
GPU Computing with Nvidia CUDA

1

Analogic Corp. 4/14/2011

David Kaeli, Perhaad Mistry, Rodrigo Dominguez,
Dana Schaa, Matthew Sellitto,

Department of Electrical and Computer Engineering
Northeastern University

Boston, MA

GPU Computing Course – Lecture 2

Please make sure you join

https://groups.google.com/group/analogic-gpu-course

Mail Questions to
analogic-gpu-course@googlegroups.com

3 4/14/11

Topics – Lecture 2
  Review of Lecture 1 and introduction to GPU Computing

  Overview of GPU Architecture

  Nvidia CUDA Syntax

  Basic CUDA optimization steps

  Nvidia Fermi

  Kernel optimizations and host – device IO

  Pointers to useful CUDA tools

  Conclusions and Discussion

4 4/14/11

Motivation to study CUDA

Source: NVIDIA

T12 - Fermi

GT200 - 285

G80

Westmere 3GHz – Xeon
Quadcore 3GHz – Core2

Duo

5 4/14/11

Motivation to study CUDA
T12 - Fermi

GT200 - 285

G80

Westmere 3GHz – Xeon
Quadcore 3GHz – Core2

Duo

Source: NVIDIA

Theoretical Peaks Don’t matter Much
How do you write an application that performs well ??

6 4/14/11

CPU vs GPU Architectures

Irregular data accesses
More cache + Control
Focus on per thread performance

Regular data accesses
More ALUs and massively parallel
Throughput oriented

7 4/14/11

The System
CPU
(host) GPU w/

local DRAM
(device)

MCH: Memory Controller Hub

ICH: I/O Controller Hub

DDR: Double Data Rate

8 4/14/11

Nvidia GPU Compute Architecture
  Compute Unified Device Architecture

  Hierarchical architecture
  A device contains many

multiprocessors

  Many scalar “cuda cores” per
multiprocessor (32 for Fermi)

  Single instruction issue unit

  Many memory spaces

9 4/14/11

GPU Memory Architecture
  Device Memory (GDDR):

  Large memory with a high
bandwidth link to multiprocessor

  Registers on chip (~16k)

  Shared memory (on chip)
  Shared between scalar cores

  Low latency and banked

  Constant and texture memory

  Read only and cached

10 4/14/11

A “Transparently” Scalable Architecture

Same program will be
scalable across devices

The CUDA programming
model maps easily to
underlying architecture

11 4/14/11

Array Addition (CPU)
void arrayAdd(float *A, float *B, float *C, int N) {
 for(int i = 0; i < N; i++)
 C[i] = A[i] + B[i];
}

int main() {
 int N = 4096;
 float *A = (float *)malloc(sizeof(float)*N);
 float *B = (float *)malloc(sizeof(float)*N);
 float *C = (float *)malloc(sizeof(float)*N);

 init(A); init(B);

 arrayAdd(A, B, C, N);

 free(A); free(B); free(C);
}

Computational kernel	

Allocate memory	

Initialize memory	

Deallocate memory	

12 4/14/11

CUDA Programming – High Level View
  Initialize the GPU – done implicitly in CUDA
  Allocate Data on GPU
  Transfer data from CPU to GPU
  Decide how many threads and blocks
  Run the GPU program
  Transfer back the results from GPU to CPU

13 4/14/11

CUDA terminology
  A Kernel is the computation

offloaded to GPUs

  The kernel is executed by a grid
of threads

  Threads are grouped into blocks
which execute independently

  Each thread has a unique ID
within the block

  Each block has a unique ID

Host

Kernel 1

Device

Block (1, 1)

Thread
(0,1,0
)

Thread
(1,1,0
)

Thread
(2,1,0
)

Thread
(3,1,0
)

Thread
(0,0,0
)

Thread
(1,0,0
)

Thread
(2,0,0
)

Thread
(3,0,0
)

(0,0,1
)

(1,0,1
)

(2,0,1
)

(3,0,1
)

Grid 1

Block	

(0, 0)

Block	

(1, 0)

Block	

(2, 0)

Block	

(0, 1)

Block	

(1, 1)

Block	

(2, 1)

14 4/14/11

Array Addition (GPU)
__global__

void gpuArrayAdd(float *A, float *B, float *C) {

 int tid = blockIdx.x * blockDim.x + threadIdx.x;
 C[tid] = A[tid] + B[tid];
}

(0,0) (1,0) (2,0) ... (31,0)

(0,0)
...	

