threads

  Threads are grouped into blocks
which execute independently

  Each thread has a unique ID
within the block

  Each block has a unique ID

Host

Kernel 1

Device

Block (1, 1)

Thread
(0,1,0
)

Thread
(1,1,0
)

Thread
(2,1,0
)

Thread
(3,1,0
)

Thread
(0,0,0
)

Thread
(1,0,0
)

Thread
(2,0,0
)

Thread
(3,0,0
)

(0,0,1
)

(1,0,1
)

(2,0,1
)

(3,0,1
)

Grid 1

Block	
(0, 0)

Block	
(1, 0)

Block	
(2, 0)

Block	
(0, 1)

Block	
(1, 1)

Block	
(2, 1)

14 4/14/11

Array Addition (GPU)
__global__

void gpuArrayAdd(float *A, float *B, float *C) {

 int tid = blockIdx.x * blockDim.x + threadIdx.x;
 C[tid] = A[tid] + B[tid];
}

(0,0) (1,0) (2,0) ... (31,0)

(0,0)
...	

GRID	

BLOCK	

(0,0) (1,0) (2,0) ... (31,0)

(1,0) BLOCK	

threadIdx.x	
blockIdx.x	

blockDim.x = 32	

tid = blockIdx.x * blockDim.x + threadIdx.x

GPU Computational kernel	

Index for Thread’s Data	

Kernel Indentifier	

15 4/14/11

Vector Addition Example

  cudaMalloc allocates space in the global memory

  cudaMemcpy copies from host to global memory over PCI

float *d_A, *d_B, *d_C;
cudaMalloc(&d_A, sizeof(float)*N);
cudaMalloc(&d_B, sizeof(float)*N);
cudaMalloc(&d_C, sizeof(float)*N);

cudaMemcpy(d_A, A, sizeof(float)*N, HtoD);
cudaMemcpy(d_B, B, sizeof(float)*N, HtoD);

Initialize
CUDA

Allocate
Buffers

Copy
Data

Set Block,
Grid Size

Start
Kernel

Copy
Results

16 4/14/11

Vector Addition Example

  dim3 – A 3D Vector data type which is used to pass thread and
block configuration
  Natural way to invoke computation across the elements in a

domain such as a vector, matrix, or volume.

  Launch Kernel Call

dim3 dimBlock(32,1);
dim3 dimGrid(N/32,1);

gpuArrayAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C);

Initialize
CUDA

Allocate
Buffers

Copy
Data

Set Block,
Grid Size

Start
Kernel

Copy
Results

17 4/14/11

Vector Addition Example

  Read results back to host

  Cleanup memory and end program
  Our first CUDA program is finished

 cudaMemcpy(C, d_C, sizeof(float)*N, DtoH);!

Initialize
CUDA

Allocate
Buffers

Copy
Data

Set Block,
Grid Size

Start
Kernel

Copy
Results

18 4/14/11

Summary of Relevant Identifiers
Philosophy: Minimal set of extensions necessary to expose architecture

Function qualifiers:
__global__ void MyKernel() { }
__device__ float MyDeviceFunc() { }

Variable qualifiers:
__constant__ float MyConstantArray[32];
__shared__ float MySharedArray[32];

Execution configuration:
dim3 dimGrid(100, 50); // 5000 thread blocks
dim3 dimBlock(4, 8, 8); // 256 threads per block

Kernel Launch
MyKernel <<< dimGrid, dimBlock >>> (...); // Launch kernel

19 4/14/11

Vector Addition (GPU)

Run kernel (on GPU)	

Copy results back to CPU	

Deallocate memory on GPU	

int main() {
 int N = 4096;
 float *A = (float *)malloc(sizeof(float)*N); init(A);
 float *B = (float *)malloc(sizeof(float)*N); init(B);
 float *C = (float *)malloc(sizeof(float)*N);
 float *d_A, *d_B, *d_C;
 cudaMalloc(&d_A, sizeof(float)*N);
 cudaMalloc(&d_B, sizeof(float)*N);
 cudaMalloc(&d_C, sizeof(float)*N);

 cudaMemcpy(d_A, A, sizeof(float)*N, HtoD);
 cudaMemcpy(d_B, B, sizeof(float)*N, HtoD);
 dim3 dimBlock(32,1);
 dim3 dimGrid(N/32,1);

 gpuArrayAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C);

 cudaMemcpy(C, d_C, sizeof(float)*N, DtoH);

 cudaFree(d_A);
 cudaFree(d_B);
 cudaFree(d_C);
 free(A); free(B); free(C);

