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Topics – Lecture 2 
  Review of Lecture 1 and introduction to GPU Computing 

  Overview of GPU Architecture 

  Nvidia CUDA Syntax 

  Basic CUDA optimization steps 

  Nvidia Fermi 

  Kernel optimizations  and host – device IO   

  Pointers to useful CUDA tools 

  Conclusions and Discussion 
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Motivation to study CUDA 

Source: NVIDIA 

T12 - Fermi 

GT200 - 285 

G80  

Westmere 3GHz – Xeon 
Quadcore 3GHz – Core2 

Duo 
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Motivation to study CUDA 
T12 - Fermi 

GT200 - 285 

G80  

Westmere 3GHz – Xeon 
Quadcore 3GHz – Core2 

Duo 

Source: NVIDIA 

Theoretical Peaks Don’t matter Much 
How do you write an application that performs well ?? 



6 4/14/11 

CPU vs GPU Architectures 

Irregular data accesses 
More cache + Control 
Focus on per thread performance 

Regular data accesses 
More ALUs and massively parallel 
Throughput oriented 
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The System 
CPU 
(host) GPU w/  

local DRAM 
(device) 

MCH: Memory Controller Hub 

ICH: I/O Controller Hub 

DDR: Double Data Rate 
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Nvidia GPU Compute Architecture  
  Compute Unified Device Architecture 

  Hierarchical architecture 
  A device contains many 

multiprocessors 

  Many scalar “cuda cores” per 
multiprocessor (32 for Fermi) 

  Single instruction issue unit 

  Many memory spaces 
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GPU Memory Architecture 
  Device Memory (GDDR): 

  Large memory with a high 
bandwidth link to multiprocessor 

  Registers on chip (~16k) 

  Shared memory ( on chip) 
  Shared between scalar cores 

  Low latency and banked 

  Constant and texture memory  

  Read only and cached 
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A “Transparently” Scalable Architecture 

Same program will be 
scalable across devices 

The CUDA programming 
model maps easily to 
underlying architecture 
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Array Addition (CPU) 
void arrayAdd(float *A, float *B, float *C, int N) { 
   for(int i = 0; i < N; i++) 
      C[i] = A[i] + B[i]; 
} 

int main() { 
   int N = 4096; 
   float *A = (float *)malloc(sizeof(float)*N);       
   float *B = (float *)malloc(sizeof(float)*N);    
   float *C = (float *)malloc(sizeof(float)*N); 

   init(A); init(B);  

   arrayAdd(A, B, C, N); 

   free(A); free(B); free(C); 
} 

Computational kernel	



Allocate memory	



Initialize memory	



Deallocate memory	
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CUDA Programming – High Level View 
  Initialize the GPU – done implicitly in CUDA 
  Allocate Data on GPU 
  Transfer data from CPU to GPU 
  Decide how many threads and blocks  
  Run the GPU program 
  Transfer back the results from GPU to CPU 
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CUDA terminology 
  A Kernel is the computation 

offloaded to GPUs 

  The kernel is executed by a grid 
of threads 

  Threads are grouped into blocks 
which execute independently 

  Each thread has a unique ID 
within the block 

  Each block has a unique ID 

Host 

Kernel 1 

Device 

Block (1, 1) 

Thread 
(0,1,0
) 

Thread 
(1,1,0
) 

Thread 
(2,1,0
) 

Thread 
(3,1,0
) 

Thread 
(0,0,0
) 

Thread 
(1,0,0
) 

Thread 
(2,0,0
) 

Thread 
(3,0,0
) 

(0,0,1
) 

(1,0,1
) 

(2,0,1
) 

(3,0,1
) 

Grid 1 

Block	
  
(0, 0) 

Block	
  
(1, 0) 

Block	
  
(2, 0) 

Block	
  
(0, 1) 

Block	
  
(1, 1) 

Block	
  
(2, 1) 
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Array Addition (GPU) 
__global__ 

void gpuArrayAdd(float *A, float *B, float *C) { 

   int tid = blockIdx.x * blockDim.x + threadIdx.x;   
   C[tid] = A[tid] + B[tid]; 
} 

(0,0) (1,0) (2,0) ... (31,0) 

(0,0) 
...	



