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ABSTRACT
As system architects strive for increased density and power
efficiency, the traditional compute node is being augmented
with an increasing number of graphics processing units
(GPUs). The integration of multiple GPUs per node in-
troduces complex performance phenomena including non-
uniform memory access (NUMA) and contention for shared
system resources. Utilizing the Keeneland system, this pa-
per quantifies these effects and presents some guidance on
programming strategies to maximize performance in multi-
GPU environments.

Categories and Subject Descriptors
B.8.0 [Hardware]: Performance and Reliability
General; C.1.3 [Computer Systems Organization]: Het-
erogeneous Systems

General Terms
Performance, Measurement

Keywords
Benchmarking, Performance, Graphics Processors, GPGPU

1. INTRODUCTION
For certain computations, architectures utilizing graphics

processing units (GPUs) as accelerators offer increased per-
formance, power efficiency, and spatial density. Because of
these advantages, system designs featuring multiple GPUs
per node are beginning to emerge.

In these systems, the GPUs are normally connected to
the host processor via the PCIe bus. As more and more
GPUs are added to the system, additional PCIe lanes are
required to maintain the available bandwidth to each GPU.
This bandwidth is critical–all data processed by a GPU must
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traverse this connection, and it is already relatively slow to
compared to other system pathways such as Quick Path In-
terconnect (QPI) links (8 GB/s vs. 12.8 GB/s unidirectional
peak bandwidth) or main memory.

Dual I/O Hub Designs.
Figures 1 and 2 show two block diagrams of multi-GPU

systems. These systems illustrate different strategies for in-
creasing the available number of PCIe connections. The
first system, the Hewlett-Packard DL160, utilizes a single
I/O hub (IOH) connected to a PCIe switch. All GPU traffic
traverses a single x16 PCIe link to the switch and can then
be routed to multiple NVIDIA Tesla T10 GPUs in the S1070
1U server. Using a PCIe switch is a straightforward method
for adding additional GPUs, but the single link between the
IOH and the switch becomes a bottleneck when all GPUs in
the system are used simultaneously.

Figure 1: Block Diagram of HP DL160–An example
of a PCIe switch-based design

Figure 2: Block Diagram of HP SL390–An example
of a dual-IOH system



An alternative approach, illustrated by the second sys-
tem, is to add an additional I/O hub. This approach maxi-
mizes available bandwidth to the GPUs, but introduces non-
uniform memory access (NUMA). Notice, in the figure, an
additional QPI link must be traversed from CPU #0 to GPU
#1 or #2 (and similarly for CPU #1 to GPU #0). This is
the HP SL390, codenamed Ariston, and is preferable over
the switch-based approach for workloads which utilize more
than one GPU simultaneously. This study aims to explore
the complexity added to the system by the introduction of
the second IOH.

Contention.
In previous work, PCIe contention has been observed to

have a significant impact on performance [4], up to a 30%
degradation in bandwidth. This work furthers that analysis
in a dual I/O hub environment and endeavors to determine
best practices for sharing GPUs among multiple processes
and threading design for simultaneous MPI and GPU use.

2. EXPERIMENTAL PLATFORM
Performance experiments presented in this paper were

conducted on Keeneland, the National Science Foundation
Track2D Experimental System based on the HP SL390
server accelerated with NVIDIA Tesla M2070 GPUs.
Keeneland has 120 compute nodes, each with dual socket,
hex-core Intel X5660 2.8 Ghz Westmere processors and 3
GPUs per node, with 24GB of DDR3 RAM. Nodes are in-
terconnected with single rail, QDR Infiniband. Unless oth-
erwise specified, results were measured using the following
software stack: Intel C/C++ Compiler version 11.1, Open-
MPI 1.4.3, and NVIDIA CUDA 3.2RC2. The results pre-
sented in the following sections refer to specific components
in the system, as numbered in Figure 2.

3. MICROBENCHMARKS

3.1 PCIe Bandwidth
In order to understand NUMA at the most basic level, mi-

crobenchmarks were used to measure the latency and band-
width of MPI and GPU data transfers. Bandwidth was mea-
sured using the transfer of blocks of data ranging in size
from 1KB to 64MB. CPU and memory affinity were set us-
ing numactl, a standard utility for process and memory pin-
ning. A direct comparison of PCIe bandwidth is presented
in Figure 3 for sending data to the GPUs and in Figure 4
for retrieving data from the GPUs. These graphs show the
bandwidth for the “short” and “long” paths in the system.
Bandwidth results starting from CPU #1 are identical, but
inverted.