Allocate memory on GPU	

Initialize memory on GPU	

Configure threads	

20 4/14/11

Global Memory Access in GPUs

  Global memory accessed via 32, 64, or 128-byte transactions

  No of transactions depend on size of data accessed by thread and
distribution of the memory addresses across the threads

  Coalescing: combining memory requests across threads into a single
transaction

__global__ void
bad_kernel(float *x)
{
 int tid = threadIdx.x + blockDim.x*blockIdx.x;
x[1000*tid] = threadIdx.x;
}

__global__ void
good_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x*blockIdx.x;
x[tid] = threadIdx.x;
}

GOOD Access BAD Access

21 4/14/11

Coalescing Data Access
  Memory access requirements between threads depend on compute

capability of device

  Memory accesses are handled per 16 or 32 threads

  For devices of capability 2.x, memory transactions are cached

  Data locality is exploited to reduce impact on throughput
  Temporal locality: data accessed is likely to be used in future,

  Spatial locality: neighboring data is also likely to be reused

  Distribution of addresses across threads to get coalescing is very
inflexible for older devices (Pg 168 Progg. Guide v4.0)

22 4/14/11

Application 1: Image Rotation
  Rotate an image by a given angle

  A basic feature in image processing applications

Original Input Image Rotated Output Image

23 4/14/11

Example 1 - Image Rotation
  A common image processing routine

  Applications in matching, alignment, etc.

  New coordinates of (x1,y1) when rotated by
an angle Θ around (x0,y0)

  By rotating about the origin (0,0) we get

€

x2 = cos(θ) * (x1 − x0) − sin(θ) * (y1 − y0) + x0
y2 = sin(θ) * (x1 − x0) + cos(θ) * (y1 − y0) + x0

€

x2 = cos(θ) * (x1) − sin(θ) * (y1)
y2 = sin(θ) * (x1) + cos(θ) * (y1)

Original Image

Rotated Image (90o)

24 4/14/11

Application 1: Image Rotation
  What the application does:

  Step 1. Compute a new location according to the rotation
angle (trigonometric computation)

  Step 2. Read the pixel value of original location
  Step 3. Write the pixel value to the new location computed

at Step 1

  Create the same number of threads as the number of
pixels

  Each thread takes care of moving one pixel

25 4/14/11

Image Rotation
  Input: To copy to device

  Image (2D Matrix of floats)
  Rotation parameters
  Image dimensions

  Output: From device
  Rotated Image

26 4/14/11

Simplified Image Rotation Kernel
__global__ void
transformKernel(float* g_odata, float * d_idata,
 int width, int height)
{

 unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
 unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;

 //! We could use normalized coordinates here if we
 //! were using textures
 float u = x; float v = y; //Just a 90o flip

 int new_y = int(tv);
 int new_x = int(tu);

 g_odata[y*width + x] = d_idata[new_y * width +new_x];

}

27 4/14/11

Implementation Steps – Hands on
  Copy image to device by enqueueing a write to a buffer on

the device from the host
  Decide the work group dimensions
  Run the Image rotation kernel on input image
  We will use the provided Nvidia utilities for image handling
  Copy output image to host by enqueueing a read from a

buffer on the device
  Look at Vector add for help and syntax
  cp /sg

28 4/14/11

Compiling CUDA - C

cudafe

Open64

host compiler runtime

host

gpu

ptx*

exe

binary

compile-time

execution-time

c for cuda

driver

  Nvidia CUDA Compiler (nvcc)

  PTX passed as data to host

  make verbose=1 for commands run

  make keep=1 for intermediate files

29 4/14/11

Medusa Cluster – Nvidia Subsystem
8 Tesla GPUs

compute-0-8

1 PCIe / S1070

~ 8TFlops in 3 U

30 4/14/11

Application 1: Image Rotation
  Replace ??? in the skeleton with your own CUDA code

  Add the cudaMalloc and the cudaMemcpy calls

  Compile with Makefile and execute

  Goals are
  Understand how to use GPU for data parallelism
  To know how to map threads to data

31 4/14/11

CUDA Abstractions
  Millions of lightweight threads - Simple decomposition
  Hierarchy of concurrent threads - Simple execution model
  Later we will cover :-

