
GKLEE: Concolic Verification and Test Generation for GPUs

Guodong Li ∗

Fujitsu Laboratories of America,
Sunnyvale, CA 94085, USA

gli@us.fujitsu.com

Peng Li Geof Sawaya
Ganesh Gopalakrishnan

School of Computing,
University of Utah,

Salt Lake City, UT 84112, USA
{peterlee,sawaya,ganesh}@cs.utah.edu

Indradeep Ghosh
Sreeranga P. Rajan

Fujitsu Laboratories of America,
Sunnyvale, CA 94085, USA

{ighosh,sree.rajan}@us.fujitsu.com

Abstract
Programs written for GPUs often contain correctness errors such
as races, deadlocks, or may compute the wrong result. Existing
debugging tools often miss these errors because of their limited
input-space and execution-space exploration. Existing tools based
on conservative static analysis or conservative modeling of SIMD
concurrency generate false alarms resulting in wasted bug-hunting.
They also often do not target performance bugs (non-coalesced
memory accesses, memory bank conflicts, and divergent warps).
We provide a new framework called GKLEE that can analyze C++
GPU programs, locating the aforesaid correctness and performance
bugs. For these programs, GKLEE can also automatically generate
tests that provide high coverage. These tests serve as concrete wit-
nesses for every reported bug. They can also be used for down-
stream debugging, for example to test the kernel on the actual hard-
ware. We describe the architecture of GKLEE, its symbolic virtual
machine model, and describe previously unknown bugs and per-
formance issues that it detected on commercial SDK kernels. We
describe GKLEE’s test-case reduction heuristics, and the resulting
scalability improvement for a given coverage target.
Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Software/Program Verification—Validation
General Terms: Reliability, Verification
Keywords: GPU, CUDA, Parallelism, Symbolic Execution, For-
mal Verification, Automatic Test Generation, Virtual Machine

1. Introduction
Multicore CPUs and GPUs are making inroads into virtually all
aspects of computing, from portable information appliances to su-
percomputers. Unfortunately, programming multicore systems to
achieve high performance often requires many intricate optimiza-
tions involving memory bandwidth and the CPU/GPU occupancy.
A majority of these optimizations are still being carried out manu-
ally. Given the sheer complexity of these optimizations in the con-
text of actual problems, designers routinely introduce correctness
and performance bugs. Locating these bugs using today’s commer-

∗Guodong Li started this project while a student of University of Utah.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.
Copyright c© 2012 ACM 978-1-4503-1160-1/12/02. . . $10.00

cial debuggers is always a ‘hit-or-miss’ affair: one has to be lucky in
so many ways, including (i) picking the right test inputs, (ii) ability
to observe of data corruption (and be able to reliably attribute it to
races), (iii) whether the compiler optimization match programmer
assumptions, and (iv) whether the platform masks bugs because of
the specific thread/warp scheduling algorithms used. If the execu-
tion deadlocks, one has to manually reason out the root-cause.

Recent formal and semi-formal analysis based tools [1–3] have
improved the situation in many ways. They, in effect, examine
whole classes of inputs and executions, by resorting to symbolic
analysis or static analysis methods. They also analyze abstract GPU
models without making hardware-specific thread scheduling as-
sumptions. These tools also have many drawbacks. The first prob-
lem with predominantly static analysis based approaches is false
alarms. False alarms waste precious designer time and may dis-
suade them from using a tool. Another limitation of today’s tools
is that they do not help generate tests that achieve high code cover-
age. Such tests are important for unearthing compiler bugs or “un-
expected” bugs that surface during hardware execution. Existing
tools also do not cover one new data race category that we identify
(we call it warp-divergence race). Compilation based approaches
can, in many cases, eliminate the drudgery of GPU program op-
timization; however, their code transformation scripts are seldom
separately formally verified.

We present a new tool framework called GKLEE for analyzing
GPU programs with respect to important correctness and perfor-
mance issues (the tool name coming from “GPU” and “KLEE [4]).
GKLEE profits from KLEE’s code base and philosophy of testing
a given program using concrete plus symbolic (“concolic”) execu-
tion. GKLEE is the first concolic verifier and test generator tailored
for GPU programs. Concolic verifiers allow designers to declare
certain input variables as ‘symbolic’ (the remaining inputs are con-
crete).

In GKLEE, the execution of a program expression containing
symbolic variables results in constraints amongst the program vari-
ables, including constraints due to conditionals, and explicit con-
straints (assume statements) on symbolic inputs. Conditionals are
resolved by KLEE’s decision procedures (“SMT solvers [5]”) that
find solutions for symbolic program inputs. This approach helps
concolic verifiers do something beyond bug-hunting: they can au-
tomatically enumerate test inputs in a demand-driven manner. That
is, if there is a control/branch decision that can be affected by some
input, a concolic verifier can automatically compute and record
the input value in a test which is valuable for downstream debug-
ging. Recent experience shows that formal methods often have the
biggest impact when they can compute tests automatically, expos-
ing software defects and vulnerability [6–8].

The architecture of GKLEE is shown in Figure 1. It employs
a C/C++ front-end based on LLVM-GCC (with our customized

extensions for CUDA syntax) to parse CUDA programs. It supports
the execution of both CPU code and GPU code. GKLEE employs a
new approach to model the symbolic state (recording the execution
status of a kernel) with respect to the CUDA memory model.

Contributions: Our main contribution is a symbolic virtual ma-
chine (VM) to model the execution of GPU programs on open in-
puts. We detail the construction and operation of this virtual ma-
chine, showing exactly how it elegantly integrates error-detection
and analysis, while not generating false alarms or missing exe-
cution paths when generating concrete tests. This approach also
allows one to effect scalability/coverage tradeoffs. The following
features are integrated into our symbolic VM approach:
• GPU programs can suffer from several classes of insidious data
races. GKLEE finds such races (sometimes even in well-tested GPU
kernels).
• GKLEE detects and reports occurrences of divergent thread warps
(branches inside SIMD paths), as these can degrade performance.
In addition, GKLEE guarantees to find deadlocks caused by diver-
gent warps in which two threads may encounter different sequences
of barrier (__syncthreads()) calls.
• GKLEE’s symbolic virtual machine can systematically generate
concrete tests while also taking into account any input constraints
the programmer may have expressed through assume statements.
• While tests generated by GKLEE guarantee high coverage, it
may lead to test explosion. GKLEE employs powerful heuristics
for reducing the number of tests. We evaluate these heuristics on
a variety of examples and identify those heuristics that result in
high coverage while still only generating fewer tests.
• We can automatically run GKLEE-generated tests on the actual
hardware; one such experiment alerted us to the need for a new
error-check type, which we have added to GKLEE: has a volatile
declaration been possibly forgotten? This can help eliminate silent
data corruption caused by reads that may pick up stale write values.
• We target two classes of memory access inefficiencies, namely
non-coalesced global memory accesses and shared memory ac-
cesses that result in bank conflicts, and show how GKLEE can spot
these inefficiencies, also “understanding” platform rules (i.e., com-
pute capability 1.x or 2.x). Some kernels originally thought free of
these errors are actually not so.
• GKLEE’s VM incorporates the CUDA memory model within its
concolic execution framework, while (i) accurately modeling the
SIMD concurrency of GPUs, (ii) avoiding interleaving enumera-
tion through an approach based on race checking, and (iii) scaling
to large code sizes.
• GKLEE handles many C++/CUDA features including: struct,
class, template, pointer, inheritance, CUDA’s variable and function
derivatives, and CUDA specific functions.
• GKLEE’s analysis occurs on LLVM byte-codes (also targeted
by Fortran and Clang). Byte-code level analysis can help cover
pertinent compiler-induced bugs in addition to supporting future
work on other binary formats.

