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Topics – Lecture 2 
  Review of Lecture 1 and introduction to GPU Computing 

  Overview of GPU Architecture 

  Nvidia CUDA Syntax 

  Basic CUDA optimization steps 

  Nvidia Fermi 

  Kernel optimizations  and host – device IO   

  Pointers to useful CUDA tools 

  Conclusions and Discussion 
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Motivation to study CUDA 

Source: NVIDIA 

T12 - Fermi 

GT200 - 285 

G80  

Westmere 3GHz – Xeon 
Quadcore 3GHz – Core2 

Duo 
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Motivation to study CUDA 
T12 - Fermi 

GT200 - 285 

G80  

Westmere 3GHz – Xeon 
Quadcore 3GHz – Core2 

Duo 

Source: NVIDIA 

Theoretical Peaks Don’t matter Much 
How do you write an application that performs well ?? 
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CPU vs GPU Architectures 

Irregular data accesses 
More cache + Control 
Focus on per thread performance 

Regular data accesses 
More ALUs and massively parallel 
Throughput oriented 
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The System 
CPU 
(host) GPU w/  

local DRAM 
(device) 

MCH: Memory Controller Hub 

ICH: I/O Controller Hub 

DDR: Double Data Rate 
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Nvidia GPU Compute Architecture  
  Compute Unified Device Architecture 

  Hierarchical architecture 
  A device contains many 

multiprocessors 

  Many scalar “cuda cores” per 
multiprocessor (32 for Fermi) 

  Single instruction issue unit 

  Many memory spaces 
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GPU Memory Architecture 
  Device Memory (GDDR): 

  Large memory with a high 
bandwidth link to multiprocessor 

  Registers on chip (~16k) 

  Shared memory ( on chip) 
  Shared between scalar cores 

  Low latency and banked 

  Constant and texture memory  

  Read only and cached 
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A “Transparently” Scalable Architecture 

Same program will be 
scalable across devices 

The CUDA programming 
model maps easily to 
underlying architecture 
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Array Addition (CPU) 
void arrayAdd(float *A, float *B, float *C, int N) { 
   for(int i = 0; i < N; i++) 
      C[i] = A[i] + B[i]; 
} 

int main() { 
   int N = 4096; 
   float *A = (float *)malloc(sizeof(float)*N);       
   float *B = (float *)malloc(sizeof(float)*N);    
   float *C = (float *)malloc(sizeof(float)*N); 

   init(A); init(B);  

   arrayAdd(A, B, C, N); 

   free(A); free(B); free(C); 
} 

Computational kernel	


Allocate memory	


Initialize memory	


Deallocate memory	
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CUDA Programming – High Level View 
  Initialize the GPU – done implicitly in CUDA 
  Allocate Data on GPU 
  Transfer data from CPU to GPU 
  Decide how many threads and blocks  
  Run the GPU program 
  Transfer back the results from GPU to CPU 
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CUDA terminology 
  A Kernel is the computation 

offloaded to GPUs 

  The kernel is executed by a grid 
of threads 

  Threads are grouped into blocks 
which execute independently 

  Each thread has a unique ID 
within the block 

  Each block has a unique ID 

Host 

Kernel 1 

Device 

Block (1, 1) 

Thread 
(0,1,0
) 

Thread 
(1,1,0
) 

Thread 
(2,1,0
) 

Thread 
(3,1,0
) 

Thread 
(0,0,0
) 

Thread 
(1,0,0
) 

Thread 
(2,0,0
) 

Thread 
(3,0,0
) 

(0,0,1
) 

(1,0,1
) 

(2,0,1
) 

(3,0,1
) 

Grid 1 

Block	  
(0, 0) 

Block	  
(1, 0) 

Block	  
(2, 0) 

Block	  
(0, 1) 

Block	  
(1, 1) 

Block	  
(2, 1) 
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Array Addition (GPU) 
__global__ 

void gpuArrayAdd(float *A, float *B, float *C) { 

   int tid = blockIdx.x * blockDim.x + threadIdx.x;   
   C[tid] = A[tid] + B[tid]; 
} 

(0,0) (1,0) (2,0) ... (31,0) 

(0,0) 
...	


