
Why CoGenT?

• Hand-crafting compiler and simulator components is:

– Time-consuming
– Error-prone

• Current available simulators are:

– Difficult to modify
– Difficult to port
– Difficult to instrument
– Difficult to optimize

Trek Palmer CMDL 1

Why a common machine description?

• Compiler research requires fast & accurate simulators

• Architecture research requires optimized compiler backends

• Generate both from a common machine description

• Common language:

– Eliminates redundancy
– Simplifies MD compiler
– Assures syncronization of simulator and compiler

• Previous work solves only some of these problems

CMDL: A Class-based Machine
Description Language

Trek Palmer Jointly with: Ed Walters
Tim Richards

Faculty: Prof. Eliot Moss
Prof. Chip Weems

January 30, 2004

Trek Palmer CMDL 1

The CoGenT Project

• Co-generation of Compiler and Simulator Tools

• Uses a single set of specifications to produce:

– Compiler back-end components
- Register allocators
- Code generators
- Instruction schedulers

– System tools
- Assemblers / Disassemblers
- Debuggers

– Simulators
- Functional/Instruction-accurate
- Cycle-based

Trek Palmer CMDL 2



The CoGenT Language - CMDL

• Specification language for:

– Instruction set syntax
– Instruction set semantics
– Machine store descriptions

• C/Java-inspired syntax

• Elements of other machine description languages

• Allows partial descriptions (details filled in by tools)

• Allows class heirarchies to aid description

Trek Palmer CMDL 3

Bits: The only principal type

• Everything is bits

• Single bits are valid

• Bit Arrays are also allowed

– Defined by length
– Multidimensional arrays are supported

• References provide named sub-regions

• Type modifiers express abstract qualities

Trek Palmer CMDL 4

CoGenT High Level Architecture

• Two Representations

– Description language (CMDL)
– Fully specified, tree-based IR

• Front-end tools

– Receive partially specified input from users
– Generate complete IR descriptions

• Back-end tools

– Receive complete descriptions
– Generate system tools and code

Trek Palmer CMDL 5

CoGenT Structure

Machine
Description

ISA
Description

Pipeline
Description

.

.

.

M
a
n
a
g
e
r

Tool

Tool

User Supplied
Descriptions 

(Possibly Incomplete)
Front End Tools CoGenT IR

(Fully Specified)

Simulator
Generator

BURS
Generator

Assembler
Generator

CoGenT
S-Exprs

Machine

Pipeline

.

.

.

Back End Tools

CoGenTAsm
JikesAsembler

Jikes-Specific 
Tools

CoGenT 
BURS
Jberg

.

.

.

ISA

Trek Palmer CMDL 6



Endianness

• Endianness specifies meaning of indexing

• Example: bit[2] foo = 0b10;

– Big Endian foo[0] = 1
– Little Endian foo[1] = 1

• Bits reordered through assignment

• Indexing converted through coercion

Trek Palmer CMDL 7

Subranges

• Named ranges on types (rather than instances)

• Example:
big unsigned bit[32] ieee32fp;
subrange sign = bit @ ieee32fp[0];
subrange exponent =
unsigned big bit[8] @ ieee32fp[1];

• No recursive subranges

• Different signedness and endianess allowed

Trek Palmer CMDL 8

Type Modifiers and Declarations

• Current Modifiers:

– Signedness: unsigned/signed
– Endianness: big/little
– Mutability: overlay/field

• Handling conflicts

• Type declarations using type ... =

Trek Palmer CMDL 9

Examples

• These type identifiers are equivalent:

– Posix: uint32 t
– CoGenT: big unsigned bit[32]

• These type declarations are equivalent:

– typedef uint32 t unsigned int
– type uint32 = big unsigned bit[32]

• References:
uint32 foo;
bit hi @ foo[0];
bit lo @ foo[31];

Trek Palmer CMDL 10



Instruction Definition Example

Our friend, the PowerPC add immediate (addi) instruction

• All PPC instructions have 6-bit opcode field

• addi is a D-Form instruction

Trek Palmer CMDL 11

Example, continued

class ppc {
unsigned big bit[32] ppc_inst;
unsigned big bit[6] OPCD @ ppc_inst[0]; }

class d-form extends ppc {
unsigned bit bit[5] RA @ ppc_inst[11]; }

class addi extends d-form {
unsigned big bit[5] RT @ ppc_inst[6];
unsigned big bit[16] SI @ ppc_inst[16]; }

Trek Palmer CMDL 12

Classes

• Data + Methods

• Simple single inheritance

• No references

• Restricted form of inclusion

• Useful for specifying orthogonal instruction sets

Trek Palmer CMDL 13

Constraints

• CoGenT classes allow constraints on members

• For parsing, a constraint specifies an expected value

• For emitting, a constraint specifies a ‘magic’ constant

Trek Palmer CMDL 14



Status + Goals

• Base language spec. stable (we even have a manual!)

• Prototype parser implementation nearly complete

• Front-end analysis in progress

• Microarchitecture description spec in progress

• http://ali-www.cs.umass.edu/cogent/index.htm

Trek Palmer CMDL 15 Trek Palmer CMDL 16

Semantics

• Instructions also have semantics

• Semantics are class methods

• Use C-style operators

• Additional, useful operators added (sign-extend, etc.)

Trek Palmer CMDL 17

Mixins

• Allows overloading without actually overloading

• Convenient for orthogonal instruction groups

• For instance, getaddr()

mixin getAddrByWord requires (disp) {
getaddr(disp) { return (bit[32])disp<<2; }

}
mixin getAddrByByte requires (disp) {
getaddr(disp) { return (bit[32])disp; }

}

Trek Palmer CMDL 18