GRID	

BLOCK	

(0,0) (1,0) (2,0) ... (31,0)

(1,0) BLOCK	

threadIdx.x	

blockIdx.x	

blockDim.x = 32	

tid = blockIdx.x * blockDim.x + threadIdx.x

GPU Computational kernel	

Index for Thread’s Data	

Kernel Indentifier	

15 4/14/11

Vector Addition Example

  cudaMalloc allocates space in the global memory

  cudaMemcpy copies from host to global memory over PCI

float *d_A, *d_B, *d_C;
cudaMalloc(&d_A, sizeof(float)*N);
cudaMalloc(&d_B, sizeof(float)*N);
cudaMalloc(&d_C, sizeof(float)*N);

cudaMemcpy(d_A, A, sizeof(float)*N, HtoD);
cudaMemcpy(d_B, B, sizeof(float)*N, HtoD);

Initialize
CUDA

Allocate
Buffers

Copy
Data

Set Block,
Grid Size

Start
Kernel

Copy
Results

16 4/14/11

Vector Addition Example

  dim3 – A 3D Vector data type which is used to pass thread and
block configuration
  Natural way to invoke computation across the elements in a

domain such as a vector, matrix, or volume.

  Launch Kernel Call

dim3 dimBlock(32,1);
dim3 dimGrid(N/32,1);

gpuArrayAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C);

Initialize
CUDA

Allocate
Buffers

Copy
Data

Set Block,
Grid Size

Start
Kernel

Copy
Results

17 4/14/11

Vector Addition Example

  Read results back to host

  Cleanup memory and end program
  Our first CUDA program is finished 

 cudaMemcpy(C, d_C, sizeof(float)*N, DtoH);!

Initialize
CUDA

Allocate
Buffers

Copy
Data

Set Block,
Grid Size

Start
Kernel

Copy
Results

18 4/14/11

Summary of Relevant Identifiers
Philosophy: Minimal set of extensions necessary to expose architecture

Function qualifiers:
__global__ void MyKernel() { }
__device__ float MyDeviceFunc() { }

Variable qualifiers:
__constant__ float MyConstantArray[32];
__shared__ float MySharedArray[32];

Execution configuration:
dim3 dimGrid(100, 50); // 5000 thread blocks
dim3 dimBlock(4, 8, 8); // 256 threads per block

Kernel Launch
MyKernel <<< dimGrid, dimBlock >>> (...); // Launch kernel

19 4/14/11

Vector Addition (GPU)

Run kernel (on GPU)	

Copy results back to CPU	

Deallocate memory on GPU	

int main() {
 int N = 4096;
 float *A = (float *)malloc(sizeof(float)*N); init(A);
 float *B = (float *)malloc(sizeof(float)*N); init(B);
 float *C = (float *)malloc(sizeof(float)*N);
 float *d_A, *d_B, *d_C;
 cudaMalloc(&d_A, sizeof(float)*N);
 cudaMalloc(&d_B, sizeof(float)*N);
 cudaMalloc(&d_C, sizeof(float)*N);

 cudaMemcpy(d_A, A, sizeof(float)*N, HtoD);
 cudaMemcpy(d_B, B, sizeof(float)*N, HtoD);
 dim3 dimBlock(32,1);
 dim3 dimGrid(N/32,1);

 gpuArrayAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C);

 cudaMemcpy(C, d_C, sizeof(float)*N, DtoH);

 cudaFree(d_A);
 cudaFree(d_B);
 cudaFree(d_C);
 free(A); free(B); free(C);

Allocate memory on GPU	

Initialize memory on GPU	

Configure threads	

20 4/14/11

Global Memory Access in GPUs

  Global memory accessed via 32, 64, or 128-byte transactions

  No of transactions depend on size of data accessed by thread and
distribution of the memory addresses across the threads