  Lightweight synchronization primitives
  Simple synchronization model

  Shared memory model for cooperating threads
  Simple communication model

32 4/14/11

Input vs. Output Decomposition
  Identify the data on which computations are performed

  Partition data into sub-units
  Partition can be as per the input, output or intermediate

dimensions for different computations

  Data partitioning induces one or more decompositions of the
computation into tasks e.g., by using the owner computes

  Input decomposition: Cases where we don’t know size of output (e.g.
finding occurrences in a list)

  Output decomposition: Cases where more than one element of the
input is required (e.g. matrix multiplication)

33 4/14/11

Application 2: Matrix Multiplication

for (int i=0; i < HC; i++)
 for (int j=0; i < WC; j++)
 for (int k=0; i < WA; k++)
 C[i][j] += A[i][k] * B[k][j];

34 4/14/11

Application 2: Matrix Multiplication
  An O(n3) computation

  C[i][j] computed in parallel
  An output decomposition

  Multiple I/P elements per O/P

  No of threads = No of
elements in C

  Each thread works
independently

35 4/14/11

Matrix Multiplication Kernel
__global__ void
matrixMul (float * C, float * A, float * B, int wA, int wB) {

 //! matrixMul(float* C, float* A, float* B, int wA, int wB)
 //! Each thread computes one element of C
 //! by accumulating results into Cvalue
 float Cvalue = 0;
 //! Global index of thread calculated
 int row =blockIdx.y *blockDim.y +threadIdx.y;
 int col =blockIdx.x *blockDim.x +threadIdx.x;
 int wC = wB;

 //!Each thread reads its own data from global memory
 for(int e = 0; e < wA; e++)
 Cvalue += A[row * wA + e] * B[e * wB + col];
 C[row * wC + col] = Cvalue;

}

36 4/14/11

Performance of Matrix Mul
  Previous implementation – Poor Scaling - Why ?

  No of operations
  Per thread reads = (Row + Col)

  Per thread computation = 2(Row + Col)

  1 Mul and 1 Add per access

  Redundant memory accesses
  Each thread reads in whole row and whole column

  How do we improve it ? And if its this bad, why discuss it ?

37 4/14/11

Matrix Multiplication Performance
  Lets compare the shared memory

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500

K
er

ne
l T

im
e

(m
s)

No of Elements * 1k

Matrix Mul Performance

Using SM

Naive

38 4/14/11

Example Takeaways
  What have we learned through the two projects ?
  Understood a massive parallel computing on GPU
  Experienced what CUDA programming looks like
  Understood how to decompose a simple problem
  Experienced solving problem in massively parallel fashion

39 4/14/11

Steps Porting to CUDA
  Create standalone C version

  Multi-threaded CPU version
(debugging, partitioning)

  Simple CUDA version

  Optimize CUDA version for
underlying hardware

  No reason why an application
should have only 1 kernel

  Use the right processor for the job

Host

Kernel 1

Device

Grid 1

Block	
(0, 0)

Block	
(1, 0)

Block	
(2, 0)

Block	
(0, 1)

Block	
(1, 1)

Block	
(2, 1)

Kernel 2
Grid 2

Block	
(0, 0)

Block	
(1, 0)

Block	
(0, 2)

Block	
(0, 1)

Block	
(1, 1)

Block	
(1, 2)

S
eq

ue
nt

ia
l

 C
od

e

Break
  GPGPU shared memory optimization
  GPGPU Block Synchronization
  Fermi Capabilities
  Page-able and Page-locked memory
  Warps and Occupancy
  Histogram64 Example

41 4/14/11

GPU Memory Architecture
  Examples have not discussed

using shared memory

  Critical for hiding high latency of
global memory accesses

  Shared memory provides almost
single cycle access to data to
each scalar core
  Shared memory is banked

  Usage rule of thumb: coalesce
frequently accessed data

42 4/14/11

Trees have a very different
number of apples on them?

Heterogeneous Apple Picking – Recap…
Different pickers ?

43 4/14/11

Extending Apple Picking – Again…
  Lets sell the apples in the market

  Pickers cant start pushing cart till ALL
pickers have loaded their apples
  Synchronization required within groups

Bulk-Synchronous
programming models

Each cart can go to the
market independently

cart ~ shared memory/ block

44 4/14/11

Synchronization in CUDA
  Threads within block may synchronize with barriers

  Blocks coordinate via atomic memory operations
  e.g., increment shared queue pointer with atomicInc()

  Implicit barrier between dependent kernels (making apple juice)

… Step 1 …!
__syncthreads();!
… Step 2 …!

vec_minus<<<nblocks, blksize>>>(a, b, c);!
vec_dot<<<nblocks, blksize>>>(c, c);!