Figure 1. GKLEE’s architecture.
Roadmap: § 2 explains the error-classes covered by GKLEE.
§ 3 presents GKLEE’s concolic verification: state model, memory

type inference, and concolic execution (§ 3.1) and error check-
ing/analysis (§ 3.2). § 5 presents experimental results, covering
issues pertaining to correctness checking/performance (§ 5.1) and
test set generation/reduction (§ 5.2). § 6 presents related work and
§ 7 concludes.

2. Examples of our Analysis/Testing Goals
2.1 Basics of GPU Programs
GKLEE currently supports the CUDA [9] syntax (with OpenCL [10]
to be addressed in future). A CUDA kernel is launched as an 1D or
2D grid of thread blocks. The total size of a 2D grid is gridDim.x×
gridDim.y. Each block at location 〈blockIdx.x, blockIdx.y〉 has
dimensions blockDim.x, blockDim.y and blockDim.z. Each block
contains blockDim.x × blockDim.y × blockDim.z threads, with
IDs 〈threadIdx.x, threadIdx.y, threadIdx.z 〉. These threads can
share information via shared memory, and synchronize via barri-
ers. Threads belonging to distinct blocks must use the much slower
global memory to communicate, and may not synchronize using
barriers. The values of gridDim and blockDim determines the con-
figuration of the system, e.g. the sizes of the grid and each block.
For a thread, blockIdx and threadIdx give its block index in the
grid and its thread index in the block respectively. For brevity,
we use gdim to denote gridDim, bid for blockIdx, bdim for
blockDim, and tid for threadIdx. The constraints bid.∗ < gdim.∗
for ∗ ∈ {x, y} and tid.∗ < bdim.∗ for ∗ ∈ {x, y, z} always hold.
Groups of 32 (a “warp”) consecutively numbered threads within a
thread block are scheduled at a time in a Single Instruction Multiple
Data (SIMD) fashion.

2.2 CUDA Error Classes and Test Generation
2.2.1 Deadlocks
Deadlocks occur when any two threads in a thread block fail to
encounter the same textually aligned barriers [11], as in kernel
deadlock below. Here, threads satisfying tid.x + i > 0 invoke
the barrier while the other threads do not:

__global__ void deadlock(int i) {
if (tid.x + i > 0)

{ ...; __syncthreads(); } }

Random test input generation does not guarantee path cover-
age especially when conditionals are deeply embedded, whereas
GKLEE’s directed test generation based on SMT-solving ensures
coverage. While the basic techniques for such test generation have
been well researched in the past, GKLEE’s contributions in this area
include addressing the CUDA semantics and memory model, and
detecting non-textually aligned barriers, a simple example of which
is below. Here, the threads encounter different barrier calls if they
diverge on the condition tid.x+ i > 0.

if (tid.x + i > 0) { ...; __syncthreads(); }
else { ...; __syncthreads(); }

2.2.2 Data Races
There are three broad classes of races: intra-warp races, inter-
warp races, and device/CPU memory races. Intra-warp races can
be further classified into intra-warp races without warp divergence,
and intra-warp races with warp divergence.

Intra-warp Races Without Warp Divergence: Given that any two
threads within a warp execute the same instruction, an intra-warp
race (without involving warp divergence) has to be a write-write
race. The following is an example of such a race which GKLEE
can successfully report. In this example, writes to shared array v[]
overlap; e.g., thread 0 and 1 concurrently write four bytes beginning
at v[0] (in a 32-bit system).

__global__ void race()
{ x = tid.x >> 2; v[x] = x + tid.x; }

Intra-warp Races With Warp Divergence: In a divergent warp,
a conditional statement causes some of the threads to execute the
then part while others execute the else part. But because of the
SIMD nature, both parts are executed with respect to all the threads
in some unspecified order (undefined in the standard). Thus, in
example ‘race’, depending on the hardware platform: (i) the even
threads may read v first, and then the odd threads write v; or (ii) the
odd threads may write v and then the even threads may read v:

__global__ void race() {
if (tid.x % 2) { ... = v ; }
else { v = ... ; } }

While on a given machine the results are predictable (either the
then or the else happens first) an unpleasant surprise can result
when this code is ported to a future machine where the else
happens first (think of it as a “porting race”—race-like outcome
that surfaces when the code is ported). The culprit is of course
overlapped accesses across divergent-warp threads, but if v is a
complicated array expression, this fact is virtually impossible to
discern manually. GKLEE’s novel contribution is to detect such
overlaps exactly regardless of the complexity of the conditionals
or the array accesses. (For simplicity, we do not illustrate a variant
of this example where both accesses are updates to v.)

This example also covers another check done by GKLEE: it
reports the number of occurrences of divergent warps over the
whole program.

Inter-warp Races: Inter-warp races could be read-write, write-
read, or write-write: we illustrate a read-write race below. Here
there is the danger that thread 0 and thread bdim.x− 1 may access
v[0] simultaneously while these two threads also belong to different
warps in a thread block.

__global__ void race() {
v[tid.x] = v[(tid.x + 1) % bdim.x]; }

Testing may fail to reveal this bug because this bug is typically
noticed only when the write by one thread occurs before the read by
the other thread. However, the execution order of threads in a GPU
is non-deterministic depending on the scheduling, and latencies of
memory accesses. GKLEE guarantees to expose this type of race.

Global Memory Races: GKLEE also detects and reports races
occurring on global device variables:

__device__ x;
__global__ void race()
{ ...conflicting accesses to x by two threads... }

2.2.3 Memory Access Inefficiencies
There are two kinds of memory access inefficiencies: bank conflicts
and non-coalesced memory accesses. GKLEE reports their severity
by reporting the absolute number and the percentage of accesses
that suffer from this inefficiency, as described in § 5.1 in detail.

Shared Memory Bank Conflicts: Bank conflicts result when the
threads in a half warp (for the CUDA compute capability 1.x
model) or entire warp (for capability 1.2) access the same mem-
ory bank. GKLEE checks for conflicts by symbolically comparing
whether two such accesses can fall into a memory bank.

Non-coalesced Device Memory Accesses: Non-coalesced mem-
ory accesses waste considerable bus bandwidth when fetching data
from the device memory. Memory coalescing is achieved by fol-
lowing access rules specific to the GPU compute capability. GK-
LEE faithfully models all 1.x and 2.x compute capability coalesc-
ing rules, and can be run with the compute capability specified as
a flag option (illustrates the flexibility to accommodate future such
options from other manufacturers).

2.2.4 Test Generation
The ability to automatically generate high quality tests and verify
kernels over all possible inputs is a unique feature of GKLEE. The
BitonicSort (Figure 2) kernel taken from CUDA SDK 2.0 [9]
sorts values’s elements in an ascending order. The steps taken
in this kernel to improve performance (coalescing global memory
accesses, minimizing bank conflicts, avoiding redundant barriers,
and better address generation through bit operations) unfortunately
end up obfuscating the code. Manual testing or random input-
based testing does not ensure sufficient coverage. Instead, given
a post-condition pertaining to the sortedness of the output array,
GKLEE generates targeted tests that help exercise all conditional-
guarded flows. Also, running this kernel under GKLEE by keeping
all configuration parameters symbolic, we could learn (through
GKLEE’s error message) that this kernel works only if bdim.x is
a power of 2 (an undocumented fact).

Covering all control-flow branches can result in too many tests.
GKLEE includes heuristics for test-case minimization, as detailed
in § 4.

