GPU Computing with Nvidia CUDA

>

NVIDIA.

CUDA"

-~ CENIER

David Kaeli, Perhaad Mistry, Rodrigo Dominguez,
Dana Schaa, Matthew Sellitto,
Department of Electrical and Computer Engineering
Northeastern University
Boston, MA

GPU Computing Course — Lecture 2
Analogic Corp. 4/14/2011

Please make sure you join

https://groups.google.com/group/analogic-gpu-course

Mail Questions to
analogic-gpu-course@googlegroups.com

Topics — Lecture 2

O O 0O00O0a0 d

Review of Lecture 1 and introduction to GPU Computing
Overview of GPU Architecture

Nvidia CUDA Syntax

Basic CUDA optimization steps

Nvidia Fermi

Kernel optimizations and host — device IO

Pointers to useful CUDA tools

Conclusions and Discussion

NUGCAR

3

Motivation to study CUDA

NVIDIA GPU
—-—|ntel CPU GT200 - 285

GFLOPs

3GHz — Xeon
3GHz — Core2 Quadcore
Duo

9/22/2002 2/4/2004 6/18/2005 10/31/2006 3/14/2008

T12 - Fermi

Westmere

7127/2009

Motivation to study CUDA

T12 - Fermi

N' "™MA GPU
——|r. GT200 - 285

GFLOPs

9/22/2002 2/4/2004 6/18/2005 10/31/2006 3/14/2008 712712009
Source: NVIDIA

CPU vs GPU Architectures

e [T T[T 11 []
I [[[[[[[] [[
[[[] 1 [
ALU | ALU [[] []
L[] | []
L[[[] | []
L[] 1 []
~ EEEEEEE 1 o
CPU GPU
Irregular data accesses Regular data accesses
More cache + Control More ALUs and massively parallel
Focus on per thread performance Throughput oriented

NUGAR ;

The System

Intel* Pentium® 4
Processor
m
6.4 GB/s

GPU w/
local DRAM

(device)

(;3. MCH: Memory Controller Hub
ICH: I/O Controller Hub
inter” High DDR: Double Data Rate

Definition Audio
4 PCI

Express* x1

8 Hi-Speed
USB 2.0 Ports

Nvidia GPU Compute Architecture

0 Compute Unified Device Architecture
[0 Hierarchical architecture

B A device contains many
multiprocessors

B Many scalar “cuda cores” per
multiprocessor (32 for Fermi)

B Single instruction issue unit

[0 Many memory spaces

Multiprocessor N
-

’ Multiprocessor 2

Multiprocessor 1

?I 1 pl z)

* | Processor M

NUGAR

8

GPU Memory Architecture

Device Memory (GDDR):

B |arge memory with a high
bandwidth link to multiprocessor

Registers on chip (~16k)

Shared memory (on chip)

B Shared between scalar cores
B [ow latency and banked
Constant and texture memory

B Read only and cached

Multiprocessor N
-

’ Multiprocessor 2

Multiprocessor 1

?I 1 Pl z)

* | Processor M

NUGAR

9

A “Transparently” Scalable Architecture

The CUDA programming
model maps easily to
underlying architecture

Same program will be
scalable across devices

Multithreaded CUDA

Program

h 4

GPU with 4 Cores

Core 0 Core 1

Core 2

Core 3

GPU with 2 Cores

Core 0

Core 1

10

Array Addition (CPU)

Computational kernel

arrayAdd (A, B, C, N);

free (A7) ;

free(B); free(C);

void arrayAdd(float *A, float *B, float *C, int N)

for(int 1 = 0; 1 < N; 1i++)
C[i] = A[i] + BI[1i];

}

int main () {
int N = 409¢6;
float *A = (float *)malloc(sizeof (float) *N) ;
float *B = (float *)malloc(sizeof (float) *N) ;
float *C = (float *)malloc(sizeof (float) *N) ;
init (A); init(B);

Allocate memory

Initialize memory

Deallocate memory

NUGAR "

CUDA Programming — High Level View

O 0O000 0

Initialize the GPU — done implicitly in CUDA
Allocate Data on GPU

Transfer data from CPU to GPU

Decide how many threads and blocks

Run the GPU program

Transfer back the results from GPU to CPU

NUGCAR

12

CUDA terminology

O

O

A Kernel is the computation
offloaded to GPUs

The kernel is executed by a grid
of threads

Threads are grouped into blocks
which execute independently

B Each thread has a unique ID
within the block

B Each block has a unique ID

Host

Kernel 1

Device

—>

Grid 1
Block
(0,0)

Block
(0, 1)

Block
(1,0)

- Block
1)

Block
(2, 0)