  Coalescing: combining memory requests across threads into a single
transaction

__global__ void
bad_kernel(float *x)
{
 int tid = threadIdx.x + blockDim.x*blockIdx.x;
x[1000*tid] = threadIdx.x;
}

__global__ void
good_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x*blockIdx.x;
x[tid] = threadIdx.x;
}

GOOD Access BAD Access

21 4/14/11

Coalescing Data Access
  Memory access requirements between threads depend on compute

capability of device

  Memory accesses are handled per 16 or 32 threads

  For devices of capability 2.x, memory transactions are cached

  Data locality is exploited to reduce impact on throughput
  Temporal locality: data accessed is likely to be used in future,

  Spatial locality: neighboring data is also likely to be reused

  Distribution of addresses across threads to get coalescing is very
inflexible for older devices (Pg 168 Progg. Guide v4.0)

22 4/14/11

Application 1: Image Rotation
  Rotate an image by a given angle

  A basic feature in image processing applications

Original Input Image Rotated Output Image

23 4/14/11

Example 1 - Image Rotation
  A common image processing routine

  Applications in matching, alignment, etc.

  New coordinates of (x1,y1) when rotated by
an angle Θ around (x0,y0)

  By rotating about the origin (0,0) we get

€

x2 = cos(θ) * (x1 − x0) − sin(θ) * (y1 − y0) + x0
y2 = sin(θ) * (x1 − x0) + cos(θ) * (y1 − y0) + x0

€

x2 = cos(θ) * (x1) − sin(θ) * (y1)
y2 = sin(θ) * (x1) + cos(θ) * (y1)

Original Image

Rotated Image (90o)

24 4/14/11

Application 1: Image Rotation
  What the application does:

  Step 1. Compute a new location according to the rotation
angle (trigonometric computation)

  Step 2. Read the pixel value of original location
  Step 3. Write the pixel value to the new location computed

at Step 1

  Create the same number of threads as the number of
pixels

  Each thread takes care of moving one pixel

25 4/14/11

Image Rotation
  Input: To copy to device

  Image (2D Matrix of floats)
  Rotation parameters
  Image dimensions

  Output: From device
  Rotated Image

26 4/14/11

Simplified Image Rotation Kernel
__global__ void
transformKernel(float* g_odata, float * d_idata,
 int width, int height)
{

 unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
 unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;

 //! We could use normalized coordinates here if we
 //! were using textures
 float u = x; float v = y; //Just a 90o flip

 int new_y = int(tv);
 int new_x = int(tu);

 g_odata[y*width + x] = d_idata[new_y * width +new_x];

}

27 4/14/11

Implementation Steps – Hands on
  Copy image to device by enqueueing a write to a buffer on

the device from the host
  Decide the work group dimensions
  Run the Image rotation kernel on input image
  We will use the provided Nvidia utilities for image handling
  Copy output image to host by enqueueing a read from a

buffer on the device
  Look at Vector add for help and syntax
  cp /sg

28 4/14/11

Compiling CUDA - C

cudafe

Open64

host compiler runtime

host

gpu

ptx*

exe

binary

compile-time

execution-time

c for cuda

driver

  Nvidia CUDA Compiler (nvcc)

  PTX passed as data to host

  make verbose=1 for commands run

  make keep=1 for intermediate files

29 4/14/11

Medusa Cluster – Nvidia Subsystem
8 Tesla GPUs

compute-0-8

1 PCIe / S1070

~ 8TFlops in 3 U

30 4/14/11

Application 1: Image Rotation
  Replace ??? in the skeleton with your own CUDA code

  Add the cudaMalloc and the cudaMemcpy calls

  Compile with Makefile and execute

  Goals are
  Understand how to use GPU for data parallelism
  To know how to map threads to data

31 4/14/11

CUDA Abstractions
  Millions of lightweight threads - Simple decomposition
  Hierarchy of concurrent threads - Simple execution model
  Later we will cover :-

  Lightweight synchronization primitives
  Simple synchronization model

  Shared memory model for cooperating threads
  Simple communication model

32 4/14/11

Input vs. Output Decomposition
  Identify the data on which computations are performed

  Partition data into sub-units
  Partition can be as per the input, output or intermediate

dimensions for different computations

  Data partitioning induces one or more decompositions of the
computation into tasks e.g., by using the owner computes

  Input decomposition: Cases where we don’t know size of output (e.g.
finding occurrences in a list)

  Output decomposition: Cases where more than one element of the
input is required (e.g. matrix multiplication)