GRID	



BLOCK	



(0,0) (1,0) (2,0) ... (31,0) 

(1,0) BLOCK	



threadIdx.x	

blockIdx.x	



blockDim.x = 32	


tid = blockIdx.x * blockDim.x + threadIdx.x 

GPU Computational kernel	



Index for Thread’s Data	



Kernel Indentifier	
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Vector Addition Example 

  cudaMalloc allocates space in the global  memory 

  cudaMemcpy copies from host to global memory over PCI 

float *d_A, *d_B, *d_C; 
cudaMalloc(&d_A, sizeof(float)*N); 
cudaMalloc(&d_B, sizeof(float)*N); 
cudaMalloc(&d_C, sizeof(float)*N); 

cudaMemcpy(d_A, A, sizeof(float)*N, HtoD); 
cudaMemcpy(d_B, B, sizeof(float)*N, HtoD); 

Initialize  
CUDA 

Allocate 
Buffers 

Copy 
Data 

Set Block, 
Grid Size 

Start 
Kernel 

Copy 
Results 
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Vector Addition Example 

  dim3 – A 3D Vector data type which is used to pass thread and 
block configuration 
  Natural way to invoke computation across the elements in a 

domain such as a vector, matrix, or volume.  

  Launch Kernel Call 

dim3 dimBlock(32,1); 
dim3 dimGrid(N/32,1); 

gpuArrayAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C); 

Initialize  
CUDA 

Allocate 
Buffers 

Copy 
Data 

Set Block, 
Grid Size 

Start 
Kernel 

Copy 
Results 
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Vector Addition Example 

  Read results back to host 

  Cleanup memory and end program 
  Our first CUDA program is finished  

 cudaMemcpy(C, d_C, sizeof(float)*N, DtoH);!

Initialize  
CUDA 

Allocate 
Buffers 

Copy 
Data 

Set Block, 
Grid Size 

Start 
Kernel 

Copy 
Results 
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Summary of Relevant Identifiers 
Philosophy: Minimal set of extensions necessary to expose architecture 

Function qualifiers: 
__global__ void MyKernel() { } 
__device__ float MyDeviceFunc() { } 

Variable qualifiers: 
__constant__ float MyConstantArray[32]; 
__shared__ float MySharedArray[32]; 

Execution configuration: 
dim3 dimGrid(100, 50); // 5000 thread blocks 
dim3 dimBlock(4, 8, 8); // 256 threads per block 

Kernel Launch 
MyKernel <<< dimGrid, dimBlock >>> (...); // Launch kernel 
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Vector Addition (GPU) 

Run kernel (on GPU)	



Copy results back to CPU	



Deallocate memory on GPU	



int main() {   
   int N = 4096; 
   float *A = (float *)malloc(sizeof(float)*N); init(A);       
   float *B = (float *)malloc(sizeof(float)*N); init(B);  
   float *C = (float *)malloc(sizeof(float)*N);  
   float *d_A, *d_B, *d_C;   
   cudaMalloc(&d_A, sizeof(float)*N); 
   cudaMalloc(&d_B, sizeof(float)*N); 
   cudaMalloc(&d_C, sizeof(float)*N); 

   cudaMemcpy(d_A, A, sizeof(float)*N, HtoD); 
   cudaMemcpy(d_B, B, sizeof(float)*N, HtoD); 
   dim3 dimBlock(32,1); 
   dim3 dimGrid(N/32,1); 

   gpuArrayAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C); 

   cudaMemcpy(C, d_C, sizeof(float)*N, DtoH); 

   cudaFree(d_A); 
   cudaFree(d_B); 
   cudaFree(d_C); 
   free(A); free(B); free(C); 

Allocate memory on GPU	



Initialize memory on GPU	



Configure threads	
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Global Memory Access in GPUs 

  Global memory accessed via 32, 64, or 128-byte transactions 

  No of transactions depend on size of data accessed by thread and 
distribution of the memory addresses across the threads 

  Coalescing: combining memory requests across threads into a single 
transaction 

__global__ void  
bad_kernel(float *x) 
{ 
 int tid = threadIdx.x + blockDim.x*blockIdx.x;  
x[1000*tid] = threadIdx.x; 
} 