45 4/14/11

Matrix Multiplication - Blocked
  Why look at matrix mul again ?

  Gets annoying

  Previous implementation was
bad - Repetitive reads

  Each thread worked
independently

  Reuse data read by each thread

  Inter thread-locality in
access of both A and B

  Blocking is known in linear
algebra for 20+ years

46 4/14/11

Matrix Multiplication - Blocked
  Shared memory optimization

  Store per-block matrices (As and
Bs)

  Shared memory is faster

  Synchronization in CUDA -
Selling apple analogy

  Each thread reads in a piece of
data

47 4/14/11

Matrix Multiplication - Blocked
__global__ void matrixMul(float* C, float* A, float* B,
int wA, int wB)
{
int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * by;
int aEnd = aBegin + wA – 1;
int aStep = BLOCK_SIZE;

// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * bx;
int bStep = BLOCK_SIZE * wB;

float Csub = 0;

Step size used to iterate through
the sub-matrices of B

Step size used to iterate
through the sub-matrices of A

Running Sum of result of
each thread

48 4/14/11

Matrix Multiplication - Blocked
for (int a = aBegin, b = bBegin; a <= aEnd;
 a += aStep, b += bStep) {

__shared__ float As [BLOCK_SIZE] [BLOCK_SIZE];
__shared__ float Bs [BLOCK_SIZE] [BLOCK_SIZE];

AS(ty, tx) = A[a + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];

for (int k = 0; k < BLOCK_SIZE; ++k)
Csub += AS(ty, k) * BS(k, tx);

// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;
}

Multiply the two matrices together;
each thread computes one
element of the block sub-matrix

Declaration of the shared
memory array used to store
submatrix

Load matrices from device to
shared memory; thread loads
one element

Loop over sub-matrices of A & B

49 4/14/11

Matrix Multiplication - Blocked
for (int a = aBegin, b = bBegin; a <= aEnd;
 a += aStep, b += bStep) {

__shared__ float As [BLOCK_SIZE] [BLOCK_SIZE];
__shared__ float Bs [BLOCK_SIZE] [BLOCK_SIZE];

AS(ty, tx) = A[a + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];

for (int k = 0; k < BLOCK_SIZE; ++k)
Csub += AS(ty, k) * BS(k, tx);

// Write the block sub-matrix to device memory;
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
 C[c + wB * ty + tx] = Csub;

}

Make sure the matrices are loaded

Make sure that the preceding
computation is done before loading
two new sub-matrices of A and B in
the next iteration

__syncthreads();

__syncthreads();

Spot the Race in the for loop

50 4/14/11

Application 2: Matrix Multiplication
  Hands-on performance comparison

  For a MxN matrix
  Count no of global reads / thread

  Count no of global writes / thread

  Compare blocking vs non blocking performance

  You can use the CUDA visual profiler later to count the number of
memory accesses.
  Note: they may not be the same because of coalescing

51 4/14/11

Matrix Multiplication Performance
  Lets compare the shared memory

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500

K
er

ne
l T

im
e

(m
s)

No of Elements * 1k

Matrix Mul Performance

Using SM

Naive

52 4/14/11

Textures and Images
  Textures are allocated in global memory

and cached.
  Cache size ~6-8KB per mp,

  Optimized for 2D locality in accesses

  Constant memory is also cached

  Use to optimize the image rotation
example
  Uncoalesced reads from global memory

53 4/14/11

Hands On – Try simpletexture
  Defined at file scope as a type texture:

texture<Type, Dim, ReadMode> mytex;

  Textures are referenced using floating-
point coordinates in the range [0, N) or if
normalized [0,1.0).

  Addressing mode can be

  Clamped, 1.25 -> 1.0 in [0,1.0) or

  Wrapped, eg 1.25 -> 0.25

  Value returned can be a single element or
a interpolated value Texture Memory

54 4/14/11

Warps and Occupancy
  Multiprocessor creates and

executes threads in groups of 32
parallel threads called warps.

