NUCAR

Exploring Parallel
Out-of-Order Re-execution

David Morano ‘_'l
David Kaeli

Northeastern University
Computer Architecture Research

BARC 04/01/30

introduction NUCAR

< Attempting to take advantage of previouswork that has shown
some promisein extracting I PC from sequential programs

IPC of about 6 for 256 simultaneously re-executing instructions
IPC of about 7.5 for 512 simultaneously re-execuring instructions

« Applying some of the re-execution ideas to a mor e conventional
superscalar microar chitecture

* Someideastobecarried forward :

BARC 04/01/30

retaining binary program compatibility to existing ISAs
breaking control and data dependencies
time-ordering-tags as the dependency enforcement mechanism

designing for re-executions of all instruction types (not just memory
loads)

dynamic handling of speculative execution and operand management

Outline

* Introduction

» Execution window

» Basic machine operation
e Issuestations

» Example execution

e Summary

BARC 04/01/30

execution window

—N

—

dispatched |

instructions

L

BARC 04/01/30

—

to memory

|

register file

oldest instruction
(about to commit)

issue station|—|

LSQ
forward stores
_____— backward requests

input operands

issue station

issue station|—|

issue station

youngest instruction
(just dispatched)

result operands

major components

basic operation

e Issuestations

similar to a reservation station

holds instruction operation until ready for retirement

the instruction operation "issues" from this structure to an available

function unit when needed *
— combines some of the functions of an issue window, RUU, and ROB into
a common structure o
¢ Function units .
— generally the same as existing ones o

— returns result operands to the originating issue station rather than writing
results to an RUU or ROB

Architected register file
— not needed for renaming or speculative results
e Familiar load-store queue and memory hierar chy

BARC 04/01/30 5

Issue station

CAR

é\‘

* Similar to reservation station .
* Implements dynamic operand renaming (for registers and memory) .
snoop & forward
‘ operand bus interfacE
request
‘ instruction addressH path ‘ ‘ srcl “— a
‘ instruction OP H time-tag‘ ‘ src2 %—
‘ execution state ‘ ‘ predicate‘ ‘ dstl %—
control logic - (| Initiate
‘ FU bus interface [¢

result

¢ Two input and two output operands are shown (varies w/ ISA)

BARC 04/01/30 7

operand state block

Instructions are decoded at fetch time and stored in fetch buffers
Decoded instructions are dispatched to Issue Stations (IS)
ISes contend with each other for a FU resource (waiting as needed)

ISes send an operation along with its input operands to a FU when
available

The IS waits for the FU execution result
Resulting operand returns to the originating 1S
IS forwards the result operand to other ISes in program-ordered future

ISes who snarf new (different) input operands proceed to re-execute as
needed

BARC 04/01/30 6

Holds all information about one operand
Includes necessary logic to snoop for updates

‘ address ‘ ‘ type ‘ ‘ size ‘
‘ previous value ‘ ‘ time-tag ‘ ‘ path ‘
‘next value ‘ ‘ sequenc#

control logic

Operand names take the form -> type : path : time-tag : seq : addr
Example name for a register -> "register:1:27:3:6"
Predicates are operands also but have additional state (not shown)

BARC 04/01/30 8

NUGAR

snoop/snarf operation

Y

. loaded by
result operand forwarding bus decode or by
mem-addr loaded
t 1 Va'”el calculation at dispatch
time-ta value || address h || inst.
D 9) pat time-ta
» 3 » » X

CEENGRINGS o
. we] |w] e

}» execute or re-execute

| | |
per instruction

repeated for each operand

BARC 04/01/30 9

issue station operation

NUGAR

< Anintruction gets dispatched to an IS with (choices) :
— initial input operands from :
 architected register file
« from a value predictor
— no initial input operands
< If input operands are available, arbitrate for FU resource, otherwise
acquire input operands by requesting them
« After an execution result is available, "forward" the operand
¢ Continuously snoop for new input operands

 Initiate (arbitrate for FU resource) execution when a changed input
operand arrives

« Respond to requests by other ISes for operands
« Track all in-progress conditions for commitment determination

BARC 04/01/30 11

some additional IS state

NUGAR

— Acquiring input operands

— Execution is needed (waiting for FU availability)
— Executing (waiting for FU result to return)

— Executed at least once

— Result operand was requested by another IS

— Result operand needs to be forwarded

— Operand is being forwarded

* Most of these indications also prevent instruction commitment
* Retirement (squash) may still occur under certain conditions

BARC 04/01/30 10

NUGAR

example execution schedule

example execution (registers)

code fragment

label TT instruction cyde exeate forward snarf
: = 0il
!1 0 r3<=1 1 i1{r3=1}
2 1 rd<=r3+1 2 i2{r3=1}, i4{r3=1}
i3 2 r3<=2 3i2, i4
i4 3 5<=r3+2 413 i2{r4=2}, i4{r5=3}
5 i3{r3=2}
6 i4{r3=2}
7i4
8 i4{r5=4}

*« we wantr3 to have value =2 after execution of i3
¢ we wantr5 to have value =4 after execution of i4

¢ 4 executes in clock 3 after snarfingfrom i1, resulting invrong result forr5
¢ 4 executes again after snarfirgfrom i3, giving correct result fais

BARC 04/01/30 12

summary NUC.'AR

* Proposing a microarchitectureto explore OoO re-execution, but
mor e conventional than our previousdesigns
— binary program compatible to existing ISAs
e Will explore:
— the nature and amount of re-execution that may (or may not) be desirable
— different types and numbers of resources
— various interconnection topologies, bus fabrics, and bandwidths
e Microarchiture can be modified to support a number of hardware
mechanisms:
— various value prediction techniques
— dynamic execution-time instruction predication

— dynamically finding and executing control-independent instructions
beyond branch joins

BARC 04/01/30 13

