
Boundless Transactional Memory

C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul,
Charles E. Leiserson, Sean Lie

MIT Computer Science and Artificial Intelligence Laboratory

Boston Area Computer Architecture Workshop
Friday January 30th, 2004

A Parallel Program Example

...

Push-relabel {

...

Flow[i] = Flow[i] – X;

Flow[j] = Flow[j] + X;

...

}

...

Graph

i
j

X
…

…

We will use the parallel Push-Relabel Max-Flow
algorithm to illustrate synchronization.

Achieving Atomicity with Locks

Correct parallel execution requires atomic regions.

int a, b;

if (i<j) {

a = i;

b = j;

} else {

a = j;

b = i;

}

Lock(L[a]);

Lock(L[b]);

Flow[i] = Flow[i] – X;
Flow[j] = Flow[j] + X;
Unlock(L[b]);

Unlock(L[a]);

Parallel Code using
Locks

Flow[i] = Flow[i] – X;
Flow[j] = Flow[j] + X;

Serial Code
Traditionally, locks
are used to achieve
atomicity but…
Hard to use

Deadlock, priority
inversion, etc.

Conservative
Atomic regions
protected by the
same lock can never
run concurrently.

High overhead
Deadlock avoidance.
Instructions used in
locking are slow.
Locks use memory.

Achieving Atomicity with Transactions

Ideally, we want atomicity without those problems.

int a, b;

if (i<j) {

a = i;

b = j;

} else {

a = j;

b = i;

}

Lock(L[a]);

Lock(L[b]);

Flow[i] = Flow[i] – X;
Flow[j] = Flow[j] + X;
Unlock(L[b]);

Unlock(L[a]);

XBEGIN;

Flow[i] = Flow[i] – X;
Flow[j] = Flow[j] + X;
XEND;

Parallel Code using
Locks

Parallel Code using
Transactions

Flow[i] = Flow[i] – X;
Flow[j] = Flow[j] + X;

Serial Code

The Case for Hardware Transactions

Easy to use
The hardware simply guarantees
transactions are atomic.

Optimistic
Transactions can run concurrently
when no memory operations conflict.
Easy to implement using much of the
processor’s speculation hardware.

Low overhead
No need for deadlock avoidance
Fast execution can be achieved using
cache and cache-coherency effectively.
No lock memory overhead.

XBEGIN;

Flow[i] = Flow[i] – X;
Flow[j] = Flow[j] + X;
XEND;

Parallel Code using
Transactions

Transactions achieve atomicity without those problems.

The Case for Boundless Transactions

Previous hardware transaction schemes enforced a
bound on transaction size but…

Exposing a transaction size limit is awkward.
Dealing with transaction size limit in the compiler is a
nontrivial task.
In typical applications, most transactions are really
small but there are some that are huge.

The Case for Boundless Transactions
Evidence from the Linux Kernel

99.9% of transactions fit in 54 cache lines.
The largest transaction is more than 7000 cache lines.

Transaction Size Distribution in the Linux Kernel

107

O
ve

rfl
ow

in
g

Tr
an

sa
ct

io
ns

Transaction Size Limit (64 byte lines)

106

104

102

1
1 10 100 1000 8144

make
dbench

Boundless Transactional Memory

Goal:

Run small transactions fast!
Large transactions can be slower
but must still work.

Transactional Memory ISA

Transaction = all instructions
between XBEGIN and XEND

If a transaction completes, the
hardware ensures that it is atomic.
If a transaction cannot complete
atomically, it is aborted.
On an abort, the processor jumps
to the abort handler and all state is
rolled-back to the XBEGIN.

In the abort handler, the program
can back-off and retry.

Trans_begin:

XBEGIN abort_handler

LW R1, 0(R2)

ADDI R1, R1, #1

...

XEND

...

Abort_handler:

... // Back-off

J Trans_begin // Retry

Add XBEGIN and XEND instructions to the ISA.

Transactional Data Storage

All transactional data is
stored in the L2 cache.
[Herlihy & Moss, Knight]
Transactional data is primarily
stored in the cache
1 additional bit (T) per cache
line is used to mark the line as
transactional.
Transactional changes can be
“rolled-back” by invalidating
the transactional cache lines.
Transactional changes can be committed by clearing all T bits.
Using the cache achieves very low overhead.

T Tag Status Data

Transactional Data Overflow

1 additional bit (O) per set is used to mark if data has overflowed
from the set.
Overflowed data is stored in an unsorted array in uncached DRAM.
Overflow data structure is checked on every request hitting an
overflowed set.

Address
Tag Index Offset …

Way 0 Way 1

Overflow
Handler

Uncached Memory

Overflow Data Structure

T Tag Status DataO T Tag Status Data

Transaction Commit and Abort

Conflicts are detected when an incoming cache
intervention hits a transactional cache line.
Transaction Commit occurs when no conflicts are
detected during transaction execution.

The T and O bits are cleared. All transactional changes become
globally visible.
All overflowed cache lines are written back to main memory.

Transaction Abort occurs when a conflict is detected
during transaction execution.

All transactional cache lines are invalidated. All transactional
changes are discarded.
The T and O bits are cleared.
All overflowed cache lines are discarded.
The processor jumps to the abort handler address given at
XBEGIN.
The processor state is restored to the point just before XBEGIN.

Processor State Save

Saving the architectural
register state of the processor:

Processor state save is done
using much the of the existing
speculation hardware in the
MIPS R10K.
32 physical registers are added
to save the 32 architectural
registers.
1 additional bit per physical
register is added to mark it as
saved (S).
A Register Reserve List FIFO is
added to store free physical
registers that are saved.

…

P0
P1

P94

P95

…

P63
P64

Saved Phy Reg

Phy Reg File

S

S
Vector

Saved Phy Reg S

Processor State Snapshot

State Save occurs on XBEGIN.
The rename table and active S
vector are saved away.
Before commit, all physical
registers marked in the S vector
are freed into the Reserved List
instead of the Free List.
After commit, the Reserved List
is allowed to trickle into the
Free List.

State Restore occurs on
transaction abort.

The saved rename table is
restored.
The Reserved List is cleared.

…

Register
Free List
FIFO

P2
P47

…

Register
Reserve List
FIFO

P1
P63

Saved?

Register
To Free

Free
Register

Evaluation

We implemented this in the
UVSIM simulator and
measured 1-processor
overheads for the SPECjvm98
benchmark suite.
In all but one case, transaction
overhead is much less than
lock overhead.
213javac runs everything
inside one large transaction.
The 14x slowdown suggests
that a better data structure is
necessary. 104%175%228jack

1470%170%213javac

100%100%222mpegaudio

105%142%209db

107%141%202jess

102%124%200check

TransactionsLocksBenchmark

Overhead
(% of Serial)

Conclusions

Boundless Transactional Memory is possible with
minimal changes to the hardware.
By amortizing the high cost of large transactions over
the fast small transactions, we are able to achieve
much lower overheads than locks in most cases.