PCIe bandwidth was observed to be assymetric for both
correct and incorrect NUMA mappings, with slightly higher
bandwidth observed when retrieving data from the GPU
with correct NUMA pinning. The penalty of incorrect
NUMA assignment is also assymetric, as well as substantial,
with a measured 31% reduction in readback bandwidth and
only a 13% reduction in download bandwidth for the largest
size transferred. Furthermore, the assumption that the ex-
tra hop required in an incorrect NUMA mapping would
mostly impact latency is inaccurate; as seen here, a signifi-
cant
penalty on the bandwidth of large data transfers exists.

Figure 3: PCIe Bandwidth CPU #0-to-GPU

Figure 4: PCIe Bandwidth GPU-to-CPU #0

3.2 MPI Latency
Table 1 shows the average latency of MPI communica-

tion between two nodes of the Keeneland system for small
and large messages. The correct mapping uses an MPI
task pinned to the same NUMA node as the Inifiband HCA
(NUMA node #0), and the the incorrect mapping has it
mapped to other (NUMA node #1). A 12% penalty for
small messages results from an incorrect mapping, and a
26% penalty for large messages is observed. Similar to the
PCIe bandwith results above, this latter penalty also implies
a bandwidth reduction, not simply a latency reduction.

4. BENCHMARKS

4.1 SHOC
The impact of NUMA assignment on basic algorithms and

parallel computing primitives was measured using the Scal-



NUMA Mapping
Correct Incorrect

MPI Latency (0B) 1.877 µs 2.136 µs
MPI Latency (16MB) 13.955 µs 18.886 µs

Table 1: Average MPI Latency

able HeterOgeneous Computing Benchmark Suite (SHOC)
version 1.0. The results in Table 2 use the large problem
size on a single NVIDIA Tesla M2070 GPU and include data
transfer time over the PCI express bus.

The raw performance here may seem lower than expected.
This is because PCIe transfer time is typically not included
in these measurements (it is often assumed to be amor-
tized over many kernel executions, which is not always pos-
sible). One can also observe that the severity of the per-
formance penalty depends on the computational density of
the benchmark kernel. As density increases, the PCIe trans-
fer time represents a smaller fraction of total runtime, and
the NUMA penalty, as a percentage of overall execution
time, decreases. For example, compare the relatively low
penalty for matrix multiplication (SGEMM or DGEMM) to
the higher penalty for the sum reduction or the nine-point
stencil computation, which have a much lower flop-to-byte
ratio.

4.2 HPL
Moving beyond single kernels, High Performance Linpack

(HPL) provides excellent insight into NUMA effects because
it is fairly simple and well-known, and has sustained MPI
transfers and GPU operations (primarily the DGEMM and
DTRSM kernels). It is much more representative of the
behavior of full applications than single kernels. While no
substantial performance difference due to NUMA was mea-
sured using a single MPI task, a clearly discernable trend
emerged as the problem size was increased.

Figure 5 shows HPL performance under three different
pinning schemes, with three MPI ranks per node. Work is
dynamically split between the CPU and GPU, and each MPI
rank uses four CPU cores for multithreaded Intel MKL calls.
These results are from NVIDIA’s version 9 of HPL, using a
problem size scaled based on N=50,000 for a single node. A
complete listing of parameters is provided in the appendix.

The pinning scheme is described using three numbers.
These are the CPUs to which the three MPI ranks on each
node are bound. Note that the three MPI ranks on each
node choose GPUs in a sequential manner. Unlike the pre-
vious performance comparisons, where some NUMA assign-
ments are clearly incorrect, it becomes more difficult to pre-
dict the optimal mapping.

At first glance, it is surprising that the 0-1-1 assignment
performs the worst, since it should result in the best band-
width to the GPUs, based on microbenchmark results. In
this case, the bandwidth advantage is mitigated by other
factors, including reduced MPI performance (two MPI ranks
have the “long path” to the HCA) and lower CPU core uti-
lization. Core utilization is lower since eight of the MKL
threads inherit the pinning to CPU #1, leaving two cores
idle on CPU #0. The best performance is obtained by pin-
ning the first two MPI ranks and allowing the third to be
placed as needed.