__shared__ unsigned shared[NUM];

inline void swap(unsigned& a, unsigned& b)
{ unsigned tmp = a; a = b; b = tmp; }

__global__ void BitonicKernel(unsigned* values) {
1: unsigned int tid = tid.x;
2: // Copy input to shared mem.
3: shared[tid] = values[tid];
4: __syncthreads();
5:
6: // Parallel bitonic sort.
7: for (unsigned k = 2; k <= bdim.x; k *= 2)
8: for (unsigned j = k / 2; j > 0; j /= 2) {
9: unsigned ixj = tid ^ j;
10: if (ixj > tid) {
11: if ((tid & k) == 0)
12: if (shared[tid] > shared[ixj])
13: swap(shared[tid], shared[ixj]);
14: else
15: if (shared[tid] < shared[ixj])
16: swap(shared[tid], shared[ixj]);
17: }
18: __syncthreads();
19: }
20:
21: // Write result.
22: values[tid] = shared[tid];
}

Figure 2. The Bitonic Sort Kernel

3. Algorithms for Analysis, Test Generation
Given a C++ program, the GKLEE VM (Figure 1) executes the
following steps, in order, for each control-flow path pursued during
execution (to a first approximation, one can think of a control-flow
tree and imagine all the following steps occurring for each tree path
and for each barrier interval along the path). Deadlock checking
and test generation occur per path (spanning barrier intervals; the
notion of barrier intervals is explained in § 3.2). GKLEE checks for
barriers being textually aligned and applies a canonical schedule
going from one textually aligned barrier to another one.

• Create the GPU memory objects as per state model; infer mem-
ory regions representing GPU memory dynamically (§ 3.1)
• Execute GPU kernel threads via the canonical schedule (§ 3.2)

• Fork new states upon non-determinism due to symbolic values,
apply search heuristics and path reduction if needed (§ 2.2.4)
• In a state, at the end of the barrier interval or other synchro-

nization points, perform checks for data races, warp divergence,
bank conflicts, and non-coalesced memory accesses (§ 3.2)
• When execution path ends, report deadlocks and global mem-

ory races (if any), perform test-case selection, and write out a
concrete test file (§ 4)

3.1 LLVMcuda

The front-end compiles a C/C++ kernel program into LLVM byte-
code with extensions for CUDA. Figure 3 shows an excerpt of its
syntax. One main extension is that a variable is attached with its
memory sort indicating which memory it refers to.

τ := τ , τl, τs, τd, τh memory sort
var := varcuda | v : τ variable
varcuda := tid, bid, . . . CUDA built-in
lab := l1, l2, . . . label
e := var | n atomic expression
instr := br v lab1 lab2 conditional branch

| br lab unconditional jump
| store e v store
| v = load v load
| v = binop e e binary operation
| v = alloc n τ memory allocation
| v = getelptr v e address calculation
| sync synchronization barrier

Figure 3. Syntax of LLVMcuda (excerpt)

Figure 4 gives a small-step operational semantics of LLVM cuda

using the following elements. A program is a map from labels to
instructions; a value consists of one or more bytes (our model has
byte-level accuracy); a memory or store maps variables to values,
where each variable is assigned an integer address by the compiler.
GKLEE models CUDA’s memory hierarchy in a symbolic state as
in Figure 5: each thread has its own local memory and stack (we
combine them into a single local state in GKLEE); the threads in
a block shares the shared memory; and all blocks share the device
memory and the CPU memory. Each thread has a program counter
(pc) recording the label of the current instruction.

Program := L ⊂ lab 7→ instr
Value := V ⊂ byte+

Memory, Store := M ⊂ var 7→ V
Shared state := M ⊂ (bid 7→M)×M ×M
Local state := σ ⊂ var 7→ V
Data State := Σ ⊂ (tid 7→ σ)×M
Program counter := P ⊂ tid 7→ lab
State := Φ ⊂ Σ× P

A state Φ consists of a data state Σ and a PC P. Thread t’s pc
is given by P[t]. Notations Σ[v] and Σ[v 7→ k] indicate reading
v’s value from Σ and updating v’s value in Σ to k respectively.
Notation Σ ` e evaluates e’s value over Σ, e.g. Σ ` e1 = e2 is true
if Σ[e1] = Σ[e2]. The semantics of an instruction is modeled by a
state transition, e.g. the execution of an instruction br l’ at thread
t updates the t’s pc to l′ and keeps the data state unchanged. Rule
9 specifies the barrier’s semantics: a thread can proceed to the next
instruction only after all the threads in the same block have reached
the barrier. As indicated by other rules, non-barrier instructions are
executed without synchronizing with other threads (except for lock-
step requirement for intra-warp threads).

Memory Typing. After a source program is compiled into LLVM
bytecode, it is difficult to determine which memory is used when an

1. L[l]=br l′

(Σ, P)−→t(Σ, P[t7→l′])

2. L[l]=br v l1 l2 Σ ` v
(Σ, P)−→t(Σ, P[t7→l1])

L[l]=br v l1 l2 Σ ` ¬v
(Σ, P)−→t(Σ, P[t7→l2])

3. L[l]=(v=alloc n τ)
(Σ, P)−→t(Σ[(v:τ)7→0n], P[t7→l+1])

4. L[l]=(v2=getelptr v1:τ e)
(Σ, P)−→t(Σ[v2:τ 7→Σ[v1]+Σ[e]], P[t7→l+1])

5. L[l]=(v=binop e1:τ e2:τ)
(Σ, P)−→t(Σ[v:τ 7→binop(Σ[e1],Σ[e2])], P[t7→l+1])

6. L[l]=(v2=load v1:τ) τ 6=τ
(Σ, P)−→t(Σ[v2:τ 7→Σ[v1]], P[t7→l+1])

7. L[l]=(store e v:τ) τ 6=τ
(Σ, P)−→t(Σ[v:τ 7→Σ[e]], P[t7→l+1])

8. v:τ ((v′:τ ′) 7→k) ∈ Σ Σ ` v′≤v≤v′+sizeof(k)
v:τ ′

9. L[l]=sync ∀t′∈blk of(t) : P[t′]∈{l,l+1}
(Σ, P)−→t(Σ, P[t7→l+1])

Figure 4. Operational semantics of LLVMcuda (excerpt)

Figure 5. Components in a Symbolic State.

access is made because the address of this access may be calculated
by multiple bytecode instructions. We employ a novel and simple
GPU-specific memory sort inference method by computing for
each (possibly symbolic) expression a sort τ which is either τ
(unknown), τl (local), τs (shared), τd (device), or τh (host), as per
the rules (here we present the simplified version) in Figure 4. In our
experience, these rules have been found to be sufficiently precise on
all the kernels we have applied GKLEE to.

For example, Rule 4 models getelptr which refers to pointer
dereferencing where v2’s type is obtained from v1’s type. Rule 6
indicates that a load instruction can be executed only if the address
type is known; and the value loaded from memory has unknown
type. Rule 8 says that a valid type is found for v if there exists a
memory object associated with v′ such that v’s value falls within
this object. Basically it searches the memory hierarchy to locate
the target memory when the previous analysis fails to find v’s
type. If v represents a pointer which can refer to multiple objects
(determined by SMT solving), then multiple states are generated,
each of which needs to apply this rule. This often reveals memory
type related bugs in the source kernel, e.g. mixing up the CPU
and GPU memory. We plan to use Clang’s ongoing support for
LLVM+CUDA [12] to simplify such inference. More semantics
rules (with sort inference) are available in [13].

State Model. In a symbolic state in GKLEE, each thread (in a
block) has its own stack and local memory; each block has a shared
memory; all blocks can access the device memory in the GPU and
the main memory in the CPU. Figure 5 gives an example state for
a GPU with grid size n × m and block size 32 × i. Each block
consists of i of warps; each warp contains 32 threads. To support
test generation, a state also contains a path condition recording the
branching decisions made so far.