__global__ void  
good_kernel(float *x) 
{ 
int tid = threadIdx.x + blockDim.x*blockIdx.x; 
x[tid] = threadIdx.x; 
} 

GOOD Access BAD Access 
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Coalescing Data Access 
  Memory access requirements between threads depend on compute 

capability of device 

  Memory accesses are handled per 16 or 32 threads 

  For devices of capability 2.x, memory transactions are cached 

  Data locality is exploited to reduce impact on throughput 
  Temporal locality:  data accessed is likely to be used in future,  

  Spatial locality: neighboring data is also likely to be reused  

  Distribution of addresses across threads to get coalescing is very 
inflexible for older devices (Pg 168 Progg. Guide v4.0) 
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Application 1: Image Rotation 
  Rotate an image by a given angle 

  A basic feature in image processing applications 

Original Input Image Rotated Output Image 
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Example 1 - Image Rotation 
  A common image processing routine  

  Applications in matching, alignment, etc. 

  New coordinates of (x1,y1) when rotated  by 
an angle Θ around (x0,y0) 

  By rotating about the origin (0,0) we get  

  

€ 

x2 = cos(θ) * (x1 − x0) − sin(θ) * (y1 − y0) + x0
y2 = sin(θ) * (x1 − x0) + cos(θ) * (y1 − y0) + x0

  

€ 

x2 = cos(θ) * (x1) − sin(θ) * (y1)
y2 = sin(θ) * (x1) + cos(θ) * (y1)

Original Image 

Rotated Image (90o) 



24 4/14/11 

Application 1: Image Rotation  
  What the application does: 

  Step 1. Compute a new location according to the rotation 
angle (trigonometric computation) 

  Step 2. Read the pixel value of original location 
  Step 3. Write the pixel value to the new location computed 

at Step 1 

  Create the same number of threads as the number of 
pixels 

  Each thread takes care of moving one pixel 
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Image Rotation 
  Input: To copy to device 

  Image (2D Matrix of floats) 
  Rotation parameters 
  Image dimensions 

  Output: From device 
  Rotated Image 
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Simplified Image Rotation Kernel 
__global__ void 
transformKernel( float* g_odata, float * d_idata, 
            int width, int height) 
{ 

    unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; 
    unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; 

   //! We could use normalized coordinates here if we 
   //! were using  textures 
   float u = x; float v = y; //Just a 90o flip 

   int new_y = int(tv); 
   int new_x = int(tu); 

    g_odata[ y*width + x] = d_idata[new_y * width +new_x]; 

} 
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Implementation Steps – Hands on 
  Copy image to device by enqueueing a write to a buffer on 

the device from the host 
  Decide the work group dimensions 
  Run the Image rotation  kernel on input image 
  We will use the provided Nvidia utilities for image handling 
  Copy output image to host by enqueueing a read from a 

buffer on the device 
  Look at Vector add for help and syntax 
  cp /sg 
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Compiling CUDA - C 

cudafe 

Open64 

host compiler runtime 

host 

gpu 

ptx* 

exe 

binary 

compile-time 

execution-time 

c for cuda 

driver 

  Nvidia CUDA Compiler (nvcc) 

  PTX passed as data to host  

  make verbose=1 for commands run 

  make keep=1 for intermediate files 
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Medusa Cluster – Nvidia Subsystem 
8 Tesla GPUs 

compute-0-8 

1 PCIe / S1070  

~ 8TFlops  in 3 U 
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Application 1: Image Rotation  
  Replace ??? in the skeleton with your own CUDA code 

  Add the cudaMalloc and the cudaMemcpy calls 

  Compile with Makefile and execute  

  Goals are 
  Understand how to use GPU for data parallelism 
  To know how to map threads to data 
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CUDA Abstractions 
  Millions of lightweight threads - Simple decomposition 
  Hierarchy of concurrent threads - Simple execution model 
  Later we will cover :- 

  Lightweight synchronization primitives 
  Simple synchronization model 

  Shared memory model for cooperating threads 
  Simple communication model 
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Input vs. Output Decomposition 
  Identify the data on which computations are performed 

  Partition data into sub-units 
  Partition can be as per the input, output or intermediate 

dimensions for different computations 

  Data partitioning induces one or more decompositions of the 
computation into tasks e.g., by using the owner computes 

  Input decomposition: Cases where we don’t know size of output (e.g. 
finding occurrences in a list) 