GRID	


BLOCK	


(0,0) (1,0) (2,0) ... (31,0) 

(1,0) BLOCK	


threadIdx.x	
blockIdx.x	


blockDim.x = 32	

tid = blockIdx.x * blockDim.x + threadIdx.x 

GPU Computational kernel	


Index for Thread’s Data	


Kernel Indentifier	
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Vector Addition Example 

  cudaMalloc allocates space in the global  memory 

  cudaMemcpy copies from host to global memory over PCI 

float *d_A, *d_B, *d_C; 
cudaMalloc(&d_A, sizeof(float)*N); 
cudaMalloc(&d_B, sizeof(float)*N); 
cudaMalloc(&d_C, sizeof(float)*N); 

cudaMemcpy(d_A, A, sizeof(float)*N, HtoD); 
cudaMemcpy(d_B, B, sizeof(float)*N, HtoD); 

Initialize  
CUDA 

Allocate 
Buffers 

Copy 
Data 

Set Block, 
Grid Size 

Start 
Kernel 

Copy 
Results 
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Vector Addition Example 

  dim3 – A 3D Vector data type which is used to pass thread and 
block configuration 
  Natural way to invoke computation across the elements in a 

domain such as a vector, matrix, or volume.  

  Launch Kernel Call 

dim3 dimBlock(32,1); 
dim3 dimGrid(N/32,1); 

gpuArrayAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C); 

Initialize  
CUDA 

Allocate 
Buffers 

Copy 
Data 

Set Block, 
Grid Size 

Start 
Kernel 

Copy 
Results 
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Vector Addition Example 

  Read results back to host 

  Cleanup memory and end program 
  Our first CUDA program is finished  

 cudaMemcpy(C, d_C, sizeof(float)*N, DtoH);!

Initialize  
CUDA 

Allocate 
Buffers 

Copy 
Data 

Set Block, 
Grid Size 

Start 
Kernel 

Copy 
Results 
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Summary of Relevant Identifiers 
Philosophy: Minimal set of extensions necessary to expose architecture 

Function qualifiers: 
__global__ void MyKernel() { } 
__device__ float MyDeviceFunc() { } 

Variable qualifiers: 
__constant__ float MyConstantArray[32]; 
__shared__ float MySharedArray[32]; 

Execution configuration: 
dim3 dimGrid(100, 50); // 5000 thread blocks 
dim3 dimBlock(4, 8, 8); // 256 threads per block 

Kernel Launch 
MyKernel <<< dimGrid, dimBlock >>> (...); // Launch kernel 
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Vector Addition (GPU) 

Run kernel (on GPU)	


Copy results back to CPU	


Deallocate memory on GPU	


int main() {   
   int N = 4096; 
   float *A = (float *)malloc(sizeof(float)*N); init(A);       
   float *B = (float *)malloc(sizeof(float)*N); init(B);  
   float *C = (float *)malloc(sizeof(float)*N);  
   float *d_A, *d_B, *d_C;   
   cudaMalloc(&d_A, sizeof(float)*N); 
   cudaMalloc(&d_B, sizeof(float)*N); 
   cudaMalloc(&d_C, sizeof(float)*N); 

   cudaMemcpy(d_A, A, sizeof(float)*N, HtoD); 
   cudaMemcpy(d_B, B, sizeof(float)*N, HtoD); 
   dim3 dimBlock(32,1); 
   dim3 dimGrid(N/32,1); 

   gpuArrayAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C); 

   cudaMemcpy(C, d_C, sizeof(float)*N, DtoH); 

   cudaFree(d_A); 
   cudaFree(d_B); 
   cudaFree(d_C); 
   free(A); free(B); free(C); 

Allocate memory on GPU	


Initialize memory on GPU	


Configure threads	
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Global Memory Access in GPUs 

  Global memory accessed via 32, 64, or 128-byte transactions 

  No of transactions depend on size of data accessed by thread and 
distribution of the memory addresses across the threads 

  Coalescing: combining memory requests across threads into a single 
transaction 

__global__ void  
bad_kernel(float *x) 
{ 
 int tid = threadIdx.x + blockDim.x*blockIdx.x;  
x[1000*tid] = threadIdx.x; 
} 

