
Energy-Aware Memory Access Scheduling

Yongkui Han and Israel Koren Electrical and Computer Engineering University of Massachusetts, Amherst January 30, 2004

Motivation

- DRAM devices are accessed in units of L2 cache block size, e.g., 64 bytes.
- Energy values for Micron MT48LC16M16A2 SDRAM device:
 - Row activation and precharge energy: 20nJ
 - Column access for 64 bytes: 26nJ
- If we reorder the memory accesses to put together accesses to the same row, we can remove some unnecessary row activations and save DRAM energy.
- Next we compare a performance-aware scheduling policy with an energy-aware scheduling policy.

Example 1: putting together column accesses

(i,j,k) denotes an access to (bank, row, column)=(i,j,k)

1. original accesses:

order = (0,0,0) (0,1,0) (0,0,4) (0,1,8) (0,0,8) (0,2,3)(0,1,12)

energy = (20+26)*7 = 322nJ

2. performance-aware scheduling:

 $order = (0,0,0) \; (0,0,4) \; (0,0,8) \; (0,1,0) \; (0,1,8) \; (0,1,12) \; (0,2,3)$

energy = 20+26*3+20+26*3+20+26 = 242nJ

3. energy-aware scheduling:

identical to the above, saving 80nJ.

Example 2: critical word first

1. Original accesses:

order = (0,0,0) (0,0,1) (0,0,2) (0,0,3) (0,1,0) (0,1,1) (0,1,2) (0,1,3) energy = 20+26*4+20+26*4=196nJ

(0,0,2) and (0,1,3) contain critical words.

2. Performance-aware scheduling:

 $\begin{aligned} & \text{order} = (0,0,2) \; (0,1,3) \; (0,0,1) \; (0,0,2) \; (0,0,3) \; (0,1,0) \; (0,1,1) \; (0,1,2) \\ & \text{energy} = 20 + 26 + 20 + 26 + 20 + 26 + 3 + 20 + 26 + 3 = 236 \text{nJ} \end{aligned}$

3. Energy-aware scheduling:

 $\begin{aligned} & \text{order} = (0,0,2) \; (0,0,0) \; (0,0,1) \; (0,0,3) \; (0,1,3) \; (0,1,0) \; (0,1,1) \; (0,1,2) \\ & \text{energy} = 20 + 26 * 4 + 20 + 26 * 4 = 196 \text{nJ} \end{aligned}$

We can save 40nJ compared to performance-aware scheduling.

Example 3: read-bypass-write

1. Original accesses:

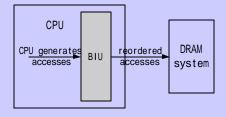
order = (0,0,0)r (0,1,0)w (0,0,4)w (0,1,4)r (0,2,4)r, energy = 20+26+20+26+20+26+20+26+20+26=230nJ

2. Performance-aware scheduling:

order = (0,0,0)r (0,1,0)r (0,2,4)r (0,0,4)w (0,1,0)w energy = 20+26+20+26+20+26+20+26+20+26=230nJ

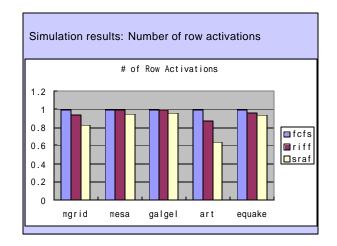
3. Energy-aware scheduling:

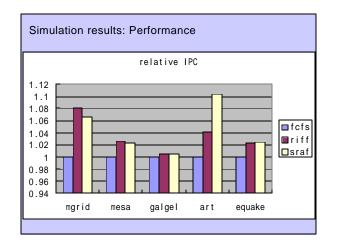
order = (0,0,0)r (0,0,4)w (0,1,4)r (0,1,0)w (0,2,4)r energy = 20+26+26+20+26+20+26=190nJ

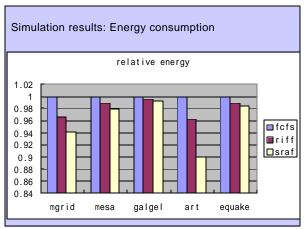

We can save 40nJ compared to performance-aware scheduling.

Three Scheduling Policies

- FCFS: First Come First Serve
 - this is the simplest one, just follow the original memory access order.
- RIFF: Read or Instruction Fetch First
 - give higher priority to memory read over memory write. this is a performance-aware scheduling policy, suggested by S. Rixner, et al.
- SRAF: Same Row Access First
 - give higher priority to memory accesses to the same row as the current one. this is an energy-aware scheduling policy we suggest.


Policy Implementation


• All three policies are implemented at the BIU (Bus Interface Unit), which is located in the processor, before accesses go to the DRAM system from the processor.



Experimental Setup

- Simulator: sim-mase (included in the simplescalar v4.0 test release) developed by UMich, which includes a DRAM simulator developed by UMD.
- 5 floating point SPEC2000 benchmarks.
- Simulation: fastforward 1 billion instructions, then simulate the next 100 million instructions in detail.
- Policy implementation overhead: Since the memory access scheduling operations can be overlapped with memory access operations, there is no performance overhead, and the energy overhead is negligible.

Conclusion

- Memory access order greatly affects the energy consumption of DRAM memory devices.
- By putting together accesses to the same row, we can remove many unnecessary row activations.
- We can save considerable energy through memory access scheduling, especially for memory access intensive applications.

Questions?