33 4/14/11

Application 2: Matrix Multiplication

for (int i=0; i < HC; i++)
 for (int j=0; i < WC; j++)
 for (int k=0; i < WA; k++)
 C[i][j] += A[i][k] * B[k][j];

34 4/14/11

Application 2: Matrix Multiplication
  An O(n3) computation

  C[i][j] computed in parallel
  An output decomposition

  Multiple I/P elements per O/P

  No of threads = No of
elements in C

  Each thread works
independently

35 4/14/11

Matrix Multiplication Kernel
__global__ void
matrixMul (float * C, float * A, float * B, int wA, int wB) {

 //! matrixMul(float* C, float* A, float* B, int wA, int wB)
 //! Each thread computes one element of C
 //! by accumulating results into Cvalue
 float Cvalue = 0;
 //! Global index of thread calculated
 int row =blockIdx.y *blockDim.y +threadIdx.y;
 int col =blockIdx.x *blockDim.x +threadIdx.x;
 int wC = wB;

 //!Each thread reads its own data from global memory
 for(int e = 0; e < wA; e++)
 Cvalue += A[row * wA + e] * B[e * wB + col];
 C[row * wC + col] = Cvalue;

}

36 4/14/11

Performance of Matrix Mul
  Previous implementation – Poor Scaling - Why ?

  No of operations
  Per thread reads = (Row + Col)

  Per thread computation = 2(Row + Col)

  1 Mul and 1 Add per access

  Redundant memory accesses
  Each thread reads in whole row and whole column

  How do we improve it ? And if its this bad, why discuss it ?

37 4/14/11

Matrix Multiplication Performance
  Lets compare the shared memory

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500

K
er

ne
l T

im
e

(m
s)

No of Elements * 1k

Matrix Mul Performance

Using SM

Naive

38 4/14/11

Example Takeaways
  What have we learned through the two projects ?
  Understood a massive parallel computing on GPU
  Experienced what CUDA programming looks like
  Understood how to decompose a simple problem
  Experienced solving problem in massively parallel fashion

39 4/14/11

Steps Porting to CUDA
  Create standalone C version

  Multi-threaded CPU version
(debugging, partitioning)

  Simple CUDA version

  Optimize CUDA version for
underlying hardware

  No reason why an application
should have only 1 kernel

  Use the right processor for the job

Host

Kernel 1

Device

Grid 1

Block	

(0, 0)

Block	

(1, 0)

Block	

(2, 0)

Block	

(0, 1)

Block	

(1, 1)

Block	

(2, 1)

Kernel 2
Grid 2

Block	

(0, 0)

Block	

(1, 0)

Block	

(0, 2)

Block	

(0, 1)

Block	

(1, 1)

Block	

(1, 2)

S
eq

ue
nt

ia
l

 C
od

e

Break
  GPGPU shared memory optimization
  GPGPU Block Synchronization
  Fermi Capabilities
  Page-able and Page-locked memory
  Warps and Occupancy
  Histogram64 Example

41 4/14/11

GPU Memory Architecture
  Examples have not discussed

using shared memory

  Critical for hiding high latency of
global memory accesses

  Shared memory provides almost
single cycle access to data to
each scalar core
  Shared memory is banked

  Usage rule of thumb: coalesce
frequently accessed data

42 4/14/11

Trees have a very different
number of apples on them?

Heterogeneous Apple Picking – Recap…
Different pickers ?

43 4/14/11

Extending Apple Picking – Again…
  Lets sell the apples in the market

  Pickers cant start pushing cart till ALL
pickers have loaded their apples
  Synchronization required within groups

Bulk-Synchronous
programming models

Each cart can go to the
market independently

cart ~ shared memory/ block

44 4/14/11

Synchronization in CUDA
  Threads within block may synchronize with barriers

  Blocks coordinate via atomic memory operations
  e.g., increment shared queue pointer with atomicInc()

  Implicit barrier between dependent kernels (making apple juice)

… Step 1 …!
__syncthreads();!
… Step 2 …!

vec_minus<<<nblocks, blksize>>>(a, b, c);!
vec_dot<<<nblocks, blksize>>>(c, c);!

45 4/14/11

Matrix Multiplication - Blocked
  Why look at matrix mul again ?