CUDA Built-in Variables. CUDA built-in variables include the
block size, block id, thread id, and so on, The executor accesses
these variables during the execution. GKLEE sets their values in re-
spective memories before the execution. For example, the variable
for the thread id, tid, is assigned three 32 bit words in the local
memory of each thread. These words record the tid’s values in di-
mension x, y and z respectively.

tid : τl (96b) . . .
{x : 32b, y : 32b, z : 32b} . . .

3.2 Canonical Scheduling and Race Checking
We now focus on the interleavings of all the threads within a thread
block from one barrier call to another (global memory accesses
across thread blocks are discussed later). Naively interleaving these
threads will result in an astronomical number of interleavings.
GKLEE employs the following schedule generation approach:

• Pursue just one schedule, namely the canonical schedule shown
in Figure 6 where each thread is fully executed within a barrier
interval before moving on to another thread.
• During the execution of all the threads in the current barrier

interval, build a read-set R and a write set W , recording in
them (respectively) all loads and stores (these will be in mixed
symbolic/concrete form) encountered in the execution.
• After the check points (as shown in Figure 6), build all possible

conflict pairs, where a pair 〈r1, w1〉 or 〈w2, w1〉 is any pair that
could potentially race or other conflicts.
• Through SMT-solving, decide whether any of these conflicts are

races. If none are races (do not overlap in terms of a memory
address), then the canonical schedule is equivalent to any other
schedule. Thus, we can carry on to the next barrier interval with
the next-state calculated as per the canonical schedule.

Canonical scheduling is sound for safety properties (will neither
result in omissions or false alarms). The caveats that go with this
argument are that C/C++ has no standard shared memory con-
sistency semantics to define safe compiler optimizations, and the
CUDA programming guide [14] provides only an informal charac-
terization of CUDA’s weak execution semantics. Assume that the
instructions within CUDA threads in a barrier interval can be re-
ordered; then under no conflicts (DRF), reordering transformations
are sound [15]. This result also stems from [16] where it is shown
that race detectors for sequential consistency can detect the earli-
est race even under weak orderings. One can also infer this result
directly from [17] where it is shown that under the absence of con-
flict edges, the delay set (set of required program orderings) can
be empty. We further elaborate on the soundness of the canonical
scheduling method (also considering SIMD execution) in [13].

Consider the following two schedules, we record the writes and
reads on v1 and v2, and see whether these accesses overlap at the
end point (the check is denoted by a “!”). A race occurs in schedule
2 if and only if it also occurs in schedule 1.

Schedule 1 : · W v1−−−−→t1 ·
W v2−−−−→t1 ·

R v1−−−→t2 · → · · · → ·(!)

Schedule 2 : · R v1−−−→t2 ·
W v2−−−−→t1 ·

W v1−−−−→t1 · → · · · → ·(!)

Intra-warp scheduling. A schedule is a sequence of state transi-
tions made by the threads. The threads within a warp are executed
in lock-step manner, and if they diverge on a condition, then one
side (e.g. the “then” side) is executed first, with the threads in the
other side blocked; and then the other side is executed (this is sound
after checking for the absence of intra-warp races). (Note that GK-
LEE executes LLVM byte-codes, and is therefore able to capture
the effect of compiler optimizations.)

In GKLEE, we schedule these threads in a lock-step manner, and
provide an option to not execute the two sides sequentially. Now we
show that these two scheduling methods are equivalent if no data
race occurs. Specifically, the sequence (up to the next joint point)

Φ0
c−→t1 Φ1

c−→t2 · · ·
c−→tn Φn

¬c−−→t1 · · ·
¬c−−→tn Φ2n

can be shuffled into the following one provided that it is race-free.
We use c−→ti to indicate that thread ti makes the transition with
condition c.

Φ0
c−→t1 Φ1

¬c−−→t1 Φ′2
c−→t2 · · ·

c−→tn Φ′2n−1
¬c−−→tn Φ2n

Since c exclusive-or (⊕) ¬c holds for a thread, the sequence is
equivalent to the following one (where Φ′′n = Φ2n) which GKLEE
produces. This is the canonical schedule for intra-warp steps.

Φ0
c⊕¬c−−−−→t1 Φ′′1

c⊕¬c−−−−→t2 · · ·
c⊕¬c−−−−→tn Φ′′n

Hence GKLEE’s intra-warp scheduling is an equivalent model
of the CUDA hardware’s. It eases formal analysis and boosts the
performance of GKLEE. Similarly, as in Figure 6 we can reduce
a race-free schedule to a canonical one for inter-warps, multi-
blocks, and barrier intervals (BIs). These transition relations are
represented by→w,→b, and→bi respectively.

→t0 · →t1 · · · →t31 ·︸ ︷︷ ︸ →t32 · →t33 · · · →t63 ·︸ ︷︷ ︸ · · ·

→w0 ·(!1 : intra warp) →w1 ·(!1 : intra warp) · · ·︸ ︷︷ ︸
→b0 ·(!2 : inter warp)

→b0 · →b1 · · ·︸ ︷︷ ︸ · · · →b0 · →b1 · · ·︸ ︷︷ ︸
→bi0 · · · · →bim ·(!3 : global mem)

Figure 6. Canonical scheduling and conflict checking in GKLEE.

Conflict checking: Figure 6 indicates that GKLEE supports vari-
ous conflict checking:

• Intra-warp race (denoted as !1), checked at the end of a warp.
Threads t1 and t2 incur such a WW race if they write differ-
ent values to the same memory location in the same store in-
struction: ∃l : L[l] = store e v ∧ P[t1] = P[t2] = l and
Σ ` vt1 = vt2 ∧ et1 6= et2 (GKLEE issues a warning if
et1 = et2). For a diverged warp, RW and WW races are also
checked by considering whether the accesses in both sides can
conflict (discussed in Section 2.2).
• Inter-warp race (denoted as !2), checked at the end of a block

for each BI. Thread t1 and t2 (in different warps) incur such
a race if they access the same memory location, and one of
them is a write, and different values are written if both accesses
are writes. Formally, let R〈t, v, e〉 and W 〈t, v, e〉 denote that
thread t reads e from location v and writes e to v respectively.
Then a RW race occurs if ∃R〈t1, v1, e1〉,W 〈t2, v2, e2〉 : Σ `
v1 = v2 (or the case of exchanging t1 and t2); a WW race
occurs if ∃W 〈t1, v1, e1〉,W 〈t2, v2, e2〉 : Σ ` v1 = v2 ∧ e1 6=
e2 (again GKLEE will prompt for investigation if et1 = et2).
• Global race (denoted as !3), checked at the end of the kernel

execution. Similar to inter-warp race but on the device or CPU
memory. Deadlocks are also checked at !3.

Conflict checking is performed at the byte level to faithfully
model the hardware. Suppose a thread reads n1 bytes starting
from address a1, and another thread writes n2 bytes starting from
address a2, then a overlap exists iff the following constraint holds.

__global__ void histogram64Kernel(unsigned *d_Result,
unsigned *d_Data, int dataN){

const int threadPos =
((threadIdx.x & (~63)) >> 0) |
((threadIdx.x & 15) << 2) |
((threadIdx.x & 48) >> 4); ...

__syncthreads();
for(int pos = IMUL(blockIdx.x, blockDim.x) + threadIdx.x;

pos < dataN; pos += IMUL(blockDim.x, gridDim.x)) {
unsigned data4 = d_Data[pos]; // top 10 is symb. for t5,
...
addData64(s_Hist, threadPos, (data4 >> 26) & 0x3FU); }

__syncthreads(); ...
}
inline void addData64(unsigned char *s_Hist, int threadPos,

unsigned int data) {
// Race of T5 and T13 with threadPos of 20,52 resp.
s_Hist[threadPos + IMUL(data, THREAD_N)]++; //<- Race! }

Figure 7. Write-write race in Histogram64 (SDK 2.0)

(a1 ≤ a2 ∧ a2 < a1 + n1) ∨ (a2 ≤ a1 ∧ a1 < a2 + n2)

Without abstracting pointers and arrays, GKLEE inherits KLEE’s
methods for handling them: suppose there are n arrays declared in
a program. Then, when ∗p is evaluated, for every array the concolic
executor will check whether p can fall within the array, spawning a
new state if so (works particularly well for CUDA, where pointers
are usually used for indexing array elements).