‘\\ Block
(2, 1)
\

e /7
Block (1, 1)
1
(0,0,1 / (1,0,1 (2,0,1 (3,0,1
)))) !
Thread | Thread | Thread |Thread
(0,0,0 (1,0,0 2,0,0 (3,0,0
))))
Thread | Thread | Thread |Thread
0,1,0 11,0 2,1,0 (3,1,0

)

)

)

)

NUCAR

13

Array Addition (GPU)

__global |« Kernel Indentifier

void gpuArrayAdd(float *A, float *B, float *C) { / Index for Thread’s Data

int tid =|blockIdx.x * blockDim.x + threadlIdx.x]

1 = A i + B i ’
} Cltid] [tid] [tid] «<— GPU Computational kernel

blockldx.x threadldx.x

GRID

00 (1.0) (20) .. (310)

blockDim.x = 32
tid = blockIdx.x * blockDim.x + threadIdx.x

NUGAR “

Vector Addition Example

LS Foalinet= i el B I b

[0 cudaMalloc allocates space in the global memory

float *d A, *d B, *d C;

cudaMalloc (&d A, sizeof (float) *N);
cudaMalloc(&d:B, sizeof (float) *N) ;
cudaMalloc (&d C, sizeof (float) *N);

[0 cudaMemcpy copies from host to global memory over PCI

cudaMemcpy (d A, A, sizeof (float)*N, HtoD);
cudaMemcpy (d B, B, sizeof (float)*N, HtoD);

NUGAR

15

Vector Addition Example

S F =

block configuration

B Natural way to invoke computation across the elements in a
domain such as a vector, matrix, or volume.

dim3 dimBlock (32,1);
dim3 dimGrid (N/32,1);

O Launch Kernel Call

gpuArrayAdd <<< dimBlock,dimGrid >>> (d A, d B, d C);

0 dim3 — A 3D Vector data type which is used to pass thread and

NUGAR

16

Vector Addition Example

e F = R el B I

[0 Read results back to host

cudaMemcpy(C, d C, sizeof(float)*N, DtoH);

[0 Cleanup memory and end program
0 Our first CUDA program is finished ©

NUGAR 1

Summary of Relevant Identifiers

Philosophy: Minimal set of extensions necessary to expose architecture

Function qualifiers: Variable qualifiers:
global _ void MyKernel() { } __constant__ float MyConstantArray[32];
__device__ float MyDeviceFunc() { } __shared__ float MySharedArray[32];

Execution configuration:
dim3 dimGrid(100, 50); // 5000 thread blocks
dim3 dimBlock(4, 8, 8); // 256 threads per block

Kernel Launch
MyKernel <<< dimGrid, dimBlock >>> (...); // Launch kernel

NUCAR 1

Vector Addition (GPU)

int main () {
int N = 4096;
float *A = (float
float *B = (float
float *C = (float

float *d A, *d B,

*Ymalloc (sizeof (float) *N) ;
*)malloc (sizeof (float) *N) ;
*Ymalloc (sizeof (float) *N) ;
*d C;

cudaMalloc (&d A, sizeof (float) *N) ;
cudaMalloc(&d B, sizeof(float) *N);
cudaMalloc (&d _C, sizeof (float) *N) ;

cudaMemcpy (d A, A,
cudaMemcpy (d B, B,

sizeof (float) *N, HtoD) ;
sizeof (float) *N, HtoD);

dim3 dimBlock (32,1) ;

dim3 dimGrid(N/32,

gpuArrayAdd <<< dimBlock,dimGrid >>> (d_ A, d B, d C);

cudaMemcpy (C, d_C,

cudaFree(d _A);
cudaFree (d_B) ;
cudaFree (d C);
free(A); free(B);

1);

sizeof (float) *N, DtoH);

free (C);

init (A);

init (B

)

4

<«— Allocate memory on GPU

<—Initialize memory on GPU
<—Configure threads

<—Run kernel (on GPU)

<—Copy results back to CPU

<«—Deallocate memory on GPU

NUGCAR

19

Global Memory Access in GPUs

__global__ void
bad_kernel(float *x)

{
X[1000*tid] = threadldx.x;

BAD Access

int tid = threadldx.x + blockDim.x*blockldx.x;

__global__ void GOOD Access

good_kernel(float *x)
{
int tid = threadldx.x + blockDim.x*blockldx.x;
x[tid] = threadldx.x;

}

[0 Global memory accessed via 32, 64, or 128-byte transactions

[0 No of transactions depend on size of data accessed by thread and
distribution of the memory addresses across the threads

[0 Coalescing: combining memory requests across threads into a single

transaction

NUCAR 20

Coalescing Data Access

O O

Memory access requirements between threads depend on compute
capability of device

Memory accesses are handled per 16 or 32 threads

For devices of capability 2.x, memory transactions are cached

Data locality is exploited to reduce impact on throughput

B Temporal locality: data accessed is likely to be used in future,
B Spatial locality: neighboring data is also likely to be reused

Distribution of addresses across threads to get coalescing is very
inflexible for older devices (Pg 168 Progg. Guide v4.0)

NUCAR 2

Application 1: Image Rotation

[0 Rotate an image by a given angle

[0 A basic feature in image processing applications

Original Input Image

22

Example 1 - Image Rotation

A common image processing routine
B Applications in matching, alignment, etc.