__global__ void  
good_kernel(float *x) 
{ 
int tid = threadIdx.x + blockDim.x*blockIdx.x; 
x[tid] = threadIdx.x; 
} 

GOOD Access BAD Access 



21 4/14/11 

Coalescing Data Access 
  Memory access requirements between threads depend on compute 

capability of device 

  Memory accesses are handled per 16 or 32 threads 

  For devices of capability 2.x, memory transactions are cached 

  Data locality is exploited to reduce impact on throughput 
  Temporal locality:  data accessed is likely to be used in future,  

  Spatial locality: neighboring data is also likely to be reused  

  Distribution of addresses across threads to get coalescing is very 
inflexible for older devices (Pg 168 Progg. Guide v4.0) 
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Application 1: Image Rotation 
  Rotate an image by a given angle 

  A basic feature in image processing applications 

Original Input Image Rotated Output Image 
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Example 1 - Image Rotation 
  A common image processing routine  

  Applications in matching, alignment, etc. 

  New coordinates of (x1,y1) when rotated  by 
an angle Θ around (x0,y0) 

  By rotating about the origin (0,0) we get  

  

€ 

x2 = cos(θ) * (x1 − x0) − sin(θ) * (y1 − y0) + x0
y2 = sin(θ) * (x1 − x0) + cos(θ) * (y1 − y0) + x0

  

€ 

x2 = cos(θ) * (x1) − sin(θ) * (y1)
y2 = sin(θ) * (x1) + cos(θ) * (y1)

Original Image 

Rotated Image (90o) 
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Application 1: Image Rotation  
  What the application does: 

  Step 1. Compute a new location according to the rotation 
angle (trigonometric computation) 

  Step 2. Read the pixel value of original location 
  Step 3. Write the pixel value to the new location computed 

at Step 1 

  Create the same number of threads as the number of 
pixels 

  Each thread takes care of moving one pixel 
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Image Rotation 
  Input: To copy to device 

  Image (2D Matrix of floats) 
  Rotation parameters 
  Image dimensions 

  Output: From device 
  Rotated Image 
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Simplified Image Rotation Kernel 
__global__ void 
transformKernel( float* g_odata, float * d_idata, 
            int width, int height) 
{ 

    unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; 
    unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; 

   //! We could use normalized coordinates here if we 
   //! were using  textures 
   float u = x; float v = y; //Just a 90o flip 

   int new_y = int(tv); 
   int new_x = int(tu); 

    g_odata[ y*width + x] = d_idata[new_y * width +new_x]; 

} 
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Implementation Steps – Hands on 
  Copy image to device by enqueueing a write to a buffer on 

the device from the host 
  Decide the work group dimensions 
  Run the Image rotation  kernel on input image 
  We will use the provided Nvidia utilities for image handling 
  Copy output image to host by enqueueing a read from a 

buffer on the device 
  Look at Vector add for help and syntax 
  cp /sg 
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Compiling CUDA - C 

cudafe 

Open64 

host compiler runtime 

host 

gpu 

ptx* 

exe 

binary 

compile-time 

execution-time 

c for cuda 

driver 

  Nvidia CUDA Compiler (nvcc) 

  PTX passed as data to host  

  make verbose=1 for commands run 

  make keep=1 for intermediate files 
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Medusa Cluster – Nvidia Subsystem 
8 Tesla GPUs 

compute-0-8 

1 PCIe / S1070  

~ 8TFlops  in 3 U 



30 4/14/11 

Application 1: Image Rotation  
  Replace ??? in the skeleton with your own CUDA code 

  Add the cudaMalloc and the cudaMemcpy calls 

  Compile with Makefile and execute  

  Goals are 
  Understand how to use GPU for data parallelism 
  To know how to map threads to data 
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CUDA Abstractions 
  Millions of lightweight threads - Simple decomposition 
  Hierarchy of concurrent threads - Simple execution model 
  Later we will cover :- 

  Lightweight synchronization primitives 
  Simple synchronization model 

  Shared memory model for cooperating threads 
  Simple communication model 
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Input vs. Output Decomposition 
  Identify the data on which computations are performed 

  Partition data into sub-units 
  Partition can be as per the input, output or intermediate 

dimensions for different computations 

  Data partitioning induces one or more decompositions of the 
computation into tasks e.g., by using the owner computes 

  Input decomposition: Cases where we don’t know size of output (e.g. 
finding occurrences in a list) 