Note that our method reports accurate results in contrast to static
analysis methods such as [18] (where no decision procedures are
applied) and [1] (which uses SMT solving but relies heavily on
abstractions). The method in [2] uses run-time checking to rule out
false alarms produced by its static analyzer; while GKLEE builds all
the checks into its VM and produces no false alarms.

3.3 Power of Symbolic Analysis
We now present how GKLEE detected a WW race condition in
histogram64Kernel (Figure 7), a CUDA SDK 2.0 kernel. Since
the invocation of this kernel in main passes d_Data that can be
quite large, a user of GKLEE (in this case, us) chose to keep only
the first ten locations of this array symbolic, and the rest con-
crete at value 0. (This is the only manual step needed; without
this, GKLEE’s solver will be inundated, trying to enumerate ev-
ery array location). GKLEE now determines that addData64 can
be called concurrently by two distinct threads. Drilling into this
function, GKLEE generates constraints for s_Hist[threadPos +
IMUL(data, THREAD_N)]++ (not marked atomic) to race. The
SMT solver picks two thread IDs 5 and 13; for this, threadPos
assumes values 20 and 52, respectively. What flows into data
is data4 >> 26 & 0x3FU, where data4 obtains the value of
d_Data[pos]. Since the top 10 elements of d Data[DATA N] are
symbolic, thread 5 assigns a symbolic value denoted by d Data[5]
to data4, while thread 13 assigns the concrete value of 0 to
d Data[13]. The SMT solver now solves 20 + ((d Data[5] �
21)&2016) = 52 + 0 (� 26 changed to� 21 because THREAD_N
is 32), resulting in d Data[5] obtaining value 0x04040404 which
causes a race! The user not only obtains an automatic race alert,
but also the concrete input of 0x04040404 to set d Data[5] to, in
case they want to study this race through any other means.

4. Test Generation
During its symbolic execution, GKLEE’s VM has the ability to fork
two execution paths whenever it “encounters a non-deterministic
situation;” e.g. when a conditional is evaluated and both choices
are true, or when a symbolic pointer is accessed, and it may point to
multiple memory objects. GKLEE organizes the resulting execution
states as a tree. The initial state of the GPU kernel forms the root of

this tree. It then searches the state space guided by various search
reduction heuristics.
The essence of the VM executor: GKLEE can be regarded as
a symbolic model checker (for GPU kernels) with the symbolic
state modeling the hardware state and the transitions modeling non-
determinism due to symbolic inputs.

With this view, it is natural that GKLEE supports facilities such
as state caching and search heuristics (e.g. depth-first, weighted-
random, bump-merging, etc.), all of which are inherited from
KLEE. The checks discussed in Section 3 are essentially built-in
global safety properties examined at each state. In the state space
tree, a path from the root to a leaf represents a valid computation
with a path condition recording all the branching decisions made
by all the threads. At a leaf state, we can generate a test case by
solving the satisfiability of this path condition. This ability makes
GKLEE a powerful test generator.
Soundness and completeness of the test generator: Given a race
free kernel with a set of symbolic inputs, GKLEE visits a path if and
only if there exists a schedule where the decisions made by threads
(recorded in the path condition) are feasible.

Note that the feasibility of a path condition is calculated by SMT
solving, which is precise without any approximation. At the first
glance, the completeness of test generation may be not be obvious
since we consider only one (canonical) schedule, while another
schedule may apply the branchings in a different order.

To clarify this, consider the following situation where thread t0
(t1) branches on conditions c0,0 (c1,0):

t0 t1
if (c0,0) . . . ; if (c1,0) . . . ;

If t0 executes before t1, then a depth-first search visits 4 paths
with path conditions c0,0 ∧ c1,0, c0,0 ∧ ¬c1,0, If t1 executes
before t0, then the 4 path conditions become c1,0∧c0,0, c1,0∧¬c0,0
. . . . The commutativity of the ∧ operator ensures, under the race-
free constraint, the equivalence of these two path sets. Hence, it
suffices to consider only one canonical schedule in test generation
as in conflict checking (Section 3).

Example. Consider the Bitonic kernel running on one block with
4 threads. Suppose the input values is of size 4 and has sym-
bolic value v. Lines 1-4 copy the input to shared: ∀i ∈ [0, 3] :

shared[i] = v[i]. For thread 0, since lines 7-8 involve no symbolic
values, they are executed concretely. In the first iteration of the in-
ner loop, we have k = 2, j = 1, and ixj = 1. The conditional
branch at line 10 is evaluated to be true; so does that at line 11.
Then the execution reaches the branch at line 12. GKLEE queries
the constraint solver to determine that both branches are possible;
it explores both paths and proceeds to the loop’s next iteration. Fi-
nally the execution terminates with 28 paths (and test cases).

Coverage Directed State/Path Reduction. Given that a kernel
is usually executed by a large number of threads, there is a real
danger, especially with complex/large kernels, that multiple threads
may end up covering some line/branch while no threads visit other
lines/branches.1We have experimented with several heuristics that
help GKLEE achieve coverage directed search reduction. Basically,
we keep track of whether some feature (line or branch) is covered
by all the threads at least once, or some thread at least once. These
measurements help GKLEE avoid exploring states/paths that do not
result in added coverage.

Another usage of these metrics is to perform test case selection
which still explores the entire state space, but outputs only a subset
of test cases (for downstream debugging use) after the entire execu-
tion is over, with no net loss of coverage. Details of these heuristics

are discussed in § 5.2. To the best of our knowledge, coverage mea-
sures for SIMD programs have not been previously studied.

5. Experimental Results
As described in Section 1, a GPU kernel along with a CPU driver
is compiled into LLVM bytecode, which is symbolically executed
by GKLEE. Since GKLEE can handle GPU and CPU style code, we
can mix the computation of CPU and GPU, e.g. execute multiple
kernels in a sequence.

CPU code; GPU code; CPU code; GPU code; ...

Driver. The user may give as input a kernel file to test together
with a driver representing the main (CPU side) program. To cater
for the need of LLVM-GCC, we redefine some CUDA specific
directives and functions, e.g. we use C attributes to interpret them,
as illustrated by the following definition of shared .

#define __shared__
__attribute((section ("__shared__")))

#define cutilSafeCall(f) f
void cudaMalloc(void** devPtr, size_t size) {

*devPtr = malloc(size);
}
void cudaMemcpy(void* a, void* b, size_t size, ...)
{ memcpy(a,b,size); };

We show below an example driver for the Bitonic Sort ker-
nel. The user specifies what input values should have symbolic
values; and may place assert assertions anywhere in the code,
which will be checked during execution. Particularly, the pre- and
post- conditions are specified before and after the GPU code re-
spectively. Function begin GPU(NUM) (a more general format
is begin GPU(bdim.x,bdim.y,bdim.z,gdim.x,gdim.y,gdim.z))
specifies that the x dimension of the block size is NUM.

int main() {
int values[NUM];
gklee_make_symbolic(values, NUM, "input");

int* dvalues;
cutilSafeCall(cudaMalloc((void**)&dvalues,

sizeof(int)*NUM));
cutilSafeCall(cudaMemcpy(dvalues, values,

sizeof(int)*NUM, cudaMemcpyHostToDevice));

// <<<...>>>(BitonicKernel(dvalues))
__begin_GPU(NUM); // block size = <NUM>
BitonicKernel(dvalues);
__end_GPU();

// the post-condition
for (int i = 1; i < NUM; i++)

assert(dvalues[i-1] <= dvalues[i]);

cutilSafeCall(cudaFree(dvalues));
}

A concrete GPU configuration can be specified at the com-
mand line. For instance, option –blocksize=[4,2] indicates that
each block is of size 4×2. These values can also be made symbolic
so as to reveal configuration limitations.