Figure 5: HPL Performance ranging from one to
sixty-four nodes. Series names indicate which CPU
the MPI ranks were pinned to, respecitvely (free
indicates no pinning for the third rank).

5. CONTENTION
While the PCIe link between the IOH and PCIe switch

was the obvious bottleneck in the HP DL160, the limiting
factor of the dual-IOH design is less apparent. Analysis of
theoretical bandwidths shows Ariston to be a fairly balanced
design. The following experiments explore performance ef-
fects arising due to contention of shared system resources,
and identify whether or not actual execution is as balanced
as the theoretical bandwidths would predict. Results are
obtained using the contention benchmark from the SHOC
suite. In this benchmark, the user creates two types of
tasks–MPI communicators and tasks that repeatedly trans-
fer data to a GPU. These tasks are first executed sequen-
tially, in which no contention should occur, then simulata-
neously. The contention penalty is defined as the difference
between the simultaneous and the sequential runs.

With this capability, we attempt to anwer the following
three questions:

• Does the dual-IOH design deliver on its purported
bandwidth advantages?

• How many MPI tasks can share a GPU and still achieve
acceptable bandwidth?

• Should MPI tasks always spawn a separate thread to
control a GPU, so that the new thread can be appro-
priately pinned for NUMA effects?

5.1 Bus Saturation
The main advantage of the dual-IOH design over a switch-

based approach is increased bandwidth when the PCIe bus
is fully saturated. For an elementary understanding of con-
tention effects, and for verification of the claimed advantage,
actual bandwidth is measured for two scenarios, which cor-
respond to usage patterns observed in accelerated applica-
tions.



Test Units Correct NUMA Incorrect NUMA % Penalty
SGEMM GFLOPS 535.640 519.581 3%
DGEMM GFLOPS 239.962 230.809 4%

FFT GFLOPS 30.501 26.843 12%
FFT-DP GFLOPS 15.181 13.352 12%

MD GB/s 12.519 11.450 9%
MD-DP GB/s 19.063 17.654 7%

Reduction GB/s 5.631 4.942 12%
Scan GB/s 0.007 0.005 31%
Sort GB/s 1.081 0.983 9%

Stencil seconds 8.749 11.895 36%

Table 2: SHOC Benchmark Results

This first scenario involves one GPU control task and one
MPI task for each GPU in the system–for a total of six tasks
on a Keeneland node. This scenario is a close approximation
of the behavior of HPL and real applications, where one
MPI rank is used per GPU, and issues both MPI and GPU
traffic. Scenario two involves spawning three GPU control
tasks and then filling the remaining nine cores with MPI
tasks. This approximates a worst-case behavior for MPI
applications that divide work between GPU ranks and CPU
ranks–when all twelve ranks generate PCIe traffic at once.

Figure 6 shows the performance penalty under contention
for MPI latency on small and large messages, and for PCIe
bandwidth to the GPUs. In the first scenario, we see penal-
ties ranging from approximately 6% to 9%. These penalties
grow when more MPI commmunication tasks are added to
fully saturate the cores in the node, increasing to a range of
7% to 14%. The MPI latency on small messages incurs the
least contention penalty in both scenarios, whereas the other
two, more bandwidth-dependent tests, incur larger penal-
ties.

Figure 6: Contention penalty – Using one MPI com-
munication task per GPU control task, and using
one task on all cores. In both cases there are three
GPU control tasks.

5.2 Sharing A Fermi Among MPI Ranks
NVIDIA’s Fermi introduced the ability to simultaneously

execute two kernels. An important part of obtaining high

performance from this throughput-oriented architecture is to
ensure the GPU remains supplied with an adequate amount
of work. As such, one proposed use case is to share the
GPU among multiple MPI ranks in order to obtain high
utilization. This is a reasonable approach, but it can easily
be bottlenecked by contention on the PCIe bus.