New coordinates of (x1,y1) when rotated by
an angle © around (x0,y0)

x, =€0s(0)™ (x, — x,) —sin(0) " (y, — y,) + x,
v, =s8in(0)* (x, — x,)+cos(0) * (y, — y,) + x,

By rotating about the origin (0,0) we get

x, = cos(6) ™ (x,) —sin(0) * ()
y, =sin(0)* (x,) + cos(0) * (y,)

~ Original Image

23

Application 1: Image Rotation

[1 What the application does:

B Step 1. Compute a new location according to the rotation
angle (trigonometric computation)

B Step 2. Read the pixel value of original location

B Step 3. Write the pixel value to the new location computed
at Step 1

[0 Create the same number of threads as the number of
pixels

[0 Each thread takes care of moving one pixel

NUCAR 24

Image Rotation
0 Input: To copy to device

B [mage (2D Matrix of floats)
B Rotation parameters
B [mage dimensions
[0 Output: From device
B Rotated Image

NUCAR 25

Simplified Image Rotation Kernel

__global__ void

transformKernel(float* g_odata, float * d_idata,
int width, int height)
{

unsigned int x = blockldx.x*blockDim.x + threadldx.x;
unsigned int y = blockldx.y*blockDim.y + threadldx.y;

/I We could use normalized coordinates here if we
/I were using textures
float u = x; float v = y; //Just a 90° flip

int new_y = int(tv);
int new_x = int(tu);

g_odata[y*width + x] = d_idata[new_y * width +new_x];

NUCAR

26

- Implementation Steps — Hands on

O Oooo 0O

[l

I

Copy image to device by enqueueing a write to a buffer on
the device from the host

Decide the work group dimensions
Run the Image rotation kernel on input image
We will use the provided Nvidia utilities for image handling

Copy output image to host by enqueueing a read from a
buffer on the device

Look at Vector add for help and syntax

NUCAR 2

Compiling CUDA - C

C fOfI cuda compile-time
cudafe
gpu
host Open64

host compiler

Nvidia CUDA Compiler (nvcc)
PTX passed as data to host

make verbose=1 for commands run

O 0O O 4d

make keep=1 for intermediate files

execution-time

* runtime > driver

NUGAR *

Medusa Cluster — Nvidia Subsystem

compute-0-8

NUGAR ”

Application 1: Image Rotation

[1 Replace ?7?? in the skeleton with your own CUDA code
B Add the cudaMalloc and the cudaMemcpy calls
B Compile with Makefile and execute
[0 Goals are
B Understand how to use GPU for data parallelism
B To know how to map threads to data

NUCAR

30

CUDA Abstractions

1 Millions of lightweight threads - Simple decomposition
[1 Hierarchy of concurrent threads - Simple execution model

1 Later we will cover :-
B Lightweight synchronization primitives
0 Simple synchronization model

B Shared memory model for cooperating threads

O Simple communication model

NUCAR T

Input vs. Output Decomposition

O O

|dentify the data on which computations are performed

Partition data into sub-units

B Partition can be as per the input, output or intermediate
dimensions for different computations

B Data partitioning induces one or more decompositions of the
computation into tasks e.g., by using the owner computes

Input decomposition: Cases where we don’t know size of output (e.g.
finding occurrences in a list)

Output decomposition: Cases where more than one element of the
input is required (e.g. matrix multiplication)

NUCAR 2

- Application 2: Matrix Multiplication

AHA,WA x BHB,WB = CHC,WC

- a0,0 b0,0 C0,0

X =

a0 Auawa bHB,O bHB,WB Cruco Aucwe

for (inti=0; i < HC; i++)
for (int j=0; i < WC; j++)
for (int k=0; i < WA; k++)
CHI0T += Alilk] * BIK]OI;

NUGAR »

Application 2: Matrix Multiplication

O An O(n3) computation
O CJi][j] computed in parallel
B An output decomposition
B Multiple I/P elements per O/P

B No of threads = No of
elements in C

B Each thread works
independently

B.height

A height

A

\4

NUCAR 4

Matrix Multiplication Kernel

__global___ void o col

[~ B.width-1

matrixMul (float * C, float * A, float * B, int wA, int wB) { B -

/' matrixMul(float* C, float* A, float* B, int wA, int wB)

