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A Parallel Program Example
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...

Flow[i] = Flow[i] – X;

Flow[j] = Flow[j] + X;

...

}
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We will use the parallel Push-Relabel Max-Flow 
algorithm to illustrate synchronization.

Achieving Atomicity with Locks

Correct parallel execution requires atomic regions.

int a, b;

if (i<j) {

a = i;

b = j;

} else {

a = j;

b = i;

}

Lock(L[a]);

Lock(L[b]);

Flow[i] = Flow[i] – X;
Flow[j] = Flow[j] + X;
Unlock(L[b]);

Unlock(L[a]);

Parallel Code using 
Locks

Flow[i] = Flow[i] – X;
Flow[j] = Flow[j] + X;

Serial Code
Traditionally, locks 
are used to achieve 
atomicity but…
Hard to use

Deadlock, priority 
inversion, etc.

Conservative
Atomic regions 
protected by the 
same lock can never 
run concurrently.

High overhead
Deadlock avoidance.
Instructions used in 
locking are slow.
Locks use memory.

Achieving Atomicity with Transactions

Ideally, we want atomicity without those problems.

int a, b;

if (i<j) {

a = i;

b = j;

} else {

a = j;

b = i;

}

Lock(L[a]);

Lock(L[b]);

Flow[i] = Flow[i] – X;
Flow[j] = Flow[j] + X;
Unlock(L[b]);

Unlock(L[a]);

XBEGIN;

Flow[i] = Flow[i] – X;
Flow[j] = Flow[j] + X;
XEND;

Parallel Code using 
Locks

Parallel Code using
Transactions

Flow[i] = Flow[i] – X;
Flow[j] = Flow[j] + X;

Serial Code



The Case for Hardware Transactions

Easy to use
The hardware simply guarantees 
transactions are atomic.

Optimistic
Transactions can run concurrently 
when no memory operations conflict.
Easy to implement using much of the 
processor’s speculation hardware.

Low overhead
No need for deadlock avoidance
Fast execution can be achieved using 
cache and cache-coherency effectively.
No lock memory overhead.

XBEGIN;

Flow[i] = Flow[i] – X;
Flow[j] = Flow[j] + X;
XEND;

Parallel Code using
Transactions

Transactions achieve atomicity without those problems.

The Case for Boundless Transactions

Previous hardware transaction schemes enforced a 
bound on transaction size but…

Exposing a transaction size limit is awkward.
Dealing with transaction size limit in the compiler is a 
nontrivial task.
In typical applications, most transactions are really 
small but there are some that are huge.

The Case for Boundless Transactions
Evidence from the Linux Kernel

99.9% of transactions fit in 54 cache lines.
The largest transaction is more than 7000 cache lines.

Transaction Size Distribution in the Linux Kernel
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Boundless Transactional Memory

Goal:

Run small transactions fast!
Large transactions can be slower 
but must still work.



Transactional Memory ISA

Transaction = all instructions 
between XBEGIN and XEND

If a transaction completes, the 
hardware ensures that it is atomic.
If a transaction cannot complete 
atomically, it is aborted.
On an abort, the processor jumps 
to the abort handler and all state is 
rolled-back to the XBEGIN.

In the abort handler, the program 
can back-off and retry.

Trans_begin:

XBEGIN abort_handler

LW R1, 0(R2)

ADDI R1, R1, #1

...

XEND

...

Abort_handler:

...           // Back-off

J Trans_begin // Retry

Add XBEGIN and XEND instructions to the ISA.

Transactional Data Storage

All transactional data is 
stored in the L2 cache. 
[Herlihy & Moss, Knight]
Transactional data is primarily 
stored in the cache
1 additional bit (T) per cache 
line is used to mark the line as 
transactional.
Transactional changes can be 
“rolled-back” by invalidating 
the transactional cache lines.
Transactional changes can be committed by clearing all T bits.
Using the cache achieves very low overhead.

T Tag  Status         Data

Transactional Data Overflow

1 additional bit (O) per set is used to mark if data has overflowed 
from the set.
Overflowed data is stored in an unsorted array in uncached DRAM.
Overflow data structure is checked on every request hitting an 
overflowed set.

Address
Tag  Index  Offset …

Way 0 Way 1

Overflow 
Handler

Uncached Memory

Overflow Data Structure

T Tag  Status         DataO T Tag  Status         Data

Transaction Commit and Abort

Conflicts are detected when an incoming cache 
intervention hits a transactional cache line.
Transaction Commit occurs when no conflicts are 
detected during transaction execution. 

The T and O bits are cleared. All transactional changes become 
globally visible.
All overflowed cache lines are written back to main memory.

Transaction Abort occurs when a conflict is detected 
during transaction execution.

All transactional cache lines are invalidated. All transactional
changes are discarded.
The T and O bits are cleared.
All overflowed cache lines are discarded.
The processor jumps to the abort handler address given at 
XBEGIN.
The processor state is restored to the point just before XBEGIN.



Processor State Save

Saving the architectural 
register state of the processor:

Processor state save is done 
using much the of the existing 
speculation hardware in the 
MIPS R10K. 
32 physical registers are added 
to save the 32 architectural 
registers. 
1 additional bit per physical 
register is added to mark it as 
saved (S).
A Register Reserve List FIFO is 
added to store free physical 
registers that are saved.

…
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Processor State Snapshot

State Save occurs on XBEGIN.
The rename table and active S 
vector are saved away.
Before commit, all physical 
registers marked in the S vector 
are freed into the Reserved List 
instead of the Free List.
After commit, the Reserved List 
is allowed to trickle into the 
Free List.

State Restore occurs on 
transaction abort.

The saved rename table is 
restored.
The Reserved List is cleared.
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Evaluation

We implemented this in the 
UVSIM simulator and 
measured 1-processor 
overheads for the SPECjvm98 
benchmark suite.
In all but one case, transaction 
overhead is much less than 
lock overhead.
213javac runs everything 
inside one large transaction. 
The 14x slowdown suggests 
that a better data structure is 
necessary. 104%175%228jack

1470%170%213javac

100%100%222mpegaudio

105%142%209db

107%141%202jess

102%124%200check

TransactionsLocksBenchmark

Overhead
(% of Serial)

Conclusions

Boundless Transactional Memory is possible with 
minimal changes to the hardware.
By amortizing the high cost of large transactions over 
the fast small transactions, we are able to achieve 
much lower overheads than locks in most cases.