  Gets annoying

  Previous implementation was
bad - Repetitive reads

  Each thread worked
independently

  Reuse data read by each thread

  Inter thread-locality in
access of both A and B

  Blocking is known in linear
algebra for 20+ years

46 4/14/11

Matrix Multiplication - Blocked
  Shared memory optimization

  Store per-block matrices (As and
Bs)

  Shared memory is faster

  Synchronization in CUDA -
Selling apple analogy

  Each thread reads in a piece of
data

47 4/14/11

Matrix Multiplication - Blocked
__global__ void matrixMul(float* C, float* A, float* B,
int wA, int wB)
{
int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * by;
int aEnd = aBegin + wA – 1;
int aStep = BLOCK_SIZE;

// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * bx;
int bStep = BLOCK_SIZE * wB;

float Csub = 0;

Step size used to iterate through
the sub-matrices of B

Step size used to iterate
through the sub-matrices of A

Running Sum of result of
each thread

48 4/14/11

Matrix Multiplication - Blocked
for (int a = aBegin, b = bBegin; a <= aEnd;
 a += aStep, b += bStep) {

__shared__ float As [BLOCK_SIZE] [BLOCK_SIZE];
__shared__ float Bs [BLOCK_SIZE] [BLOCK_SIZE];

AS(ty, tx) = A[a + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];

for (int k = 0; k < BLOCK_SIZE; ++k)
Csub += AS(ty, k) * BS(k, tx);

// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;
}

Multiply the two matrices together;
each thread computes one
element of the block sub-matrix

Declaration of the shared
memory array used to store
submatrix

Load matrices from device to
shared memory; thread loads
one element

Loop over sub-matrices of A & B

49 4/14/11

Matrix Multiplication - Blocked
for (int a = aBegin, b = bBegin; a <= aEnd;
 a += aStep, b += bStep) {

__shared__ float As [BLOCK_SIZE] [BLOCK_SIZE];
__shared__ float Bs [BLOCK_SIZE] [BLOCK_SIZE];

AS(ty, tx) = A[a + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];

for (int k = 0; k < BLOCK_SIZE; ++k)
Csub += AS(ty, k) * BS(k, tx);

// Write the block sub-matrix to device memory;
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
 C[c + wB * ty + tx] = Csub;

}

Make sure the matrices are loaded

Make sure that the preceding
computation is done before loading
two new sub-matrices of A and B in
the next iteration

__syncthreads();

__syncthreads();

Spot the Race in the for loop

50 4/14/11

Application 2: Matrix Multiplication
  Hands-on performance comparison

  For a MxN matrix
  Count no of global reads / thread

  Count no of global writes / thread

  Compare blocking vs non blocking performance

  You can use the CUDA visual profiler later to count the number of
memory accesses.
  Note: they may not be the same because of coalescing

51 4/14/11

Matrix Multiplication Performance
  Lets compare the shared memory

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500

K
er

ne
l T

im
e

(m
s)

No of Elements * 1k

Matrix Mul Performance

Using SM

Naive

52 4/14/11

Textures and Images
  Textures are allocated in global memory

and cached.
  Cache size ~6-8KB per mp,

  Optimized for 2D locality in accesses

  Constant memory is also cached

  Use to optimize the image rotation
example
  Uncoalesced reads from global memory

53 4/14/11

Hands On – Try simpletexture
  Defined at file scope as a type texture:

texture<Type, Dim, ReadMode> mytex;

  Textures are referenced using floating-
point coordinates in the range [0, N) or if
normalized [0,1.0).

  Addressing mode can be

  Clamped, 1.25 -> 1.0 in [0,1.0) or

  Wrapped, eg 1.25 -> 0.25

  Value returned can be a single element or
a interpolated value Texture Memory

54 4/14/11

Warps and Occupancy
  Multiprocessor creates and

executes threads in groups of 32
parallel threads called warps.

  Threads in a warp start at the
same program address
  Have individual instruction

and register state
  Free to branch and execute

independently

  Enables more applications (See
Histogram256)

55 4/14/11

Using the Occupancy Calculator
  The fact that all instructions in a warp execute together in lock

step can be used to our advantage
  NOTE: Warps are not part of the CUDA language definition

  Cost of warp divergence = sum of if + sum of else block

  Occupancy is the ratio of active warps to the maximum number
supported on a multiprocessor of the GPU

  Determines how efficient the kernel will be on the GPU .