  Output decomposition: Cases where more than one element of the 
input is required (e.g. matrix multiplication) 
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Application 2: Matrix Multiplication 

for (int i=0; i < HC; i++) 
  for (int j=0; i < WC; j++) 
   for (int k=0; i < WA; k++) 
   C[i][j] += A[i][k] * B[k][j]; 
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Application 2: Matrix Multiplication 
  An O(n3) computation 

  C[i][j] computed in parallel 
  An output decomposition  

  Multiple I/P elements per O/P 

  No of threads = No of 
elements in C 

  Each thread works 
independently 
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Matrix Multiplication Kernel 
__global__ void  
matrixMul ( float * C, float * A, float * B, int wA, int wB)  { 

 //! matrixMul( float* C, float* A, float* B, int wA, int wB) 
 //! Each thread computes one element of C 
 //! by accumulating results into Cvalue  
  float Cvalue = 0; 
 //! Global index of thread calculated 
  int row =blockIdx.y *blockDim.y +threadIdx.y; 
  int col =blockIdx.x *blockDim.x +threadIdx.x;  
  int wC = wB; 

   
 //!Each thread reads its own data from global memory 
  for(int e = 0; e < wA; e++) 
      Cvalue +=   A[row * wA + e] * B[e * wB + col]; 
     C[row * wC + col] = Cvalue; 

} 
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Performance of Matrix Mul 
  Previous implementation – Poor Scaling - Why ?  

  No of operations  
  Per thread reads = (Row + Col)  

  Per thread computation = 2(Row + Col) 

  1 Mul and 1 Add per access 

  Redundant memory accesses 
  Each thread reads in whole row and whole column 

  How do we improve it ? And if its this bad, why discuss it ? 
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Matrix Multiplication Performance 
  Lets compare the shared memory 
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Example Takeaways 
  What have we learned through the two projects ? 
  Understood a massive parallel computing on GPU 
  Experienced what CUDA programming looks like 
  Understood how to decompose a simple problem 
  Experienced solving problem in massively parallel fashion 
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Steps Porting to CUDA 
  Create standalone C version  

  Multi-threaded CPU version 
(debugging, partitioning) 

  Simple CUDA version 

  Optimize CUDA version for 
underlying hardware 

  No reason why an application 
should have only 1 kernel 

  Use the right processor for the job 

Host 

Kernel 1 

Device 

Grid 1 

Block	
  
(0, 0) 

Block	
  
(1, 0) 

Block	
  
(2, 0) 

Block	
  
(0, 1) 

Block	
  
(1, 1) 

Block	
  
(2, 1) 

Kernel 2 
Grid 2 

Block	
  
(0, 0) 

Block	
  
(1, 0) 

Block	
  
(0, 2) 

Block	
  
(0, 1) 

Block	
  
(1, 1) 

Block	
  
(1, 2) 

S
eq

ue
nt

ia
l 

 C
od

e 



Break 
  GPGPU shared memory optimization  
  GPGPU Block Synchronization  
  Fermi Capabilities 
  Page-able and Page-locked memory 
  Warps and Occupancy 
  Histogram64 Example 
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GPU Memory Architecture 
  Examples have not discussed 

using shared memory  

  Critical for hiding high latency of 
global memory accesses 

  Shared memory provides almost 
single cycle access to data to 
each scalar core 
  Shared memory is banked 

  Usage rule of thumb: coalesce 
frequently accessed data 
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Trees have a very different 
number of apples on them? 

Heterogeneous Apple Picking – Recap… 
Different pickers ? 



43 4/14/11 

Extending Apple Picking – Again… 
  Lets sell the apples in the market 

  Pickers cant start pushing cart till ALL 
pickers have loaded their apples  
  Synchronization required within groups 

Bulk-Synchronous 
programming models 

Each cart can go to the  
market independently 

cart ~ shared memory/ block 
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Synchronization in CUDA 
  Threads within block may synchronize with barriers 

  Blocks coordinate via atomic memory operations 
  e.g., increment shared queue pointer with atomicInc() 

  Implicit barrier between dependent kernels (making apple juice) 

… Step 1 …!
__syncthreads();!
… Step 2 …!

vec_minus<<<nblocks, blksize>>>(a, b, c);!
vec_dot<<<nblocks, blksize>>>(c, c);!
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Matrix Multiplication - Blocked 
  Why look at matrix mul again ? 