  Output decomposition: Cases where more than one element of the 
input is required (e.g. matrix multiplication) 
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Application 2: Matrix Multiplication 

for (int i=0; i < HC; i++) 
  for (int j=0; i < WC; j++) 
   for (int k=0; i < WA; k++) 
   C[i][j] += A[i][k] * B[k][j]; 
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Application 2: Matrix Multiplication 
  An O(n3) computation 

  C[i][j] computed in parallel 
  An output decomposition  

  Multiple I/P elements per O/P 

  No of threads = No of 
elements in C 

  Each thread works 
independently 
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Matrix Multiplication Kernel 
__global__ void  
matrixMul ( float * C, float * A, float * B, int wA, int wB)  { 

 //! matrixMul( float* C, float* A, float* B, int wA, int wB) 
 //! Each thread computes one element of C 
 //! by accumulating results into Cvalue  
  float Cvalue = 0; 
 //! Global index of thread calculated 
  int row =blockIdx.y *blockDim.y +threadIdx.y; 
  int col =blockIdx.x *blockDim.x +threadIdx.x;  
  int wC = wB; 

   
 //!Each thread reads its own data from global memory 
  for(int e = 0; e < wA; e++) 
      Cvalue +=   A[row * wA + e] * B[e * wB + col]; 
     C[row * wC + col] = Cvalue; 

} 
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Performance of Matrix Mul 
  Previous implementation – Poor Scaling - Why ?  

  No of operations  
  Per thread reads = (Row + Col)  

  Per thread computation = 2(Row + Col) 

  1 Mul and 1 Add per access 

  Redundant memory accesses 
  Each thread reads in whole row and whole column 

  How do we improve it ? And if its this bad, why discuss it ? 
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Matrix Multiplication Performance 
  Lets compare the shared memory 
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Example Takeaways 
  What have we learned through the two projects ? 
  Understood a massive parallel computing on GPU 
  Experienced what CUDA programming looks like 
  Understood how to decompose a simple problem 
  Experienced solving problem in massively parallel fashion 
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Steps Porting to CUDA 
  Create standalone C version  

  Multi-threaded CPU version 
(debugging, partitioning) 

  Simple CUDA version 

  Optimize CUDA version for 
underlying hardware 

  No reason why an application 
should have only 1 kernel 

  Use the right processor for the job 

Host 

Kernel 1 

Device 

Grid 1 

Block	  
(0, 0) 

Block	  
(1, 0) 

Block	  
(2, 0) 

Block	  
(0, 1) 

Block	  
(1, 1) 

Block	  
(2, 1) 

Kernel 2 
Grid 2 

Block	  
(0, 0) 

Block	  
(1, 0) 

Block	  
(0, 2) 

Block	  
(0, 1) 

Block	  
(1, 1) 

Block	  
(1, 2) 

S
eq

ue
nt

ia
l 

 C
od

e 



Break 
  GPGPU shared memory optimization  
  GPGPU Block Synchronization  
  Fermi Capabilities 
  Page-able and Page-locked memory 
  Warps and Occupancy 
  Histogram64 Example 
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GPU Memory Architecture 
  Examples have not discussed 

using shared memory  

  Critical for hiding high latency of 
global memory accesses 

  Shared memory provides almost 
single cycle access to data to 
each scalar core 
  Shared memory is banked 

  Usage rule of thumb: coalesce 
frequently accessed data 
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Trees have a very different 
number of apples on them? 

Heterogeneous Apple Picking – Recap… 
Different pickers ? 
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Extending Apple Picking – Again… 
  Lets sell the apples in the market 

  Pickers cant start pushing cart till ALL 
pickers have loaded their apples  
  Synchronization required within groups 

Bulk-Synchronous 
programming models 

Each cart can go to the  
market independently 

cart ~ shared memory/ block 
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Synchronization in CUDA 
  Threads within block may synchronize with barriers 

  Blocks coordinate via atomic memory operations 
  e.g., increment shared queue pointer with atomicInc() 

  Implicit barrier between dependent kernels (making apple juice) 

… Step 1 …!
__syncthreads();!
… Step 2 …!

vec_minus<<<nblocks, blksize>>>(a, b, c);!
vec_dot<<<nblocks, blksize>>>(c, c);!
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Matrix Multiplication - Blocked 
  Why look at matrix mul again ? 