5.1 Results I: Symbolic Identification of Issues
GKLEE supports (through command-line arguments) bank conflict
detection for 1.x (memory coalescing checks cover 1.0 & 1.1, and
1.2 & 1.3), as well as 2.x device capabilities. Table 1 presents
results from SDK 2.0 kernels while Table 2 presents those from

1 We have extended GKLEE’s symbolic VM to measure statement and
branch coverage in terms of LLVM byte-code instructions.

SDK 4.0 (many of these are written for 2.x). These are widely
publicized kernels. Our results are with respect to symbolic inputs.
Tables (1 and 2): (#T denoting the number of threads analyzed)
asserts that, under valid configurations, (i) all barriers were found
to be well synchronized; (ii) the functional correctness is verified
(w.r.t the configurations); but only the canonical schedule is con-
sidered for cases with races (marked with *) (thus for cases with
fatal races, we are unsure of the overall functional correctness);
(iii) performance defects (to specific degrees) were found in many
kernels; (iv) two races were observed (Histogram64 and RadixSort
kernels); and (v) several alerts pertaining to the use of volatile
declarations were reported. ‘WW’ denotes write-write races; they
are marked benign (ben.) if the same value is written in our concrete
execution trace. The computation is expected to be deterministic.

The race in Radix Sort was within function
radixSortBlockKeysOnly() involving sMem1[0] = key.x for dis-
tinct key.x written by two threads. In Histogram64, we mark the
race WW? as we are unsure whether s Hist[..]++ of Figure 7 ex-
ecuted by two threads within one warp is fatal (apparently, CUDA
guarantees2 a net increment by 1). It is poor coding practice any-
how (we notate correctness as ‘Unknown’).

One row result is presented for Bank Conflicts, Memory Coa-
lescing, and Warp Divergence, this row averaging over barrier in-
tervals. The 71% for Scan Best under Bank Conflict (compute ca-
pability 2.x) is obtained by: 14 BIs were analyzed, and out of it,
10 had bank conflicts, which is 71%. All other “z%” entries may
be read similarly. This sort of a feedback enables a programmer
to attempt various optimizations to improve performance. When
a kernel’s execution contains multiple paths (states), the average
numbers for these paths are reported. Also, with GKLEE’s help, we
tried a variety of configurations (e.g. symbolic configurations) and
discovered undocumented constraints on kernel configurations and
inputs.

To show that the numbers reported by GKLEE track CUDA pro-
filer reports, we employed GKLEE-generated concrete test cases
and ran selected kernels on the Nvidia GTX 480 hardware. GK-
LEE includes a utility script, gklee-replay, that compiles the ker-
nels using nvcc, executes them on the hardware and optionally in-
vokes the NVIDIA command line profiler (which is the back end to
their Compute Visual Profiler). We found GKLEE’s findings to be
in agreement with that discovered by the profiler. GKLEE’s statis-
tics can be used for early detection of these performance issues on
symbolic inputs.

Volatile Checking Heuristic GKLEE employs a heuristic to help
users check for potentially missed volatile qualifiers. Basically,
GKLEE analyzes for data sharings between threads within one warp
involving two distinct SIMD instructions. The gist of an example
(taken from the CUDA SDK 2.0) when it was compiled for device
capability of 2.x, was as follows: a sequence ‘a;b’ occurred inside
a warp where SIMD instruction ‘a’ writes a value into addresses a1
and a2 on behalf of t0 and t1, respectively; and SIMD instruction
’b’ reads a0 and a1 in t0 and t1, respectively. Now t1 was meant
to see the value written into a1, but it did not, as the value was
held in a register and not written back (a volatile declaration was
missing in the SDK 2.0 version of the example). An Nvidia expert
confirmed our observation and has updated the example to now
have the volatile declaration.

We now provide a few more details on this issue. The SDK 4.0
version of this example has the volatile declaration in place. We
exposed this bug when we took a newer release of the nvcc com-
piler (released around SDK 4.0 and does volatile optimizations),
compiled the SDK 2.0 version of this example (which omits the
volatile), ran the program on our GTX 480 hardware, finding incor-

2 As confirmed through discussions with engineers at Nvidia.

rect results emerging. The solution in GKLEE is to flag for poten-
tially missed volatiles in the aforesaid manner; in future, we hope
to extend GKLEE to “understand” compiler optimizations and deal
with this issue more thoroughly.

Table 3 compares the execution times of GKLEE and our functional
correctness checking tool PUG [1]. This result shows the pros
and cons of a full SMT based static analyzer (like PUG) or a
testing based approach (like GKLEE) which is far more scalable.
We performed experiments on a laptop with an Intel Core(TM)2
Duo 1.60GHz processor and 2GB memory. Here the GPU times
in GKLEE count in sanity checking and test generation. Similar
to GKLEE, PUG also sequentializes the threads and unrolls the
loops when checking functional correctness. GKLEE outperforms
PUG due partially to its various optimizations such as expression
rewriting, value concretization, constraint independence, and so on.
A more important factor is that GKLEE is a concolic tool which
simplifies the expressions on-the-fly and puts much less burden to
the SMT solver, in addition to generating concrete tests, which
PUG does not. Both tools perform poorly on the “Bitonic Sort”
kernel since the relation between this kernel’s input elements are
complicated, e.g. thus GKLEE needs to explore many paths. Section
2.2.4 presents GKLEE’s reduction heuristics to ameliorate this.

As an added check, we tested GKLEE on the same 57 kernels
used in [1]. GKLEE found the same 2 real bugs (one deadlock
and one WR race). It also revealed that 4 of other kernels contain
functional correctness bugs.

5.2 Results II: Testing and Coverage
We assess GKLEE with respect to newly proposed coverage mea-
sures and coverage directed execution pruning. In Table 4, we at-
tempt to measure the source-code coverage by converting the given
kernel into a sequential version (through Perl scripts) and apply-
ing the gcov tool (better means are part of future work). The point
is that source-code coverage may be deceptively high, as shown
(“a/b” means “statements/branches” covered; collectively, we call
this a target). This is the reason we rely upon only byte-code mea-
sures, described in the sequel.

GKLEE first generated tests for the shown kernels covering all
feasible paths, and subsequently performed test case selection. For
example, it first generated the 28 execution paths of Bitonic Sort;
then it trimmed back the paths to just 5 because these five tests
covered all the statements and branches at the byte-code level.

Four byte-code based target coverage measures were assessed
first: (i) avg. Covt measures the number of targets covered by
threads across the whole program, averaged over the threads,
(ii) max. Covt that measures the maximum by any thread, (iii) avg.
CovBIt computes Covt separately for each barrier interval and re-
ports the overall average, and (iv) max. CovBIt is similar to avg.
CovBIt except for taking a maximum value. From Table 4, we
conclude that the maximum measures give an overly optimistic
impression, so we set them aside. We choose avg. CovBIt for our
baseline because activities occurring within barrier intervals are
closely related, and hence separately measuring target coverage
within BIs tracks programmer intent better.