  Gets annoying 

  Previous implementation was 
bad - Repetitive reads 

  Each thread worked 
independently 

  Reuse data read by each thread 

  Inter thread-locality in 
access of both A and B 

  Blocking is known in linear 
algebra for 20+ years 
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Matrix Multiplication - Blocked 
  Shared memory optimization 

  Store per-block matrices (As and 
Bs)  

  Shared memory is faster 

  Synchronization in CUDA -  
Selling apple analogy 

  Each thread reads in a piece of 
data 
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Matrix Multiplication - Blocked 
__global__ void matrixMul( float* C, float* A, float* B,  
int wA, int wB) 
{ 
int bx = blockIdx.x;    int by = blockIdx.y; 
int tx = threadIdx.x;   int ty = threadIdx.y; 

// Index of the first sub-matrix of A processed by the block 
int aBegin = wA * BLOCK_SIZE * by; 
int aEnd   = aBegin + wA – 1; 
int aStep  = BLOCK_SIZE; 

// Index of the first sub-matrix of B processed by the block 
int bBegin = BLOCK_SIZE * bx; 
int bStep  = BLOCK_SIZE * wB; 

float Csub = 0; 

Step size used to iterate through 
the sub-matrices of B 

Step size used to iterate 
through the sub-matrices of A 

Running Sum of result of 
each thread 
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Matrix Multiplication - Blocked 
for (int a = aBegin, b = bBegin; a <= aEnd;     
     a += aStep, b += bStep)  { 

__shared__ float As [BLOCK_SIZE] [BLOCK_SIZE]; 
__shared__ float Bs [BLOCK_SIZE] [BLOCK_SIZE]; 

AS(ty, tx) = A[a + wA * ty + tx]; 
BS(ty, tx) = B[b + wB * ty + tx]; 

for (int k = 0; k < BLOCK_SIZE; ++k) 
Csub += AS(ty, k) * BS(k, tx); 

// Write the block sub-matrix to device memory; 
// each thread writes one element 
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; 
C[c + wB * ty + tx] = Csub; 
} 

Multiply the two matrices together; 
each thread computes one 
element of the block sub-matrix 

Declaration of the shared 
memory array used to store 
submatrix 

Load matrices from device to 
shared memory; thread loads 
one element 

Loop over  sub-matrices of A & B 
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Matrix Multiplication - Blocked 
for (int a = aBegin, b = bBegin; a <= aEnd;     
     a += aStep, b += bStep)  { 

__shared__ float As [BLOCK_SIZE] [BLOCK_SIZE]; 
__shared__ float Bs [BLOCK_SIZE] [BLOCK_SIZE]; 

AS(ty, tx) = A[a + wA * ty + tx]; 
BS(ty, tx) = B[b + wB * ty + tx]; 

for (int k = 0; k < BLOCK_SIZE; ++k) 
Csub += AS(ty, k) * BS(k, tx); 

// Write the block sub-matrix to device memory; 
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; 
    C[c + wB * ty + tx] = Csub; 

} 

Make sure the matrices are loaded 

Make sure that the preceding 
computation is done before loading 
two new sub-matrices of A and B in 
the next iteration 

__syncthreads(); 

__syncthreads(); 

Spot the Race in the for loop 
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Application 2: Matrix Multiplication 
  Hands-on performance comparison 

  For a MxN matrix 
  Count no of global reads / thread 

  Count no of global writes / thread 

  Compare blocking vs non blocking performance 

  You can use the CUDA visual profiler later to count the number of 
memory accesses. 
  Note: they may not be the same because of coalescing 
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Matrix Multiplication Performance 
  Lets compare the shared memory 
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Textures and Images 
  Textures are allocated in global memory 

and cached. 
  Cache size ~6-8KB per mp, 

  Optimized for 2D locality in accesses 

  Constant memory is also cached 

  Use to optimize the image rotation 
example 
  Uncoalesced reads from global memory 
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Hands On – Try simpletexture 
  Defined at file scope as a type texture: 

texture<Type, Dim, ReadMode> mytex; 

  Textures are referenced using floating-
point coordinates in the range [0, N) or if 
normalized [0,1.0). 