/[! Each thread computes one element of C

/' by accumulating results into Cvalue
float Cvalue = 0;

/I Global index of thread calculated °3 R c
int row =blockldx.y *blockDim.y +threadldx.y;
int col =blockldx.x *blockDim.x +threadldx.x;
int wC = wB;

row = -

//'Each thread reads its own data from global memory
for(inte = 0; e < WA; e++)
Cvalue += Afrow * wA + €] * B[e * wB + col]; A-width B.widtn

<

B.height

Aheight

\ 4

\4
A

-«

Cl[row * wC + col] = Cvalue; A height-1

NUGCAR

35

Performance of Matrix Mul

[0 Previous implementation — Poor Scaling - Why ?

B No of operations
O Perthread reads = (Row + Col)

O Perthread computation = 2(Row + Col)
O 1 Muland 1 Add per access

[0 Redundant memory accesses
B Each thread reads in whole row and whole column

B How do we improve it ? And if its this bad, why discuss it ?

NUGCAR

36

Matrix Multiplication Performance

[l Lets compare the shared memory

Kernel Time (ms)

70

60

50

40

30

20

10

500

Matrix Mul Performance

1000 1500

No of Elements * 1k

2000

=&—Using SM
= Naive

2500

NUGCAR

37

Example Takeaways

O O0004d

What have we learned through the two projects ?
Understood a massive parallel computing on GPU
Experienced what CUDA programming looks like
Understood how to decompose a simple problem

Experienced solving problem in massively parallel fashion

NUCAR 38

Steps Porting to CUDA

[0 Create standalone C version

Block Block Block

O Multi-threaded CPU version 0.0 .0 @0
(debugging, partitioning)

[0 Simple CUDA version

Block Block Block

< (0,1) (1,1) (2,1)
(0]

©

(@]

O

Kern

Sequential

[0 Optimize CUDA version for
underlying hardware ©.9) 1.0)

[0 No reason why an application —> o1)
should have only 1 kernel

(0,2) (1,2)

[0 Use the right processor for the job

NUCAR 3

Break

O0O000 O

GPGPU shared memory optimization
GPGPU Block Synchronization
Fermi Capabilities

Page-able and Page-locked memory
Warps and Occupancy

Histogram64 Example

GPU Memory Architecture

Examples have not discussed
using shared memory -

Generic Memory

Critical for hiding high latency of Ofi<hip

G - G P———— .
global memory accesses vemories | | revure emory § 4 [[Consiam
: H emory

Shared memory provides almost

single cycle access to data to ===
each scalar core
On—qhip Caches SIMD
B Shared memory is banked Vooce Shared Memory] | Blocks
Registers
Usage rule of thumb: coalesce !

frequently accessed data

NUGCAR i

Heterogeneous Apple Picking — Recap...

Vi

Trees have a very different
number of apples on them?

- Extending Apple Picking — Again...

[0 Lets sell the apples in the market

[0 Pickers cant start pushing cart till ALL
pickers have loaded their apples

B Synchronization required within groups

o A

© Original Artist

Bulk-Synchronous
programming models

Each cart can go to the
market independently

cart ~ shared memory/ block -

NUGCAR i

Synchronization in CUDA

[0 Threads within block may synchronize with barriers

.. Step 1 ..
__syncthreads();
.. Step 2 ..

[0 Blocks coordinate via atomic memory operations

O

B e.g., increment shared queue pointer with atomicinc()

Implicit barrier between dependent kernels (making apple juice)

vec_minus<<<nblocks, blksize>>>(a, b, c);
vec_dot<<<nblocks, blksize>>>(c, c);

NUCAR

44

Matrix Multiplication

Why look at matrix mul again ?
B Gets annoying

Previous implementation was
bad - Repetitive reads

B Each thread worked
independently

Reuse data read by each thread

B [nter thread-locality in
access of both A and B

Blocking is known in linear
algebra for 20+ years

4Pt — P>
BLOCK_SIZE BLOCK_SIZE

A.width

- Blocked

«—

BLOCK_SIZE BLOCK_ SIZE

+“—>

BLOCK_SIZE-1

[s] col

0
csub
o j=]
BLOCK_SIZE-1

« >
BLOCK_SIZE

|

B.width

BLOCK_SIZE

SR
»

B.height

A.height

\ 4

<
i

» <
» <

NUCAR

45

Matrix Multiplication - Blocked

Shared memory optimization

Store per-block matrices (As and
Bs)

B Shared memory is faster

Synchronization in CUDA -
Selling apple analogy

Each thread reads in a piece of
data

|

BLOCK_SIZE BLOCK_SIZE

w

-

o)

