
BARC 04/01/30 1

David Morano
David Kaeli

BARC 04/01/30

Exploring Parallel
Out-of-Order Re-execution

Northeastern University
Computer Architecture Research

BARC 04/01/30 2

• Introduction
• Execution window
• Basic machine operation
• Issue stations
• Example execution
• Summary

Outline

BARC 04/01/30 3

introduction

• Attempting to take advantage of previous work that has shown
some promise in extracting IPC from sequential programs
– IPC of about 6 for 256 simultaneously re-executing instructions

– IPC of about 7.5 for 512 simultaneously re-execuring instructions

• Applying some of the re-execution ideas to a more conventional
superscalar microarchitecture

• Some ideas to be carried forward :
– retaining binary program compatibility to existing ISAs

– breaking control and data dependencies

– time-ordering-tags as the dependency enforcement mechanism

– designing for re-executions of all instruction types (not just memory
loads)

– dynamic handling of speculative execution and operand management

BARC 04/01/30 4

execution window

dispatched
instructions

issue station

oldest instruction
(about to commit)

youngest instruction
(just dispatched)

register file

forward stores

backward requests

LSQ

FUFUFU

to memory

issue station

issue station

issue station
result operands

input operands

BARC 04/01/30 5

major components

• Issue stations
– similar to a reservation station

– holds instruction operation until ready for retirement

– the instruction operation "issues" from this structure to an available
function unit when needed

– combines some of the functions of an issue window, RUU, and ROB into
a common structure

• Function units
– generally the same as existing ones

– returns result operands to the originating issue station rather than writing
results to an RUU or ROB

• Architected register file
– not needed for renaming or speculative results

• Familiar load-store queue and memory hierarchy

BARC 04/01/30 6

basic operation

• Instructions are decoded at fetch time and stored in fetch buffers

• Decoded instructions are dispatched to Issue Stations (IS)

• ISes contend with each other for a FU resource (waiting as needed)

• ISes send an operation along with its input operands to a FU when
available

• The IS waits for the FU execution result

• Resulting operand returns to the originating IS

• IS forwards the result operand to other ISes in program-ordered future

• ISes who snarf new (different) input operands proceed to re-execute as
needed

BARC 04/01/30 7

issue station

• Similar to reservation station

• Implements dynamic operand renaming (for registers and memory)

dst1

src2

predicate

control logic

instruction OP time-tag

operand bus interface

dst2

src1

execution state

FU bus interface

instruction address path

• Two input and two output operands are shown (varies w/ ISA)

snoop & forward

request

initiate

result

BARC 04/01/30 8

operand state block

• Holds all information about one operand

• Includes necessary logic to snoop for updates

sequence

control logic

previous value time-tag

address

next value

type size

path

• Operand names take the form -> type : path : time-tag : seq : addr

• Example name for a register -> "register : 1 : 27 : 3 : 6"

• Predicates are operands also but have additional state (not shown)

BARC 04/01/30 9

snoop/snarf operation

repeated for each operand per instruction

LD
pathtime-tag instr.

time-tag

==>= <!=

addressvalue
LD

execute or re-execute

tt addrvalue path tt

tt value

result operand forwarding bus
loaded

at dispatch

loaded by
decode or by

mem-addr
 calculation

BARC 04/01/30 10

some additional IS state

– Acquiring input operands

– Execution is needed (waiting for FU availability)

– Executing (waiting for FU result to return)

– Executed at least once

– Result operand was requested by another IS

– Result operand needs to be forwarded

– Operand is being forwarded

• Most of these indications also prevent instruction commitment

• Retirement (squash) may still occur under certain conditions

BARC 04/01/30 11

issue station operation

• An intruction gets dispatched to an IS with (choices) :
– initial input operands from :

• architected register file

• from a value predictor

– no initial input operands

• If input operands are available, arbitrate for FU resource, otherwise
acquire input operands by requesting them

• After an execution result is available, "forward" the operand

• Continuously snoop for new input operands

• Initiate (arbitrate for FU resource) execution when a changed input
operand arrives

• Respond to requests by other ISes for operands

• Track all in-progress conditions for commitment determination

BARC 04/01/30 12

example execution (registers)

code fragment
example execution schedule

• we want r3 to have value =2 after execution of i3

• we want r5 to have value =4 after execution of i4

• i4 executes in clock 3 after snarfing r3 from i1, resulting in wrong result for r5

• i4 executes again after snarfing r3 from i3, giving correct result for r5

label TT instruction
i1 0 r3 <= 1
i2 1 r4 <= r3 + 1
i3 2 r3 <= 2
i4 3 r5 <= r3 + 2

cycle execute forward snarf
0 i1
1 i1{r3=1}
2 i2{r3=1}, i4{r3=1}
3 i2, i4
4 i3 i2{r4=2}, i4{r5=3}
5 i3{r3=2}
6 i4{r3=2}
7 i4
8 i4{r5=4}

BARC 04/01/30 13

summary

• Proposing a microarchitecture to explore OoO re-execution, but
more conventional than our previous designs
– binary program compatible to existing ISAs

• Will explore :
– the nature and amount of re-execution that may (or may not) be desirable

– different types and numbers of resources

– various interconnection topologies, bus fabrics, and bandwidths

• Microarchiture can be modified to support a number of hardware
mechanisms :
– various value prediction techniques

– dynamic execution-time instruction predication

– dynamically finding and executing control-independent instructions
beyond branch joins