  Get statistics for occupancy calculator with make keep=1!

56 4/14/11

Using the Occupancy Calculator

57 4/14/11

Occupancy Tradeoffs
  Occupancy is an empirical measure

  A last order optimization step and device dependent

  More threads / block

  Benefits – Helps compute bound workloads (rare for GPUs)

  Drawbacks – Reduces number of registers per thread and shared
memory per block, less blocks to hide latency

  Optimum threads / block
  IO bound workload has just enough warps to switch with

58 4/14/11

Experiment with Occupancy
  Download excel file from course web page

  http://developer.nvidia.com/cuda-downloads

  Occupancy is not a performance counter, it is simply a ratio

  Try with non blocking and blocking matrix multiplication
  Choose one data set

  Note: press ‘0’ when verification is not needed

  Vary number of threads per block

End – Class II

Note: The Next lecture should
 be covering material below

61 4/14/11

Nvidia Fermi
  Compute 2.0 / 2.1 devices

  Better double precision

  ECC support

  Configurable cache hierarchy

  Faster context switching

  Faster atomic operations

  Concurrent kernel execution

  Dual DMA Engines

62 4/14/11

Nvidia Fermi Features
  Everything discussed till now is

still relevant 

  ECC support - Data-sensitive
applications

  Configurable Cache Hierarchy
  Implementations unable to

use shared memory

  Faster Context Switching

  Application graphics and
compute interoperation

63 4/14/11

Concurrent Kernel Execution
  Concurrent Kernel Operation - Enables smaller data sets

Requires knowledge of CUDA Stream API
More than enough rope provided to hang yourself

64 4/14/11

Eowyn – Fermi System
  My personal system at NEU

  Dell XPS Gaming Platform
  GTX-480

PCI Bus

65 4/14/11

Host – Device Interaction
  An application dependent optimization space

  Page-locked Memory
  Asynchronous host – device Application IO

  Used commonly in medical imaging where data is
continuously fed to device

  Use CUDA stream’s asynchronous API
  Divide application into multiple kernels and keep data on device

  This often means coding non data parallel or inefficient
kernels to avoid IO

66 4/14/11

Pinned Memory Optimization
  Page-able vs. Page-locked memory

  Locked pages will not be swapped
out to disk by the OS

  Allocate using cudamallochost

  Fermi + CUDA 4.0 provides non-
copy pinning

Host
Memory

GPU Device
Memory

Pcie 2Gbps

cuMemCpy

Host
Memory

GPU Device
Memory

Pcie ~4Gbps

cuMemCpy

Page Locked
Memory

memcpy

~8Gbps

Note: excess page locking
affects system performance

67 4/14/11

Performance of Page-locked Memory

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11

13

15

17

19

22

26

30

34

38

42

46

50

70

90

20
0

40
0

60
0

80
0

10
00

21

24

41
72

62

20

82
68

10

31
6

12
36

4
14

41
2

16
46

0
20

55
6

24
65

2
28

74
8

32
84

4
41

03
6

49
22

8
57

42
0

65
61

2

B
an

dw
id

th
 (M

B
/s

)

Data Size (KB)

Device - Host IO (Fermi)

Pinned

Pageable

Tested using CUDA SDK
example bandwidth test

68 4/14/11

Performance of Page-locked Memory

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11

13

15

17

19

22

26

30

34

38

42

46

50

70

90

20
0

40
0

60
0

80
0

10
00

21

24

41
72

62

20

82
68

10

31
6

12
36

4
14

41
2

16
46

0
20

55
6

24
65

2
28

74
8

32
84

4
41

03
6

49
22

8
57

42
0

65
61

2

B
an

dw
id

th
 (M

B
/s

)

Data Size (KB)

Host - Device IO (Fermi)

Pinned

Pageable

Tested using CUDA SDK
example bandwidth test

69 4/14/11

Device Query & Bandwidth Test

Useful tools to check your setup
configuration and learn about device

70 4/14/11

Application: Histogram64
  64 bin histogram of data

  Build per thread subhistogram
  Build per block sub histogram

  Homework :- Try Histogram256
using local memory atomics

for (int i = 0; i < BIN_COUNT; i++)
 result[i] = 0;

for (int i = 0; i < dataN; i++)
 result[data[i]]++;