Figure 7 shows the bandwidth of large transfers from host
to GPU memory for 64MB messages when all three GPUs
are being accessed simulataneously from one to four threads
per GPU. The chart shows the minimum, mean, and maxi-
mum speeds achieved by the most bottlenecked task. When
more than one task accesses each GPU, we see immediate
drops in bandwidth, but these are commensurate with linear
expectations for two and three tasks per GPU (i.e. one-half
and one-third of the bandwidth, respectively). However,
when we reach four tasks per GPU, bottlenecks and imbal-
ances become severe, with some tasks seeing as low as 0.07
GB/sec, almost two orders of magnitude below the maxi-
mum.

Figure 7: Sharing GPUs – This chart shows the
decrease in bandwidth as GPUs are shared among
multiple processes. Shown here are the minimum,
mean, and maximum of the transfer rate to the
most-bottlenecked GPU. All three GPUs on the
node were accessed concurrently in all cases.



5.3 Splitting MPI/GPU Control into Different
Threads

In most accelerated applications that use MPI, the same
rank controls a GPU and issues MPI traffic. This presents a
problem for architectures like the SL390. Consider the MPI
rank assigned to GPU #1. When pinned to CPU #0, it
has the correct mapping for the HCA and the “long path”
to GPU #1, and vice versa when pinned to CPU #1.

Given the performance penalties observed from incorrect
NUMA mapping, we hypothesize that higher performance
may be achieved by spawning a separate GPU
control thread. This way, both threads can be pinned to
avoid any“long paths” in the system. For a Keeneland node,
this involves pinning MPI threads and GPU threads differ-
ently.

Figure 8 shows the MPI latency and GPU transfer rate
under contention, in a scenario in which MPI communication
and GPU control tasks are pinned together (to the NUMA
node closest to that GPU), and in the case where the MPI
and GPU tasks are separated and pinned to the appropriate
NUMA nodes. Results are shown for one, two, and three
sets of GPU and MPI tasks per node. One can observe
that splitting these actions results in approximately a 5µs
improvement in latency for large MPI messages, regardless
of the number of tasks per node. For PCIe bandwidth, a
single GPU control task had enough dedicated bandwidth
to be unaffected by the presence of the MPI communica-
tion task. However, at two and three GPU control tasks,
moving the MPI communication to the correct NUMA node
freed enough bandwidth to allow a modest increase in per-
formance.

Figure 8: Performance under contention, with and
without splitting – Left: MPI Latency, Right: PCIe
Bandwidth.

5.4 Summary
The dual-IOH design exhibited robustness under

contention, limiting penalties under saturation and allow-
ing satisfactory concurrent bandwidth to all GPUs in the
system. Performance limits were reached when a dispropor-
tionate dropoff in bandwidth was observed at four tasks per
GPU, and the contention penalties for both bandwidth and
latency increased notably with a large number of simulta-
neous MPI communicators on the node. A strong decrease

in contention penalties was observed when MPI communi-
cation was moved to a different thread and relocated to the
appropriate NUMA node for the system interconnect.

6. APPLICATIONS
A number of high performance computing applications are

beginning to utilize GPUs, and here were present results un-
der different NUMA mappings. These applications are play-
ing critical roles in leadership science in the U.S. Department
of Energy and National Science Foundation.

6.1 Application Overviews
Several scientific computing applications were selected to

be investigated in detail, testing their performance with both
correct and incorrect NUMA mappings in varying scenarios:

• LAMMPS is the Large-scale Atomic/Molecular Mas-
sively Parallel Simulator and can simulate biomolecu-
lar, solid-state, and coarse-grained systems [11]. A set
of modules called “gpulammps” is available for a set of
pair potential calculations [2]. Results are shown using
the lj-cut-dyn test.

• DCA++ is a Quantum Monte Carlo simulation code,
used for materials science studies such as
high-temperature superconductivity [8]. Its Hirsch-
Fye solver has undergone GPU acceleration, largely
utilizing dense matrix computation [10]. For this solver
we tested its performance on a 24-site cluster with 80
time slices.

• GROMACS is a free molecular dynamics package de-
signed primarily for biomolecular systems [6]. It uses
OpenMM for GPU acceleration of a subset of its algo-
rithms [5], but as of this writing does not support par-
allel runs. To test its performance we used the dhfr-

impl-2nm benchmark.

6.2 Application Results
The series of tests measured single tasks utilizing GPU

#0. The task was mapped to NUMA node #0 (correct) or
node #1 (incorrect). Average performance is compared in
each mode to determine the penalty of an incorrect mapping.