  Gets annoying 

  Previous implementation was 
bad - Repetitive reads 

  Each thread worked 
independently 

  Reuse data read by each thread 

  Inter thread-locality in 
access of both A and B 

  Blocking is known in linear 
algebra for 20+ years 
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Matrix Multiplication - Blocked 
  Shared memory optimization 

  Store per-block matrices (As and 
Bs)  

  Shared memory is faster 

  Synchronization in CUDA -  
Selling apple analogy 

  Each thread reads in a piece of 
data 
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Matrix Multiplication - Blocked 
__global__ void matrixMul( float* C, float* A, float* B,  
int wA, int wB) 
{ 
int bx = blockIdx.x;    int by = blockIdx.y; 
int tx = threadIdx.x;   int ty = threadIdx.y; 

// Index of the first sub-matrix of A processed by the block 
int aBegin = wA * BLOCK_SIZE * by; 
int aEnd   = aBegin + wA – 1; 
int aStep  = BLOCK_SIZE; 

// Index of the first sub-matrix of B processed by the block 
int bBegin = BLOCK_SIZE * bx; 
int bStep  = BLOCK_SIZE * wB; 

float Csub = 0; 

Step size used to iterate through 
the sub-matrices of B 

Step size used to iterate 
through the sub-matrices of A 

Running Sum of result of 
each thread 
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Matrix Multiplication - Blocked 
for (int a = aBegin, b = bBegin; a <= aEnd;     
     a += aStep, b += bStep)  { 

__shared__ float As [BLOCK_SIZE] [BLOCK_SIZE]; 
__shared__ float Bs [BLOCK_SIZE] [BLOCK_SIZE]; 

AS(ty, tx) = A[a + wA * ty + tx]; 
BS(ty, tx) = B[b + wB * ty + tx]; 

for (int k = 0; k < BLOCK_SIZE; ++k) 
Csub += AS(ty, k) * BS(k, tx); 

// Write the block sub-matrix to device memory; 
// each thread writes one element 
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; 
C[c + wB * ty + tx] = Csub; 
} 

Multiply the two matrices together; 
each thread computes one 
element of the block sub-matrix 

Declaration of the shared 
memory array used to store 
submatrix 

Load matrices from device to 
shared memory; thread loads 
one element 

Loop over  sub-matrices of A & B 
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Matrix Multiplication - Blocked 
for (int a = aBegin, b = bBegin; a <= aEnd;     
     a += aStep, b += bStep)  { 

__shared__ float As [BLOCK_SIZE] [BLOCK_SIZE]; 
__shared__ float Bs [BLOCK_SIZE] [BLOCK_SIZE]; 

AS(ty, tx) = A[a + wA * ty + tx]; 
BS(ty, tx) = B[b + wB * ty + tx]; 

for (int k = 0; k < BLOCK_SIZE; ++k) 
Csub += AS(ty, k) * BS(k, tx); 

// Write the block sub-matrix to device memory; 
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; 
    C[c + wB * ty + tx] = Csub; 

} 

Make sure the matrices are loaded 

Make sure that the preceding 
computation is done before loading 
two new sub-matrices of A and B in 
the next iteration 

__syncthreads(); 

__syncthreads(); 

Spot the Race in the for loop 
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Application 2: Matrix Multiplication 
  Hands-on performance comparison 

  For a MxN matrix 
  Count no of global reads / thread 

  Count no of global writes / thread 

  Compare blocking vs non blocking performance 

  You can use the CUDA visual profiler later to count the number of 
memory accesses. 
  Note: they may not be the same because of coalescing 
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Matrix Multiplication Performance 
  Lets compare the shared memory 
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Textures and Images 
  Textures are allocated in global memory 

and cached. 
  Cache size ~6-8KB per mp, 

  Optimized for 2D locality in accesses 

  Constant memory is also cached 

  Use to optimize the image rotation 
example 
  Uncoalesced reads from global memory 
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Hands On – Try simpletexture 
  Defined at file scope as a type texture: 

texture<Type, Dim, ReadMode> mytex; 

  Textures are referenced using floating-
point coordinates in the range [0, N) or if 
normalized [0,1.0). 