  Addressing mode can be  

  Clamped, 1.25 -> 1.0 in [0,1.0) or 

  Wrapped, eg 1.25 -> 0.25 

  Value returned can be a single element or 
a interpolated value Texture Memory 
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Warps and Occupancy 
  Multiprocessor creates and 

executes threads in groups of 32 
parallel threads called warps. 

  Threads in a warp start at the 
same program address 
  Have individual instruction 

and register state  
  Free to branch and execute 

independently 

  Enables more applications (See 
Histogram256) 
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Using the Occupancy Calculator 
  The fact that all instructions in a warp execute together in lock 

step can be used to our advantage 
  NOTE: Warps are not part of the CUDA language definition 

  Cost of warp divergence = sum of if + sum of else block 

  Occupancy is the ratio of active warps to the maximum number 
supported on a multiprocessor of the GPU 

  Determines how efficient the kernel will be on the GPU . 

  Get statistics for occupancy calculator with make keep=1!
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Using the Occupancy Calculator 
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Occupancy Tradeoffs 
  Occupancy is an empirical measure  

  A last order optimization step and device dependent 

  More threads / block 

  Benefits – Helps compute bound workloads (rare for GPUs) 

  Drawbacks – Reduces number of registers per thread and shared 
memory per block, less blocks to hide latency 

  Optimum threads / block 
  IO bound workload has just enough warps to switch with 
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Experiment with Occupancy 
  Download excel file from course web page 

  http://developer.nvidia.com/cuda-downloads 

  Occupancy is not a performance counter, it is simply a ratio  

  Try with non blocking and blocking matrix multiplication 
  Choose one data set 

  Note: press ‘0’ when verification is not needed  

  Vary number of threads per block 



End – Class II 



Note: The Next lecture should  
 be covering material below  
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Nvidia Fermi 
  Compute 2.0 / 2.1 devices 

  Better double precision 

  ECC support  

  Configurable cache hierarchy  

  Faster context switching 

  Faster atomic operations 

  Concurrent kernel execution 

  Dual DMA Engines 
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Nvidia Fermi Features 
  Everything discussed till now is 

still relevant  

  ECC support - Data-sensitive 
applications 

  Configurable Cache Hierarchy   
  Implementations unable to 

use shared memory 

  Faster Context Switching 

  Application graphics and 
compute interoperation 
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Concurrent Kernel Execution 
  Concurrent Kernel Operation - Enables smaller data sets 

Requires knowledge of CUDA Stream API 
More than enough rope provided to hang yourself 
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Eowyn – Fermi System 
  My personal system at NEU 

  Dell XPS Gaming Platform  
  GTX-480 

PCI Bus 
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Host – Device Interaction 
  An application dependent optimization space  

  Page-locked Memory 
  Asynchronous host – device Application IO 

  Used commonly in medical imaging where data is 
continuously fed to device 

  Use CUDA stream’s asynchronous API 
  Divide application into multiple kernels and keep data on device 

  This often means coding non data parallel or inefficient 
kernels to avoid IO 
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Pinned Memory Optimization 
  Page-able vs. Page-locked memory 

  Locked pages will not be swapped 
out to disk by the OS  

  Allocate using cudamallochost 

  Fermi + CUDA 4.0 provides non-
copy pinning 

Host 
Memory 

GPU Device 
Memory 

Pcie 2Gbps 

cuMemCpy 

Host 
Memory 

GPU Device 
Memory 

Pcie  ~4Gbps 

cuMemCpy 

Page Locked 
Memory 

memcpy 

~8Gbps 

Note: excess page locking 
affects system performance  
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Performance of Page-locked Memory 
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Tested using CUDA SDK 
example bandwidth test 



68 4/14/11 

Performance of Page-locked Memory 
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Tested using CUDA SDK 
example bandwidth test 
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Device Query & Bandwidth Test 

Useful tools to check your setup 
configuration and learn about device  
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Application: Histogram64 
  64 bin histogram of data 

  Build per thread subhistogram 
  Build per block sub histogram 

  Homework :- Try Histogram256 
using local memory atomics 

for (int  i = 0; i < BIN_COUNT; i++) 
 result[i] = 0; 

for (int  i = 0; i < dataN; i++) 
 result[data[i]]++; 