Armed with avg. CovBIt and min #tests, we assess several
benchmarks (Table 5) with ‘No Reductions’, and two test reduction
schemes. Runs with ‘No Reductions’ and no test case selection
applied show the total number of paths in the kernels, and the upper
limits of target coverage (albeit at the expense of considerable
testing time). RedTB is a reduction heuristic where we separately
keep track of the coverage contributions by different threads. We
continue searching till each thread is given a chance to hit a test
target. For instance, in one barrier interval, if one target is reachable
by all the threads, we continue exploring all these threads; but
if the same target is reachable again (say in a loop), we cut off

the search through the loop. In contrast, RedBI only looks for
some thread reaching each target; once that thread has, subsequent
thread explorations to that target are truncated (more aggressive
reductions). While the coverage achieved is nearly the same (due
to the largely SIMD nature of the computations), it is clear that
RedTB is a bit more thorough.

The overall conclusion is that to achieve high target coverage
(virtually the same coverage as with ‘No Reductions’), reduction
heuristics are of paramount importance, as they help contain test
explosion. Specifically, the number of paths explored with reduc-
tions is much lower than that done with ‘No Reductions.’ A pow-
erful feature of GKLEE is therefore its ability to output these mini-
mized high-quality tests for downstream debugging.
Additional sanity-checking: we generated purely random inputs (as
a designer might do); in all cases, GKLEE’s test generation and test
reduction heuristics provided far superior coverage with far fewer
tests.

6. Related Work
Traditional CUDA program debuggers [19–21] do not solve path
constraints to home into relevant inputs that can trigger bugs. They
examine bugs that occur only within platform executions.

Symbolic techniques for program analysis go back to works
such as [22] with concolic versions proposed in [6, 8] and more
recently in KLEE [4]. GKLEE’s approach is based on [4] which
has inspired many projects [7] similar to ours. Concolic-execution
based solvers for special domains also exist. None of these methods
incorporate ways to deal with SIMD concurrency in GPUs and look
for GPU-specific correctness or performance issues.

Except for GKLEE, there are only few GPU-specific checkers
reported in the past. Table 6 gives a comparison of these tools. An
instrumentation based technique is reported [3] to find races and
shared memory bank conflicts. This is an ad-hoc testing approach,
where the program is instrumented with checking code, and only
those executions occurring in a platform-specific manner are con-
sidered. A similar method [2] is used to find races with the help of
a static analysis phase. Static analysis is performed first to locate
possible candidates so as to reduce the runtime overheads caused
by instrumented code. These runtime methods cannot accept sym-
bolic inputs and verify function correctness on open inputs, not to
mention test generation. Moreover GKLEE supports a rich set of
C++ language features (including those considered specifically in
tools such as [23]) which other tools do not handle. In [24], a static
analysis based method for divergence analysis and code optimiza-
tion is presented.

Aiken and Gay [18] proposed a type system to check global
synchronization errors by applying a simple single-value analysis,
which may produce false alarms by rejecting correct programs.
GKLEE uses SMT solving to compare expressions and is more
precise.

While the approach of PUG [1] is SMT-based, it is not very
scalable as shown in Table 3. Recently, simple analysis for memory
coalescing was added to it [25]. PUG is also a kernel-at-a-time
analyzer while GKLEE can analyze whole GPU programs.

Even if we narrow down to race detection on concrete inputs,
instrumentation based tools may suffer from performance or exten-
sibility problems because it is hard to implement sophisticated ex-
ecution controls and decision procedures on the source level, while
GKLEE does everything over an optimized symbolic virtual ma-
chine. As pointed out by Boyer [3], although it is possible to run an
instrumentation based tool on the GPU (thus parallelizing its exe-
cution), CUDA only supports useful features (e.g. display debug-
ging information, or recording traces in a file) in emulation mode
which disables parallelism in GPU. Note that GKLEE supports test
case replaying on the GPU. It also supports kernel simulation on

Kernels Loc Race Func. #T Bank Conflict Coalesced Accesses (↑ perf.) Warp Diverg. Volatile
Corr. (↓ perf.) (↓ perf.) Needed

1.x 2.x 1.0 & 1.1 1.2 & 1.3 2.x
Bitonic Sort 30 yes 4 0% 0% 100% 100% 100% 60% no
Scalar Product 30 yes 64 0% 0% 11% 100% 100% 100% yes
Matrix Mult 61 yes 64 0% 0% 100% 100% 100% 0% no
Histogram64tb. 69 WW? Unknown 32 66% 66% 100% 100% 100% 0% yes
Reduction (7) 231 yes 16 0% 0% 100% 100% 100% 16∼83% yes
Scan Best 78 yes 32 71% 71% 100% 100% 100% 71% no
Scan Naive 28 yes 32 0% 0% 50% 100% 100% 85% yes
Scan Workefficient 60 yes 32 83% 16% 0% 100% 0% 83% no
Scan Large 196 yes 32 71% 71% 100% 100% 100% 71% no
Radix Sort 750 WW yes* 16 3% 0% 0% 100% 100% 5% yes
Bisect Small 1,000 WW – 16 38% 0% 97% 100% 100% 43% yes
Bisect Largetb. 1,400 ben. – 16 15% 0% 99% 100% 100% 53% yes

Table 1. SDK 2.0 Kernel results. “Reduction” contains 7 kernels with different implementations; we average the results. Results for “Histogram64,” and
“Bisect Large” are time-bounded (tb.) to 20 mins. Func. Corr. results about float values are skipped at –. We checked the integer version of “Radix Sort”; and
CUDPP library calls involved in “Radix Sort” were not analyzed.

Kernels Loc Race #T Bank Conflict(↓ perf.) Coalesced Accesses (↑ perf.) Warp Diverg. Volatile(N/M)
1.x 2.x 1.0 & 1.1 1.2 & 1.3 2.x (↓ perf.)

Clock 38 64 0% 0% 0% 100% 100% 85% no/no
Scalar Product 47 128 0% 0% 50% 100% 100% 36% no/no
Histogram64tb. 70 64 0% 33% 0% 0% 0% 0% no/no
Scan Short 103 64 0% 0% 0% 100% 100% 0% yes/no
Scan Large 226 64 0% 0% 0% 67% 67% 25% yes/no
Transpose (8) 172 256 0∼50% 0∼100% 0∼100% 0∼100% 0∼100% 0% no/no
Bisect Small 1,000 WW 16 38% 0% 97% 100% 100% 43% yes/yes

Table 2. SDK 4.0 Kernel results. If volatiles needed (N) is ’yes’ and missed (M) is ’no’, the code annotation is correct. Examples with both
’yes’ (missed volatiles) were found. Transpose contains 8 different implementations; we report the results as a range through “∼”. Kernels
having the same results as their SDK 2.0 versions, including Bitonic Sort, MatrixMult and Bisect Large, are not presented.

Kernels #T = 4 #T = 16 #T = 64 #T = 256 #T = 1,024
PUG GKLEE PUG GKLEE GKLEE GKLEE GKLEE

Simple Reduct. 2.8 < 0.1(< 0.1) T.O < 0.1(< 0.1) < 0.1(< 0.1) 0.2(0.3) 2.3(2.9)
Matrix Transp. 1.9 < 0.1(< 0.1) T.O < 0.1(0.3) < 0.1(3.2) < 0.1(63) 0.9(T.O)
Bitonic Sort 3.7 0.9(1) T.O T.O T.O T.O T.O
Scan Large – < 0.1(< 0.1) – < 0.1(< 0.1) 0.1(0.2) 1.6(3) 22(51)

Table 3. Execution times (in seconds) of GKLEE and PUG [1] on some kernels for functional correctness check. #T is the number of threads.
Time is reported in the format of GPU time (entire time); T.O means > 5 minutes.

