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introduction

• Attempting to take advantage of previous work that has shown 
some promise in extracting IPC from sequential programs
– IPC of about 6 for 256 simultaneously re-executing instructions

– IPC of about 7.5 for 512 simultaneously re-execuring instructions

• Applying some of the re-execution ideas to a more conventional 
superscalar microarchitecture

• Some ideas to be carried forward :
– retaining binary program compatibility to existing ISAs

– breaking control and data dependencies

– time-ordering-tags as the dependency enforcement mechanism

– designing for re-executions of all instruction types (not just memory 
loads)

– dynamic handling of speculative execution and operand management
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major components

• Issue stations
– similar to a reservation station

– holds instruction operation until ready for retirement

– the instruction operation "issues" from this structure to an available 
function unit when needed

– combines some of the functions of an issue window, RUU, and ROB into 
a common structure

• Function units
– generally the same as existing ones

– returns result operands to the originating issue station rather than writing 
results to an RUU or ROB

• Architected register file
– not needed for renaming or speculative results

• Familiar load-store queue and memory hierarchy
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basic operation

• Instructions are decoded at fetch time and stored in fetch buffers

• Decoded instructions are dispatched to Issue Stations (IS)

• ISes contend with each other for a FU resource (waiting as needed)

• ISes send an operation along with its input operands to a FU when 
available

• The IS waits for the FU execution result

• Resulting operand returns to the originating IS

• IS forwards the result operand to other ISes in program-ordered future

• ISes who snarf new (different) input operands proceed to re-execute as 
needed
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issue station

• Similar to reservation station

• Implements dynamic operand renaming (for registers and memory)
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• Two input and two output operands are shown (varies w/ ISA)
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operand state block

• Holds all information about one operand

• Includes necessary logic to snoop for updates

sequence

control logic

previous value time-tag

address

next value

type size

path

• Operand names take the form ->   type : path : time-tag : seq : addr

• Example name for a register  ->  "register : 1 : 27 : 3 : 6"

• Predicates are operands also but have additional state (not shown)
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snoop/snarf operation

repeated for each operand per instruction
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some additional IS state

– Acquiring input operands

– Execution is needed (waiting for FU availability)

– Executing (waiting for FU result to return)

– Executed at least once

– Result operand was requested by another IS

– Result operand needs to be forwarded

– Operand is being forwarded

• Most of these indications also prevent instruction commitment

• Retirement (squash) may still occur under certain conditions
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issue station operation

• An intruction gets dispatched to an IS with (choices) :
– initial input operands from :

• architected register file

• from a value predictor

– no initial input operands

• If input operands are available, arbitrate for FU resource, otherwise 
acquire input operands by requesting them

• After an execution result is available, "forward" the operand 

• Continuously snoop for new input operands

• Initiate (arbitrate for FU resource) execution when a changed input 
operand arrives

• Respond to requests by other ISes for operands

• Track all in-progress conditions for commitment determination
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example execution (registers)

code fragment
example execution schedule

• we want r3 to have value =2 after execution of i3

• we want r5 to have value =4 after execution of i4

• i4 executes in clock 3 after snarfing r3 from i1, resulting in wrong result for r5

• i4 executes again after snarfing r3 from i3, giving correct result for r5

label TT instruction
i1 0 r3 <= 1
i2 1 r4 <= r3 + 1
i3 2 r3 <= 2
i4 3 r5 <= r3 + 2

cycle execute forward snarf
0 i1
1 i1{r3=1}
2 i2{r3=1}, i4{r3=1}
3 i2,  i4
4 i3 i2{r4=2}, i4{r5=3}
5 i3{r3=2}
6 i4{r3=2}
7 i4
8 i4{r5=4}
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summary

• Proposing a microarchitecture to explore OoO re-execution, but 
more conventional than our previous designs
– binary program compatible to existing ISAs

• Will explore :
– the nature and amount of re-execution that may (or may not) be desirable

– different types and numbers of resources

– various interconnection topologies, bus fabrics, and bandwidths

• Microarchiture can be modified to support a number of hardware 
mechanisms :
– various value prediction techniques

– dynamic execution-time instruction predication

– dynamically finding and executing control-independent instructions 
beyond branch joins