  Threads in a warp start at the
same program address
  Have individual instruction

and register state
  Free to branch and execute

independently

  Enables more applications (See
Histogram256)

55 4/14/11

Using the Occupancy Calculator
  The fact that all instructions in a warp execute together in lock

step can be used to our advantage
  NOTE: Warps are not part of the CUDA language definition

  Cost of warp divergence = sum of if + sum of else block

  Occupancy is the ratio of active warps to the maximum number
supported on a multiprocessor of the GPU

  Determines how efficient the kernel will be on the GPU .

  Get statistics for occupancy calculator with make keep=1!

56 4/14/11

Using the Occupancy Calculator

57 4/14/11

Occupancy Tradeoffs
  Occupancy is an empirical measure

  A last order optimization step and device dependent

  More threads / block

  Benefits – Helps compute bound workloads (rare for GPUs)

  Drawbacks – Reduces number of registers per thread and shared
memory per block, less blocks to hide latency

  Optimum threads / block
  IO bound workload has just enough warps to switch with

58 4/14/11

Experiment with Occupancy
  Download excel file from course web page

  http://developer.nvidia.com/cuda-downloads

  Occupancy is not a performance counter, it is simply a ratio

  Try with non blocking and blocking matrix multiplication
  Choose one data set

  Note: press ‘0’ when verification is not needed

  Vary number of threads per block

End – Class II

Note: The Next lecture should
 be covering material below

61 4/14/11

Nvidia Fermi
  Compute 2.0 / 2.1 devices

  Better double precision

  ECC support

  Configurable cache hierarchy

  Faster context switching

  Faster atomic operations

  Concurrent kernel execution

  Dual DMA Engines

62 4/14/11

Nvidia Fermi Features
  Everything discussed till now is

still relevant

  ECC support - Data-sensitive
applications

  Configurable Cache Hierarchy
  Implementations unable to

use shared memory

  Faster Context Switching

  Application graphics and
compute interoperation

63 4/14/11

Concurrent Kernel Execution
  Concurrent Kernel Operation - Enables smaller data sets

Requires knowledge of CUDA Stream API
More than enough rope provided to hang yourself

64 4/14/11

Eowyn – Fermi System
  My personal system at NEU

  Dell XPS Gaming Platform
  GTX-480

PCI Bus

65 4/14/11

Host – Device Interaction
  An application dependent optimization space

  Page-locked Memory
  Asynchronous host – device Application IO

  Used commonly in medical imaging where data is
continuously fed to device

  Use CUDA stream’s asynchronous API
  Divide application into multiple kernels and keep data on device

  This often means coding non data parallel or inefficient
kernels to avoid IO

66 4/14/11

Pinned Memory Optimization
  Page-able vs. Page-locked memory

  Locked pages will not be swapped
out to disk by the OS

  Allocate using cudamallochost

  Fermi + CUDA 4.0 provides non-
copy pinning

Host
Memory

GPU Device
Memory

Pcie 2Gbps

cuMemCpy

Host
Memory

GPU Device
Memory

Pcie ~4Gbps

cuMemCpy

Page Locked
Memory

memcpy

~8Gbps

Note: excess page locking
affects system performance

67 4/14/11

Performance of Page-locked Memory

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11

13

15

17

19

22

26

30

34

38

42

46

50

70

90

20
0

40
0

60
0

80
0

10
00

21

24

41
72

62

20

82
68

10

31
6

12
36

4
14

41
2

16
46

0
20

55
6

24
65

2
28

74
8

32
84

4
41

03
6

49
22

8
57

42
0

65
61

2

B
an

dw
id

th
 (M

B
/s

)

Data Size (KB)

Device - Host IO (Fermi)

Pinned

Pageable

Tested using CUDA SDK
example bandwidth test

68 4/14/11

Performance of Page-locked Memory

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11

13

15

17

19

22

26

30

34

38

42

46

50

70

90

20
0

40
0

60
0

80
0

10
00

21

24

41
72

62

20

82
68

10

31
6

12
36

4
14

41
2

16
46

0
20

55
6

24
65

2
28

74
8

32
84

4
41

03
6

49
22

8
57

42
0

65
61

2

B
an

dw
id

th
 (M

B
/s

)

Data Size (KB)

Host - Device IO (Fermi)

Pinned

Pageable

Tested using CUDA SDK
example bandwidth test

69 4/14/11

Device Query & Bandwidth Test

Useful tools to check your setup
configuration and learn about device

70 4/14/11

Application: Histogram64
  64 bin histogram of data

  Build per thread subhistogram
  Build per block sub histogram

  Homework :- Try Histogram256
using local memory atomics

for (int i = 0; i < BIN_COUNT; i++)
 result[i] = 0;

for (int i = 0; i < dataN; i++)
 result[data[i]]++;