Kernels src. code coverage min #test avg. Covt max. Covt avg. CovBIt max. CovBIt exec. time
Bitonic Sort 100%/100% 5 78%/76% 100%/94% 79%/66% 90%/76% 1s
Merge Sort 100%/100% 6 88%/70% 100%/85% 93%/86% 100%/100% 1.6s
Word Search 100%/100% 2 100%/81% 100%/85% 100%/97% 100%/100% 0.1s
Suffix Tree Match 100%/90% 7 55%/49% 98%/66% 55%/49% 98%/83% 31s
Histogram64tb. 100%/100% 9 100%/75% 100%/75% 100%/100% 100%/100% 600s

Table 4. Covt and CovTBt measure bytecode coverage w.r.t threads. min #test tests are obtained by performing test case selection after the
execution. Result for “Histogram64” is limited to 600 s. No test reductions used in generating this table. Exec. time on typical workstation.

the CPU as the CUDA debugger does. Last but not least, GKLEE
can look for compiler-related bugs due to omitted volatiles.

The KLEE-FP [26] tool extends KLEE to cross-check IEEE 754
floating-point programs and their SIMD-vectorized versions. Two
floating-point expressions are equivalent if they can be normalized
to the same form. This tool does not address the same class of cor-
rectness and performance bugs as GKLEE, neither does it produce
concrete test cases. However, its floating-point package can help
overcome GKLEE’s current inability to handle float numbers. Re-
cently KLEE-FP has been extended [27] 3to handle OpenCL code,
targeted in particular at crosschecking OpenCL code against an ini-
tial scalar sequential version, and on finding races in such code.

3 This work and that in this paper were concurrent and independent.

Some Limitations of GKLEE. GKLEE cannot be used to ana-
lyze the functional correctness of CUDA applications that involve
floating-point calculations (efficient SMT methods for floating-
point arithmetic, when available, will help here). The concolic na-
ture of GKLEE can help ameliorate this drawback by sometimes
“concretizing” the floating numbers to integers. All other analyses
done by GKLEE are unaffected by floating-point types, as typically
variable addresses involve only unsigned integers.

7. Concluding Remarks
We presented GKLEE, the first symbolic virtual machine based cor-
rectness checker and test generator for GPU programs written in
CUDA/C++. It checks several error categories, including one pre-

Kernels No Reductions RedTB RedBI

#path avg. CovBIt #path avg.CovBIt #path avg. CovBIt

Bitonic Sort 28 79%/66% 5 79%/66% 5 79%/65%
Merge Sort 34 93%/86% 4 92%/84% 4 92%/84%
Word Search 8 100%/97% 2 100%/97% 2 94%/85%
Suffix Tree Match 31 55%/49% 6 55%/49% 6 55%/49%
Histogram64 13 100%/100% 5 100%/100% 5 100%/100%

Table 5. Reduction Heuristic Comparisons.

Comparison
Categories GKLEE PUG [1] GRace[2] [3]
Methodology Concolic Exec. in virtual machine Symbolic Analysis Static Analysis + Dyn. Check Dynamic Check
Level of Analysis LLVM Bytecode Source Code Source Code (Instrument.) Source Code (Instrument.)
Bugs Targeted Race (intra-/inter- warp, all memory), Shared Mem. Race, Intra-/Inter- Warp Race Shared Mem. race,

Warp Divergence, Deadlocks, Deadlocks, Bank Conflict Bank Conflict
Memory Coalesce, Bank Conflicts

Compilation level bugs (e.g. Volatiles)
False alarm elim. SMT-solving, GPU replaying Auto./Manual Refinement Dynamic Execution Dynamic Execution
Test Generation Automatic, Hardware Execution, Not supported Not supported Not supported

Coverage Measures, Test Reduction

Table 6. Comparison of Formal Verifiers of GPU Programs

viously unidentified race type. We discussed logical errors and per-
formance bottlenecks detected by GKLEE in real-world kernels. For
many realistic kernels, finding these issues takes less than a minute
on a modern workstation. We propose several novel code coverage
measures and show that GKLEE’s test generation and test reduc-
tion heuristics achieve high coverage. Several future directions are
planned: (i) OpenCL [10] support, (ii) handling formats other than
LLVM (e.g., Nvidia’s PTX) using frameworks such as Ocelot [28],
(iii) scalability enhancement, including parameterized methods for
SIMD programs, and (iv) using static performance analysis results
of GKLEE to guide dynamic performance analysis on typical input
data sets.
Acknowledgements: We thank the authors of [4] for releasing
KLEE well designed and documented. The Utah authors were sup-
porte by NSF awards CNS-1035658 and CCF-0935858.

References
[1] G. Li and G. Gopalakrishnan, “Scalable SMT-based verification of

GPU kernel functions,” in SIGSOFT FSE, 2010.
[2] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal, “GRace: A low-

overhead mechanism for detecting data races in GPU programs,” in
PPoPP, 2011.

[3] M. Boyer, K. Skadron, and W. Weimer, “Automated dynamic analysis
of CUDA programs,” in Third Workshop on Software Tools for Multi-
Core Systems, 2008.

[4] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and au-
tomatic generation of high-coverage tests for complex systems pro-
grams,” in OSDI, 8th USENIX Symposium, 2008.

[5] “SMT-COMP. http://www.smtcomp.org/2011.”
[6] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated

random testing,” in PLDI, 2005.
[7] “KLEE open projects,” http://klee.llvm.org/OpenProjects.

html.
[8] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing

engine for C,” in 10th ESEC/FSE, 2005.
[9] “CUDA zone. www.nvidia.com/object/cuda_home.html.”

[10] OpenCL. http://www.khronos.org/opencl.

[11] A. Kamil and K. A. Yelick, “Concurrency Analysis for Parallel Pro-
grams with Textually Aligned Barriers,” in LCPC, 2005.

[12] “The LLVM compiler infrastructure. http://www.llvm.org/.”
[13] “GKLEE Technical Report. http://www.cs.utah.edu/fv/

GKLEE.”
[14] “Cuda programming guide version 4.0. http://developer.

download.nvidia.com/compute/cuda/4_0/toolkit/docs/
CUDA_C_Programming_Guide.pdf.”

[15] J. Sevcik, “Safe Optimisations for Shared-Memory Concurrent Pro-
grams,” in PLDI, 2011.

[16] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. Netzer, “Detecting data
races on weak memory systems,” in ISCA, 1991.

[17] D. Shasa and M. Snir, “Efficient and correct execution of parallel
programs that share memory,” ACM TOPLAS, vol. 10, no. 2, pp. 282–
312, 1988.

[18] A. Aiken and D. Gay, “Barrier inference,” in POPL, 1998.
[19] NVIDIA, “CUDA-GDB,” Jan. 2009, an extension to the GDB debug-

ger for debugging CUDA kernels in the hardware.
[20] Nvidia, “Parallel Nsight,” Jul. 2010.
[21] Rogue Wave, “Totalview for CUDA,” Jan. 2010.
[22] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil, “Flavers: A finite

state verification technique for software systems,” IBM Systems Jour-
nal, vol. 41, no. 1, 2002.

[23] S. K. Lahiri, S. Qadeer, and Z. Rakamaric, “Static and precise detec-
tion of concurrency errors in systems code using SMT solvers,” in 21st
Computer Aided Verification (CAV), 2009.

[24] B. Coutinho, D. Sampaio, F. M. Quintao Pereira, and W. Meira Jr.,
“Divergence analysis and optimizations,” in PACT, 2011.

[25] J. Lv, G. Li, A. Humphrey, and G. Gopalakrishnan, “Performance
degradation analysis of GPU kernels,” in EC2 Workshop, 2011.

[26] P. Collingbourne, C. Cadar, and P. H. J. Kelly, “Symbolic crosscheck-
ing of floating-point and SIMD code,” in EuroSys, 2011.

[27] P. Collingbourne, C. Cadar, and P. Kelly, “Symbolic testing of OpenCL
code,” in Haifa Verification Conference (HVC), 2011.

[28] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: a
dynamic optimization framework for bulk-synchronous applications
in heterogeneous systems,” in PACT, 2010.