For DCA++ and LAMMPS, which support multiple tasks
per node, a two-task, two-GPU test was also performed in
two modes. In the first mode the tasks utilizing GPUs #0
and #1 were mapped to their closest NUMA nodes (#0 and
#1, respectively), and in the second case they were mis-
mapped to farther NUMA nodes, (#1 and #0, respectively).

Each of the applications uses GPUs differently and has
different sensitivity to poor PCIe performance, and as seen
in Figure 9, this results in varying performance penalties for
a NUMA mismatch. LAMMPS appears to have the low-
est penalty from an incorrect mapping, and GROMACS
the highest, ranging from 0.5% to almost 4%. Both two-
task runs show a greater penalty from mis-mapping than
the single-task runs, which was likely caused by the added
contention on QPI links between the NUMA nodes.

7. CONCLUSION
Microbenchmarks confirm that significant NUMA effects

are present in the studied dual-IOH architecture. Quanti-
fied at the most basic level, the penalty for bandwidth to the



Figure 9: Application performance penalties–
Performance drop when using an incorrect NUMA
mapping

GPU is roughly 22% on average and for MPI latency can be
as large as five microseconds. The severity of this penalty’s
manifestation in more complex benchmarks or real applica-
tions varies based on several factors including computational
density, number of kernel executions per PCIe transfer, and
the total fraction of the application which actually utilizes
the GPU.

An average performance penalty of 13.5% was observed
in the SHOC benchmark suite for single-run kernels. HPL
results were more dramatic, showing a 21% gap between the
best and worst pinning scheme at sixty-four nodes. More in-
terestingly, the optimal NUMA mapping was different than
what microbenchmarks suggest as the best approach.

When testing three accelerated applications, the penalty
became relatively small compared to the total runtime, di-
minishing the perceived importance of the NUMA mapping.
However, these results may not be conclusive–there is strong
dependence and variance on how much of the application
actually uses the GPU. Furthermore, if HPL (where most
functions run on the GPU) is indicative of where production
applications are headed, the relative importance of NUMA
will increase at scale.

We also arrive at three major conclusions about the con-
tention for shared system resources. First, the dual-IOH de-
sign delivers on its claim of better bandwidth–a total simul-
taneous bandwidth of 16.2 GB/s was observed to the GPUs,
which is more than twice the theoretical bandwidth of the
switch-based approach. Second, sharing Fermis among a
small number of MPI tasks or threads is a feasible approach
to increase GPU utilization. Sublinear bandwidth scaling
only occured when a GPU was shared by more than three
tasks. Third, splitting MPI communication and GPU traf-
fic into different threads can be an effective method to cope
with contention penalties in simple cases–saving about five
microseconds of MPI latency and preserving the maximum
amount of bandwidth to GPUs. However, our results may
not be definitive for more complex applications–thread cre-
ation overhead, thread lifespan, and decreased productivity
due to programming complexity must all be evaluated when
deciding on a threading strategy.

8. RELATED WORK
Most direcly related to our work are the differences in

GPU bandwidth due to NUMA effects which have been
briefly documented by Kidnratenko et al. [7], including an
explicit call for further study. Our results augment these
early findings and add significant detail, hopefully provid-
ing a better understanding of the details of NUMA and the
role it plays in the accelerated application ecosystem.

Also related to our contribution are the ongoing GPU
benchmarking efforts including SHOC [4], Parboil [1], and
Rodinia [3]. These software suites provide valuable test ker-
nels and the basic codes necessary for performance measure-
ment in heterogeneous environments.

NUMA analysis and approaches for the correction of
NUMA performance problems have existed for quite some
time in non-accelerated systems. Current projects such as
Memphis [9] seek to address NUMA at a lower level in the
system hierarchy–across CPU sockets.
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11. APPENDIX
SHOC benchmarks executed with the large problem size

(-s 4).
HPL results are the average of five runs. The following

parameters were used in HPL measurements.

N - 50,000 192,000 271,000 384,000

NB - 768

PxQ - 1x3, 6x8, 8x12, 16x12

PFACT - 0

NBMIN - 2

NDIVs - 2

RFACT - 0

BCAST - 0

DEPTH - 1

SWAP - 1

S THRESHOLD - 192

L1 - 1

U - 1

EQUILIBRIATION - 1

MEM ALIGNMENT - 8


