
1

1/30/2004 1

Reliable Return Address Stack:
Microarchitectural Features to
Guard Against Stack Smashing

Dong Ye, Micha Moffie and David Kaeli
ECE Department

Northeastern University

dye, mmoffie, kaeli@ece.neu.edu

1/30/2004 2

Outline

♦ Introduction to stack smashing
♦Return Address Stack (RAS)
♦Reliable Return Address Stack (RRAS)
♦Performance evaluation
♦Conclusions and future work

1/30/2004 3

Program Stack of a C Process

main(int argc, char **argv)
{

…
foo(argv[1], 10);
…

}

void foo(int i, char *s) {
char b[16];
strcpy(b, s);
……

}

main() auto
variables

return addr of main()

frame ptr of main()

Stack ptr

Frame ptr

Stack grows

Buffer
grows

10

argv[1]

0
+4

-4

+8
+12

ijkl

efgh

abcd

-8
-12
-16 b[0]

b[1]

b[2]

b[3]

Stack

mnop

0x0012ff12

0x0012ff08

0x0012ff04

0x0012ff00

1/30/2004 4

Stack Smashing Scheme
1. Overwrite an

unchecked buffer
2. Change the return

address, making it
point to the attack
code

3. Attack code will
be executed upon
return

main() auto
variables

0x0012ff12

0x0012ff12

Stack ptr

Frame ptr

Stack grows

Buffer
grows

start of attack code

0x0012ff12

0
+4

-4

+8

+12

-8
-12
-16 b[0]

b[1]

b[2]

b[3]

Stack

0x0012ff12

0x0012ff08

0x0012ff04

0x0012ff00

2

1/30/2004 5

Return Address Stack (RAS)

♦A microarchitectural unit that predicts
function return addresses (performs jump
prediction)
– Very accurate prediction

• Original version: >90% correct
• With some repair mechanisms: 99% correct

– Captures the common case of function calls
• Last-In-First-Out (LIFO)

– Works well and is widely deployed

1/30/2004 6

RAS – Enforce Security?
Can we use RAS to provide the correct return

address (RA)?
♦ Cannot be overwritten

– invisible to viruses
♦ But there is no guarantee of correctness
♦ Incorrect predictions due to:

– Finite size of RAS entries
– Multithreading
– Speculative execution
– Non-LIFO function calls

1/30/2004 7

Solution: Reliable Return
Address Stack (RRAS)
♦ Reserved RRAS spill area in memory
♦ Per-thread stack context
♦ Built-in fully associative logic and additional

storage to find the correct RA on the entire RAS
upon each function return
– Matches function entry address if it is non-recursive
– Matches return address if call is recursive or if the

function entry address is not available yet

1/30/2004 8

A R entry return
RAS

O entry exitAPT

Program
 Stack

RRAS

return addr
call/return instrs

reserved spill area

RRAS Design
Upon call:
♦ Check for recursion
♦ Check for direct recursion
♦ Push onto RAS

APT table:
♦ Record entry/exit address pairs

of called functions

Upon return:
♦ Check for recursion and first

call with exit address
♦ Load RA from program stack

if necessary
♦ Locate RA on RAS and send it

to the return instr.
♦ Update APT and RAS if

necessary

3

1/30/2004 9

Performance Tuning

♦Recursion demands additional effort to
guarantee correctness
– “A” tag on the RAS and “O” tag on the APT

are used to differentiate them from one another
♦A direct recursion can flood the RAS and

incur spill/restore operations
– “R” tag on RAS identifies direct recursion and

reuses existing RAS record

1/30/2004 10

Performance Evaluation
♦Overhead incurred only upon call/return

– Instruction mix analysis of SPEC CPU 2000
benchmark % of call and return

bzip2 1.70%
crafty 2.03%
eon 4.09%
gcc 0.41%
gzip 0.99%
mcf 2.93%

parser 3.71%
perlbmk 2.18%

twolf 1.57%
vortex 3.62%
vpr 1.47%

wupwise 1.16%
art 0.05%

fma3d 0.74%
apsi 0.15%

1/30/2004 11

Conclusions and Future Work

♦RRAS can guarantee the correctness of
return addresses

♦Further evaluation
– Performance
– Formal proof

♦Guard against smashing function pointers

1/30/2004 12

Northeastern University
Computer Architecture Research Group

This work is supported by NSF award CISE CSA0310891