‘X

v

N8

- ﬁ (=}
O
£

"
+“—r
BLOCK_SIZE

<4+ — P>t — > <4 >
BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE
A.width B.width

B.height

A.height

\ 4

- » <
- »

NUGAR

46

Matrix Multiplication - Blocked

Step size used to iterate
through the sub-matrices of A

Step size used to iterate through
the sub-matrices of B

Running Sum of result of
each thread

__global__ void matrixMul(float* C, float* A, float* B,
int WA, int wB)

{

int bx = blockldx.x; int by = blockldx.y;

int tx = threadldx.x; intty = threadldx.y;

/I Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * by;

intaEnd = aBegin + wA - 1;

int aStep = BLOCK_SIZE;

/I Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * bx;
int bStep = BLOCK_SIZE * wB;

s float Csub = 0;

NUCAR %

Matrix Multiplication - Blocked

for (int a = aBegin, b = bBegin; a <= aEnd,;

Loop over sub-matrices of A& B

5 a += aStep, b += bStep) {

Declaration of the shared
memory array used to store
submatrix

Load matrices from device to
shared memory; thread loads
one element

__shared__ float As [BLOCK_SIZE] [BLOCK_SIZE];
__shared__ float Bs [BLOCK_SIZE] [BLOCK_SIZE];

AS(ty, tx) = Ala + wA * ty + tx];

— 7 BS(ty, tx) = B[b + B * ty + tx];

for (int k = 0; k < BLOCK_SIZE; ++k)

Multiply the two matrices together;
each thread computes one
element of the block sub-matrix

/, Csub += AS(ty, k) * BS(k, tx);
/

/ Write the block sub-matrix to device memory;

/I each thread writes one element

intc =wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
Clc + wB * ty + tx] = Csub;

}

NUCAR i3

Matrix Multiplication - Blocked

Spot the Race in the for loop

Make sure the matrices are loaded

Make sure that the preceding
computation is done before loading
two new sub-matrices of Aand B in
the next iteration

for (int a = aBegin, b = bBegin; a <= aEnd,;
a += aStep, b += bStep) {

__shared__ float As [BLOCK_SIZE] [BLOCK_SIZE];
__shared__ float Bs [BLOCK_SIZE] [BLOCK_SIZE];

AS(ty, tx) = Ala + wA * ty + tx];

BSi(ty, tx) = B[b + wB * ty + tx]; syncthreads();

for (int k = 0; k < BLOCK_SIZE; ++k)
Csub += AS(ty, k) * BS(k, tx);

I/ Write the block sub-matrix to device memory;
intc =wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;

Clc + wB * ty + tx] = Csub; __syncthreads();

NUGCAR

49

- Application 2: Matrix Multiplication

O
O

O O

Hands-on performance comparison
For a MxN matrix

B Count no of global reads / thread
B Count no of global writes / thread

Compare blocking vs non blocking performance

You can use the CUDA visual profiler later to count the number of

memory acCesses.

B Note: they may not be the same because of coalescing

NUCAR

50

Matrix Multiplication Performance

[l Lets compare the shared memory

Kernel Time (ms)

70

60

50

40

30

20

10

500

Matrix Mul Performance

1000 1500

No of Elements * 1k

2000

=&—Using SM
= Naive

2500

NUGCAR

51

Textures and Images

O

Textures are allocated in global memory

and cached. — S/

B Cache size ~6-8KB per mp,

B Optimized for 2D locality in accesses —

Constant memory is also cached

Use to optimize the image rotation L [ZZ |3

B Uncoalesced reads from global memory 77 7 /7

52

Hands On — Try simpletexture

Defined at file scope as a type texture:
texture<Type, Dim, ReadMode> mytex;

Textures are referenced using floating-
point coordinates in the range [0, N) or if
normalized [0,1.0).

Addressing mode can be
B Clamped, 1.25->1.0in[0,1.0) or
B Wrapped, eg 1.25->0.25

Value returned can be a single element or
a interpolated value

Device

Multiprocessor N

’ Multiprocessor 2

Multiprocessor 1

Instruction
Unit

NUGAR

53

Warps and Occupancy

[0 Multiprocessor creates and — Block1 Warps | — Block2Warps [— Block1 Warps
. . 1 .. | ...
executes threads in groups of 32 g ol | [oue o LR B!
parallel threads called warps. 4
- - & - 4
[0 Threads in a warp start at the — — A
same program address Streaming Multiproces sor
B Have individual instruction Instruc tion Fe tch Dispatch
and register state e

B Free to branch and execute
independently

[0 Enables more applications (See
Histogram256)

54

Using the Occupancy Calculator

O O O

O O

The fact that all instructions in a warp execute together in lock
step can be used to our advantage

NOTE: Warps are not part of the CUDA language definition
Cost of warp divergence = sum of if + sum of else block

Occupancy is the ratio of active warps to the maximum number
supported on a multiprocessor of the GPU

Determines how efficient the kernel will be on the GPU .