An example Image Histogram

71 4/14/11

Implementation of Histogram
  Kernel 1: Build per block

histogram from per thread
histogram

  Per thread histogram in
shared memory

  Reduce to block histogram

  Kernel 2: Combine block
histograms into final histogram

72 4/14/11

Histogram64 Kernel1
  Main Implementation Steps:

  Initialization of shared memory to 0 is important
  Make per thread histogram

  Use 64 threads per block to aggregate per thread into a per-block
histogram

  Note: Synchronization after per thread histograms is made

  Also use short data types for the thread histograms

  Later optimization step done in CUDA SDK to remove bank conflicts is
left for future discussion

73 4/14/11

Optimizations in Histogram64
  A simplified version of the Histogram64 kernel is provided

  Optimizations Include
  Using shared memory

  Build per block histogram using data gathered by each thread

  Group 8 bit reads into a 32 bit read
  As discussed coalescing: needs 32 bit transactions atleast

  Provided implementation includes bank conflicts in shared memory

74 4/14/11

Summary
  We have studied the architecture of CUDA capable Nvidia

GPUs
  We have seen the basics of CUDA and the relationship

between the architecture and the programming model
  We have decomposed a data parallel algorithm
  We have used different architectural features of the GPU

like shared and texture memory

75 4/14/11

Summary
  We have optimized host-device interaction using pinned

memory
  CUDA is a powerful parallel programming model

  Heterogeneous - mixed serial-parallel programming
  Scalable - hierarchical thread execution model
  Accessible - minimal but expressive changes to C
  Interoperable - simple graphics interop mechanisms

76 4/14/11

Summarizing Today’s Programming
  Array addition, Devicequery and BandwidthTest: Basic CUDA

programming, host - device code

  Image Rotation:

  Flipping: 2D Data Mapping

  Image rotation extension: using texture memory

  Matrix Multiplication:

  Naïve: Blocks and threads, coalescing data reads
  Blocking: Using Shared memory and synchronization in blocks

  Histogram64: Using shared memory to buffer data

77 4/14/11

Nvidia - CUDA Ecosystem - Today

78 4/14/11

Productivity Tools Based on CUDA
  Thrust - A STL – like library for CUDA

  Linear Algebra and Mathematical Routines
  CUBLAS and CURAND

  MAGMA and CULA-Tools provide LAPACK

  CUSP – CUDA Sparse Algebra

  CUFFT – FFTW for GPUs

  NPP: Performance Primitives – Video processing

  Sections of OpenCV
green = Nvidia product
bold = open source

79 4/14/11

Programming Tools for CUDA
Solution Approach Availability
CUDA C Runtime Language Integration NVIDIA CUDA Toolkit
Fortran Auto Parallelization PGI Accelerator
OpenCL Device-Level API Khronos standard
DirectCompute Device-Level API Microsoft
PyCUDA API Bindings Open source
jCUDA API Bindings Freely Available
CUDA.NET API Bindings Freely Available
OpenCL.NET API Bindings Freely Available

80 4/14/11

Next Class (4/28)
  More advanced CUDA

  Performance Tools – Using the CUDA Visual Profiler
  Debugging Techniques – Using cuda-gdb

  Let us know any particular areas of focus you would like
  Look at the SDK examples for topics you are interested in

81 4/14/11

More information and References
  NVIDIA GPU Computing Developer Home Page

  http://developer.nvidia.com/object/gpucomputing.html

  CUDA Download

  http://developer.nvidia.com/object/cuda_4_0_downloads.html

  Programming Massively Parallel Processors: A Hands-on Approach,
David B. Kirk and Wen-mei W. Hwu

  Other resources
  http://courses.engr.illinois.edu/ece498/al/

82 4/14/11

More information and References
  Beyond Programmable Shading – David Leubke

  Decomposition Techniques for Parallel Programming – Vivek
Sarkar

  CUDA Textures & Image Registration - Richard Ansorge

  Setting up CUDA within Windows Visual Studio
  http://www.ademiller.com/blogs/tech/2011/03/using-cuda-

and-thrust-with-visual-studio-2010/

  SDK examples: Histogram64, Matmul, SimpleTextures

Thank You !
Questions, Comments ?

Perhaad Mistry
pmistry@ece.neu.edu