An example Image Histogram

71 4/14/11

Implementation of Histogram
  Kernel 1: Build per block

histogram from per thread
histogram

  Per thread histogram in
shared memory

  Reduce to block histogram

  Kernel 2: Combine block
histograms into final histogram

72 4/14/11

Histogram64 Kernel1
  Main Implementation Steps:

  Initialization of shared memory to 0 is important
  Make per thread histogram

  Use 64 threads per block to aggregate per thread into a per-block
histogram

  Note: Synchronization after per thread histograms is made

  Also use short data types for the thread histograms

  Later optimization step done in CUDA SDK to remove bank conflicts is
left for future discussion

73 4/14/11

Optimizations in Histogram64
  A simplified version of the Histogram64 kernel is provided

  Optimizations Include
  Using shared memory

  Build per block histogram using data gathered by each thread

  Group 8 bit reads into a 32 bit read
  As discussed coalescing: needs 32 bit transactions atleast

  Provided implementation includes bank conflicts in shared memory

74 4/14/11

Summary
  We have studied the architecture of CUDA capable Nvidia

GPUs
  We have seen the basics of CUDA and the relationship

between the architecture and the programming model
  We have decomposed a data parallel algorithm
  We have used different architectural features of the GPU

like shared and texture memory

75 4/14/11

Summary
  We have optimized host-device interaction using pinned

memory
  CUDA is a powerful parallel programming model

  Heterogeneous - mixed serial-parallel programming
  Scalable - hierarchical thread execution model
  Accessible - minimal but expressive changes to C
  Interoperable - simple graphics interop mechanisms

76 4/14/11

Summarizing Today’s Programming
  Array addition, Devicequery and BandwidthTest: Basic CUDA

programming, host - device code

  Image Rotation:

  Flipping: 2D Data Mapping

  Image rotation extension: using texture memory

  Matrix Multiplication:

  Naïve: Blocks and threads, coalescing data reads
  Blocking: Using Shared memory and synchronization in blocks

  Histogram64: Using shared memory to buffer data

77 4/14/11

Nvidia - CUDA Ecosystem - Today

78 4/14/11

Productivity Tools Based on CUDA
  Thrust - A STL – like library for CUDA

  Linear Algebra and Mathematical Routines
  CUBLAS and CURAND

  MAGMA and CULA-Tools provide LAPACK

  CUSP – CUDA Sparse Algebra

  CUFFT – FFTW for GPUs

  NPP: Performance Primitives – Video processing

  Sections of OpenCV
green = Nvidia product
bold = open source

79 4/14/11

Programming Tools for CUDA
Solution Approach Availability
CUDA C Runtime Language Integration NVIDIA CUDA Toolkit
Fortran Auto Parallelization PGI Accelerator
OpenCL Device-Level API Khronos standard
DirectCompute Device-Level API Microsoft
PyCUDA API Bindings Open source
jCUDA API Bindings Freely Available
CUDA.NET API Bindings Freely Available
OpenCL.NET API Bindings Freely Available

80 4/14/11

Next Class (4/28)
  More advanced CUDA

  Performance Tools – Using the CUDA Visual Profiler
  Debugging Techniques – Using cuda-gdb

  Let us know any particular areas of focus you would like
  Look at the SDK examples for topics you are interested in

81 4/14/11

More information and References
  NVIDIA GPU Computing Developer Home Page

  http://developer.nvidia.com/object/gpucomputing.html

  CUDA Download

  http://developer.nvidia.com/object/cuda_4_0_downloads.html

  Programming Massively Parallel Processors: A Hands-on Approach,
David B. Kirk and Wen-mei W. Hwu

  Other resources
  http://courses.engr.illinois.edu/ece498/al/

82 4/14/11

More information and References
  Beyond Programmable Shading – David Leubke

  Decomposition Techniques for Parallel Programming – Vivek
Sarkar

  CUDA Textures & Image Registration - Richard Ansorge

  Setting up CUDA within Windows Visual Studio
  http://www.ademiller.com/blogs/tech/2011/03/using-cuda-

and-thrust-with-visual-studio-2010/

  SDK examples: Histogram64, Matmul, SimpleTextures

Thank You !
Questions, Comments ?

Perhaad Mistry
pmistry@ece.neu.edu