Get statistics for occupancy calculator with make keep=1

NUCAR s

Using the Occupancy Calculator

CUDA GPU Occupancy Calculator

1.) Select a GPU from the list (click):

LT —

2.) Enter your rescurce usage:
Thmads Per Biock

(Dont adit amything below this line)
3.) CPU Occupancy Data is Saplayed here and in the graphs:

Actve Threads per Mulliprocessor 2400
Active Warps per Nulliprocessor 1]
Actve Thread locks per Multiprocessor 2
[+] of sach Multipe 0%
Mazimum Simultaneous Blocks per CPU 32
(Note: This assumes there are at least this many dlocks)

Prysical Limits dor GPU [1)
‘MuRgrocemon per CPU 18
Theeads/ Warp I 32
Wamns / Multonocessor r 24
Thoads/ Multprocesmor r 768
Thead Bocka ! Multiprocessor I 8
Tota! # of 32-b1 regisless / Mull procemsor r 8192
Shared Memosy / Mullipozessor (Sybes) I 18334
Alscation Per Thread Block

Warns 4
Regisless 2818
Srared Memony 3534
These data are used in comauting the upancy data » blue
Naxmum Thread Blocks Per Multiprocessor Blocia

Limted by Max Warps [Mullipsocesses
Lim%ed by Rep ders/ Mulliprocessor
Lim%ed by Shawd Memory / Myt cmocomor

[
2
4

Thmwad Bockl =t Por Mulbprocemor 4 the m= mum of 1hese J
CUDA Ozcupancy Calculalor 1 |
Verson: 1 12|

Copyrgatand Licenms |

Click Here for detalled instructions on how to use this occupancy calculator,

For mere infermation on NVIDIA CUDA, v isit hitp-idev eloperav idia convcuda

Your ehosen resource usage is indicaled by the red triangle on he graghs
The other data posnts reprosent e range of possibie Block sizes. register counts. and shared memory allocation

Varying Block Size

Varying Register Count

>
3fn
%~ L
:
i
£ 12
£s I\ ﬂn ////‘\
i3 ¢ e
J ‘
) t s “w e an bS) A4 4 1 2 il 0 e b ib
Threads Per Block Registers Per Thread
Varying Shared Memary Usage
=
- il
i
8 2
-3
EIR S ARas AR ASBAAS]

Surad Mamory Par Tant

NUGAR

56

Occupancy Tradeoffs

[0 Occupancy is an empirical measure
B A last order optimization step and device dependent
[0 More threads / block
B Benefits — Helps compute bound workloads (rare for GPUs)

B Drawbacks — Reduces number of registers per thread and shared
memory per block, less blocks to hide latency

[0 Optimum threads / block

B |O bound workload has just enough warps to switch with

NUCAR s

Experiment with Occupancy

[0 Download excel file from course web page

B http://developer.nvidia.com/cuda-downloads
[0 Occupancy is not a performance counter, it is simply a ratio
[0 Try with non blocking and blocking matrix multiplication
B Choose one data set
[0 Note: press ‘0’ when verification is not needed

B Vary number of threads per block

NUGCAR

58

End — Class |l

NUGCAR

Note: The Next lecture should
be covering material below

NUGCAR

Compute 2.0/ 2.1 devices

Better double precision

ECC support

Configurable cache hierarchy
Faster context switching
Faster atomic operations

Concurrent kernel execution
Dual DMA Engines

OO 0O002a0a0Q0ad

NUCAR o

Nvidia Fermi Features

[0 Everything discussed till now is
still relevant © Fermi GPU _

[0 ECC support - Data-sensitive
applications sm| |sm| |sm| |sm| |sm| |sm| |sm

[0 Configurable Cache Hierarchy [N

L2 cache \ \
B Implementations unable to NN
use shared memory su| |sm| [sm| [su| |sm| [sm| [sm|[N || Lrcacnes

\ || shared memory

[0 Faster Context Switching \

llelElelllE]E]e]
LllelElElRlR]E]E]
llelElelllE]E]e]
LlEERIEEE]E]

B Application graphics and
compute interoperation

NUGAR ©

Concurrent Kernel Execution

Concurrent Kernel Operation - Enables smaller data sets

Kernel 1

—

Kernel 2

Kernel 2

Keme g

Kernel 4

Kernel 5

Serial Kernel Execution

Kernel 1 Kernel 2

Kernel 2 erne

Kernel 5

Requires knowledge of CUDA Stream API
More than enough rope provided to hang yourself