  Addressing mode can be  

  Clamped, 1.25 -> 1.0 in [0,1.0) or 

  Wrapped, eg 1.25 -> 0.25 

  Value returned can be a single element or 
a interpolated value Texture Memory 
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Warps and Occupancy 
  Multiprocessor creates and 

executes threads in groups of 32 
parallel threads called warps. 

  Threads in a warp start at the 
same program address 
  Have individual instruction 

and register state  
  Free to branch and execute 

independently 

  Enables more applications (See 
Histogram256) 
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Using the Occupancy Calculator 
  The fact that all instructions in a warp execute together in lock 

step can be used to our advantage 
  NOTE: Warps are not part of the CUDA language definition 

  Cost of warp divergence = sum of if + sum of else block 

  Occupancy is the ratio of active warps to the maximum number 
supported on a multiprocessor of the GPU 

  Determines how efficient the kernel will be on the GPU . 

  Get statistics for occupancy calculator with make keep=1!
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Using the Occupancy Calculator 
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Occupancy Tradeoffs 
  Occupancy is an empirical measure  

  A last order optimization step and device dependent 

  More threads / block 

  Benefits – Helps compute bound workloads (rare for GPUs) 

  Drawbacks – Reduces number of registers per thread and shared 
memory per block, less blocks to hide latency 

  Optimum threads / block 
  IO bound workload has just enough warps to switch with 
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Experiment with Occupancy 
  Download excel file from course web page 

  http://developer.nvidia.com/cuda-downloads 

  Occupancy is not a performance counter, it is simply a ratio  

  Try with non blocking and blocking matrix multiplication 
  Choose one data set 

  Note: press ‘0’ when verification is not needed  

  Vary number of threads per block 



End – Class II 



Note: The Next lecture should  
 be covering material below  
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Nvidia Fermi 
  Compute 2.0 / 2.1 devices 

  Better double precision 

  ECC support  

  Configurable cache hierarchy  

  Faster context switching 

  Faster atomic operations 

  Concurrent kernel execution 

  Dual DMA Engines 
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Nvidia Fermi Features 
  Everything discussed till now is 

still relevant  

  ECC support - Data-sensitive 
applications 

  Configurable Cache Hierarchy   
  Implementations unable to 

use shared memory 

  Faster Context Switching 

  Application graphics and 
compute interoperation 
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Concurrent Kernel Execution 
  Concurrent Kernel Operation - Enables smaller data sets 

Requires knowledge of CUDA Stream API 
More than enough rope provided to hang yourself 
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Eowyn – Fermi System 
  My personal system at NEU 

  Dell XPS Gaming Platform  
  GTX-480 

PCI Bus 
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Host – Device Interaction 
  An application dependent optimization space  

  Page-locked Memory 
  Asynchronous host – device Application IO 

  Used commonly in medical imaging where data is 
continuously fed to device 

  Use CUDA stream’s asynchronous API 
  Divide application into multiple kernels and keep data on device 

  This often means coding non data parallel or inefficient 
kernels to avoid IO 
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Pinned Memory Optimization 
  Page-able vs. Page-locked memory 

  Locked pages will not be swapped 
out to disk by the OS  

  Allocate using cudamallochost 

  Fermi + CUDA 4.0 provides non-
copy pinning 

Host 
Memory 

GPU Device 
Memory 

Pcie 2Gbps 

cuMemCpy 

Host 
Memory 

GPU Device 
Memory 

Pcie  ~4Gbps 

cuMemCpy 

Page Locked 
Memory 

memcpy 

~8Gbps 

Note: excess page locking 
affects system performance  



67 4/14/11 

Performance of Page-locked Memory 
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Performance of Page-locked Memory 
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Device Query & Bandwidth Test 

Useful tools to check your setup 
configuration and learn about device  
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Application: Histogram64 
  64 bin histogram of data 

  Build per thread subhistogram 
  Build per block sub histogram 

  Homework :- Try Histogram256 
using local memory atomics 

for (int  i = 0; i < BIN_COUNT; i++) 
 result[i] = 0; 

for (int  i = 0; i < dataN; i++) 
 result[data[i]]++; 