An example Image Histogram 
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Implementation of Histogram 
  Kernel 1: Build per block 

histogram from per thread 
histogram 

  Per thread histogram in 
shared memory 

  Reduce to block histogram 

  Kernel 2: Combine block 
histograms into final histogram 
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Histogram64 Kernel1 
  Main Implementation Steps: 

  Initialization of shared memory to 0 is important 
  Make per thread histogram 

  Use 64 threads per block to aggregate per thread into a per-block 
histogram 

  Note: Synchronization after per thread histograms is made 

  Also use short data types for the thread histograms 

  Later optimization step done in CUDA SDK to remove bank conflicts is 
left for future discussion 
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Optimizations in Histogram64 
  A simplified version of the Histogram64 kernel is provided 

  Optimizations Include 
  Using shared memory 

  Build per block histogram using data gathered by each thread 

  Group 8 bit reads into a 32 bit read 
  As discussed coalescing: needs 32 bit transactions atleast 

  Provided implementation includes bank conflicts in shared memory 
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Summary 
  We have studied the architecture of CUDA capable Nvidia 

GPUs 
  We have seen the basics of CUDA and the relationship 

between the architecture and the programming model 
  We have decomposed a data parallel algorithm 
  We have used different architectural features of the GPU 

like shared and texture memory 
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Summary 
  We have optimized  host-device interaction using pinned 

memory 
  CUDA is a powerful parallel programming model 

  Heterogeneous - mixed serial-parallel programming 
  Scalable - hierarchical thread execution model 
  Accessible - minimal but expressive changes to C 
  Interoperable - simple graphics interop mechanisms 
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Summarizing Today’s Programming 
  Array addition, Devicequery and BandwidthTest: Basic CUDA 

programming, host - device code 

  Image Rotation:  

  Flipping: 2D Data Mapping 

  Image rotation extension: using texture memory 

  Matrix Multiplication:  

  Naïve: Blocks and threads, coalescing data reads 
  Blocking: Using Shared memory and synchronization in blocks 

  Histogram64: Using shared memory to buffer data 
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Nvidia - CUDA Ecosystem - Today 
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Productivity Tools Based on CUDA 
  Thrust - A STL – like library for CUDA 

  Linear Algebra and Mathematical Routines 
  CUBLAS and CURAND 

  MAGMA and CULA-Tools provide LAPACK 

  CUSP – CUDA Sparse Algebra 

  CUFFT – FFTW for GPUs 

  NPP: Performance Primitives – Video processing 

  Sections of OpenCV 
green = Nvidia  product 
bold = open source 
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Programming Tools for CUDA 
Solution Approach Availability 
CUDA C Runtime  Language Integration NVIDIA CUDA Toolkit 
Fortran Auto Parallelization PGI Accelerator 
OpenCL Device-Level API Khronos standard   
DirectCompute Device-Level API Microsoft  
PyCUDA API Bindings Open source 
jCUDA API Bindings Freely Available   
CUDA.NET API Bindings Freely Available 
OpenCL.NET API Bindings Freely Available 
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Next Class (4/28) 
  More advanced CUDA 

  Performance Tools – Using the CUDA Visual Profiler 
  Debugging Techniques – Using cuda-gdb 

  Let us know any particular areas of focus you would like 
  Look at the SDK examples for topics you are interested in 
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More information and References 
  NVIDIA GPU Computing Developer Home Page  

  http://developer.nvidia.com/object/gpucomputing.html 

  CUDA Download  

  http://developer.nvidia.com/object/cuda_4_0_downloads.html 

  Programming Massively Parallel Processors: A Hands-on Approach, 
David B. Kirk and Wen-mei W. Hwu 

  Other resources 
  http://courses.engr.illinois.edu/ece498/al/ 
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More information and References 
  Beyond Programmable Shading – David Leubke 

  Decomposition Techniques for Parallel Programming – Vivek 
Sarkar 

  CUDA Textures & Image Registration - Richard Ansorge 

  Setting up CUDA within Windows Visual Studio 
  http://www.ademiller.com/blogs/tech/2011/03/using-cuda-

and-thrust-with-visual-studio-2010/ 

  SDK examples: Histogram64, Matmul, SimpleTextures 



Thank You !  
Questions, Comments ? 

Perhaad Mistry 
pmistry@ece.neu.edu 