NUCAR e

| System

Eowyn — Ferm

O My personal system at NEU

B Dell XPS Gaming Platform

B GTX-

480

64

Host — Device Interaction

[0 An application dependent optimization space
[0 Page-locked Memory
[0 Asynchronous host — device Application 10

B Used commonly in medical imaging where data is
continuously fed to device

B Use CUDA stream’s asynchronous API
[Divide application into multiple kernels and keep data on device

B This often means coding non data parallel or inefficient
kernels to avoid 10

NUCAR 6

Pinned Memory Optimization

O

Page-able vs. Page-locked memory

O

Locked pages will not be swapped
out to disk by the OS

O

OO0 Fermi+ CUDA 4.0 provides non-
copy pinning

memcpy

Note: excess page locking

affects system performance m

~8Gbps

cuMemCpy

Pcie 2Gbps

cuMemCpy

Pcie ~4Gbps

Allocate using cudamallochost “

NUGAR

66

Performance of Page-locked Memory

Device - Host 10 (Fermi)

3500

3000

2500

2000 -

1500 -

Bandwidth (MB/s)

1000 7

500

0

Pinned

Pageable

— NN~ —nNnunSONQ

Tested using CUDA SDK
example bandwidth test

— e e — —

2

Data Size (KB)

67

Performance of Page-locked Memory

3500

Host - Device 10 (Fermi)

Pinned
3000

Pageable
2500 -

2000 -

1500 -

Bandwidth (MB/s)

1000 -
500 7

0

— NV~ —NnWn >~

— o —

Tested using CUDA SDK
example bandwidth test

N

2

Data Size (KB)

68

Device Query & Bandwidth Test

[./bandwidthTest] starting...
./bandwidthTest Starting...

Running on...

Device 0: GeForce GTX 480
Quick Mode

Host to Device Bandwidth, 1 Device(s), Paged memory

Transfer Size (Bytes)
33554432

Bandwidth(MB/s)
1617.7

Device to Host Bandwidth, 1 Device(s), Paged memory

Transfer Size (Bytes)
33554432

Bandwidth(MB/s)
1465.1

Device to Device Bandwidth, 1 Device(s)

Transfer Size (Bytes)
33554432

Bandwidth(MB/s)
117711.5

[./bandwidthTest] test results...

PASSED

Useful tools to check your setup
configuration and learn about device

pmistry@eowyn:~/NVIDIA GPU_Computing SDK_40/C/b
[./deviceQuery] starting...
./deviceQuery Starting...

in/Tinux/release$./deviceQuery

CUDA Device Query (Runtime API) version (CUDART static linking)

There is 1 device supporting CUDA

Pevice 0: "GeForce GTX 480"
CUDA Driver Version / Runtime Version
CUDA Capability Major/Minor version number:
Total amount of global memory:
(15) Multiprocessors x (32) CUDA Cores/MP:
GPU Clock Speed:
Memory Clock rate:
Memory Bus Width:
L2 Cache Size:
Max Texture Dimension Size (x,y,z)
Max Layered Texture Size (dim) x layers
Total amount of constant memory:
Total amount of shared memory per block:

Total number of registers available per block:

Warp size:

Maximum number of threads per block:
Maximum sizes of each dimension of a block:
Maximum sizes of each dimension of a grid:
Maximum memory pitch:

Texture alignment:

Concurrent copy and execution:

Run time limit on kernels:

Integrated GPU sharing Host Memory:
Support host page-locked memory mapping:
Concurrent kernel execution:

Alignment requirement for Surfaces:

Device has ECC support enabled:

Device is using TCC driver mode:

Device supports Unified Addressing (UVA):
Device PCI Bus ID / PCI location ID:
Compute Mode:

< Default (multiple host threads can use

4.0 / 4.0

2.0 E}
1535 MBytes (1609760768 bytes)

480 CUDA Cores

1.40 GHz

1848.00 Mhz

384-bit

786432 bytes

1D=(65536), 2D=(65536,65535), 3D=(2048,2048,2048)|
1D=(16384) x 2048, 2D=(16384,16384) x 2048
65536 bytes

49152 bytes

32768

32

1024

1024 x 1024 x 64

65535 x 65535 x 65535

2147483647 bytes

512 bytes

Yes with 1 copy engine(s)

Yes

No

Yes

Yes

Yes

No

No

Yes

1/60

: :cudaSetDevice() with device simultaneously) >

69

Application: Histogram64

[0 64 bin histogram of data
B Build per thread subhistogram
B Build per block sub histogram

Number

for (int i = 0; i< BIN_COUNT: i++) of Pixels
result[i] = 0;

for (int i = 0; i < dataN; i++)
result[data[i]]++;