An example Image Histogram 
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Implementation of Histogram 
  Kernel 1: Build per block 

histogram from per thread 
histogram 

  Per thread histogram in 
shared memory 

  Reduce to block histogram 

  Kernel 2: Combine block 
histograms into final histogram 
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Histogram64 Kernel1 
  Main Implementation Steps: 

  Initialization of shared memory to 0 is important 
  Make per thread histogram 

  Use 64 threads per block to aggregate per thread into a per-block 
histogram 

  Note: Synchronization after per thread histograms is made 

  Also use short data types for the thread histograms 

  Later optimization step done in CUDA SDK to remove bank conflicts is 
left for future discussion 
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Optimizations in Histogram64 
  A simplified version of the Histogram64 kernel is provided 

  Optimizations Include 
  Using shared memory 

  Build per block histogram using data gathered by each thread 

  Group 8 bit reads into a 32 bit read 
  As discussed coalescing: needs 32 bit transactions atleast 

  Provided implementation includes bank conflicts in shared memory 
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Summary 
  We have studied the architecture of CUDA capable Nvidia 

GPUs 
  We have seen the basics of CUDA and the relationship 

between the architecture and the programming model 
  We have decomposed a data parallel algorithm 
  We have used different architectural features of the GPU 

like shared and texture memory 
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Summary 
  We have optimized  host-device interaction using pinned 

memory 
  CUDA is a powerful parallel programming model 

  Heterogeneous - mixed serial-parallel programming 
  Scalable - hierarchical thread execution model 
  Accessible - minimal but expressive changes to C 
  Interoperable - simple graphics interop mechanisms 
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Summarizing Today’s Programming 
  Array addition, Devicequery and BandwidthTest: Basic CUDA 

programming, host - device code 

  Image Rotation:  

  Flipping: 2D Data Mapping 

  Image rotation extension: using texture memory 

  Matrix Multiplication:  

  Naïve: Blocks and threads, coalescing data reads 
  Blocking: Using Shared memory and synchronization in blocks 

  Histogram64: Using shared memory to buffer data 
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Nvidia - CUDA Ecosystem - Today 
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Productivity Tools Based on CUDA 
  Thrust - A STL – like library for CUDA 

  Linear Algebra and Mathematical Routines 
  CUBLAS and CURAND 

  MAGMA and CULA-Tools provide LAPACK 

  CUSP – CUDA Sparse Algebra 

  CUFFT – FFTW for GPUs 

  NPP: Performance Primitives – Video processing 

  Sections of OpenCV 
green = Nvidia  product 
bold = open source 
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Programming Tools for CUDA 
Solution Approach Availability 
CUDA C Runtime  Language Integration NVIDIA CUDA Toolkit 
Fortran Auto Parallelization PGI Accelerator 
OpenCL Device-Level API Khronos standard   
DirectCompute Device-Level API Microsoft  
PyCUDA API Bindings Open source 
jCUDA API Bindings Freely Available   
CUDA.NET API Bindings Freely Available 
OpenCL.NET API Bindings Freely Available 
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Next Class (4/28) 
  More advanced CUDA 

  Performance Tools – Using the CUDA Visual Profiler 
  Debugging Techniques – Using cuda-gdb 

  Let us know any particular areas of focus you would like 
  Look at the SDK examples for topics you are interested in 
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More information and References 
  NVIDIA GPU Computing Developer Home Page  

  http://developer.nvidia.com/object/gpucomputing.html 

  CUDA Download  

  http://developer.nvidia.com/object/cuda_4_0_downloads.html 

  Programming Massively Parallel Processors: A Hands-on Approach, 
David B. Kirk and Wen-mei W. Hwu 

  Other resources 
  http://courses.engr.illinois.edu/ece498/al/ 
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More information and References 
  Beyond Programmable Shading – David Leubke 

  Decomposition Techniques for Parallel Programming – Vivek 
Sarkar 

  CUDA Textures & Image Registration - Richard Ansorge 

  Setting up CUDA within Windows Visual Studio 
  http://www.ademiller.com/blogs/tech/2011/03/using-cuda-

and-thrust-with-visual-studio-2010/ 

  SDK examples: Histogram64, Matmul, SimpleTextures 



Thank You !  
Questions, Comments ? 

Perhaad Mistry 
pmistry@ece.neu.edu 