Amplitude

[0 Homework :- Try Histogram256
using local memory atomics An example Image Histogram

NUGCAR

70

Implementation of Histogram

[0 Kernel 1: Build per block
histogram from per thread
histogram

B Per thread histogram in
shared memory

B Reduce to block histogram

[0 Kernel 2: Combine block
histograms into final histogram

data

=

threadidx

BIN_COUNT

A

threadPos

<«— data

A

THREAD_N

71

Histogramo4 Kernel1

O O O

Main Implementation Steps:
B [nitialization of shared memory to 0 is important
B Make per thread histogram

B Use 64 threads per block to aggregate per thread into a per-block
histogram

Note: Synchronization after per thread histograms is made
Also use short data types for the thread histograms

Later optimization step done in CUDA SDK to remove bank conflicts is
left for future discussion

NUCAR 2

Optimizations in Histogram64

[0 A simplified version of the Histogram64 kernel is provided
[0 Optimizations Include
B Using shared memory
[0 Build per block histogram using data gathered by each thread
B Group 8 bit reads into a 32 bit read
[0 As discussed coalescing: needs 32 bit transactions atleast

[0 Provided implementation includes bank conflicts in shared memory

NUGAR ©

Summary

0O O

We have studied the architecture of CUDA capable Nvidia
GPUs

We have seen the basics of CUDA and the relationship
between the architecture and the programming model

We have decomposed a data parallel algorithm

We have used different architectural features of the GPU
like shared and texture memory

NUCAR g

Summary

[1 We have optimized host-device interaction using pinned
memory

[1 CUDA is a powerful parallel programming model
B Heterogeneous - mixed serial-parallel programming
B Scalable - hierarchical thread execution model
B Accessible - minimal but expressive changes to C
B Interoperable - simple graphics interop mechanisms

NUCAR 7

‘Summarizing Today’s Programming

O

O

Array addition, Devicequery and BandwidthTest: Basic CUDA
programming, host - device code

Image Rotation:

B Flipping: 2D Data Mapping

B |mage rotation extension: using texture memory

Matrix Multiplication:

B Naive: Blocks and threads, coalescing data reads

B Blocking: Using Shared memory and synchronization in blocks

Histogram64: Using shared memory to buffer data

NUCAR 7

~Nvidia - CUDA Ecosystem - Today

Libraries:FFT, BLAS,... Integrated CPU
Example Source Code and GPU C Source Code

NVIDIA C Compiler

NVIDIA Assembly

. CPU Host Code
for Computing

CUDA Debugger
Driver Profiler

Standard C Compiler

77

~Productivity Tools Based on CUDA

[0 Thrust - A STL — like library for CUDA

[0 Linear Algebra and Mathematical Routines

CUBLAS and CURAND

MAGMA and CULA-Tools provide LAPACK
CUSP — CUDA Sparse Algebra

CUFFT — FFTW for GPUs

NPP: Performance Primitives — Video processing

Sections of OpenCV

green = Nvidia product

bold = open source

NUGCAR

78

Programming Tools for CUDA

Solution Approach Availability

CUDA C Runtime Language Integration NVIDIA CUDA Toolkit
Fortran Auto Parallelization PGI Accelerator
OpenCL Device-Level API Khronos standard
DirectCompute Device-Level API Microsoft

PyCUDA API Bindings Open source

JCUDA API Bindings Freely Available
CUDA.NET API Bindings Freely Available
OpenCL.NET API Bindings Freely Available

NUGAR

79

Next Class (4/28)

[0 More advanced CUDA
B Performance Tools — Using the CUDA Visual Profiler
B Debugging Techniques — Using cuda-gdb

[1 Let us know any particular areas of focus you would like
B ook at the SDK examples for topics you are interested in

NUGAR *

More information and References

NVIDIA GPU Computing Developer Home Page

B http://developer.nvidia.com/object/gpucomputing.html
CUDA Download

B http://developer.nvidia.com/object/cuda_4 0 downloads.html

Programming Massively Parallel Processors: A Hands-on Approach,
David B. Kirk and Wen-mei W. Hwu

Other resources

B http://courses.engr.illinois.edu/ece498/al/

NUCAR d

More information and References

O O

O O

Beyond Programmable Shading — David Leubke

Decomposition Techniques for Parallel Programming — Vivek
Sarkar

CUDA Textures & Image Registration - Richard Ansorge
Setting up CUDA within Windows Visual Studio

B http://www.ademiller.com/blogs/tech/2011/03/using-cuda-
and-thrust-with-visual-studio-2010/

SDK examples: Histogram64, Matmul, SimpleTextures

NUCAR 82

Thank You !
Questions, Comments ?

Perhaad Mistry

pmistry@ece.neu.edu

<A
NVIDIA.

