

Motivation

The FIFO Approach

eProposed by Palacharla \& Smith [ISCA 97]
EFixed number and size of FIFOs
©Combined in-order \& out-of-order issuing
©Dependent instructions are inserted into a single FIFO
©Instructions are issued from FIFOs in parallel
©Only the instruction at the head of each FIFO is visible to the arbitration logic
$\frac{7}{5}$
brown university
BARC 2004 3

Performance and power trends

- Many complex architectural features are included
\oplus These features consume power regardless of usage
(e. Adjustable datapath resources to match the application's needs
e. Focus on issue logic since it consumes a large portion of overall power dissipation
ϕ For instance, it was projected that the 21464 issue logic would account for 46% of the total power

| BARC 2004 | 2 |
| :--- | :--- | :--- |

Limitations of Fixed FIFO Scheme		
©A single configuration works well for some benchmarks, but not for others		
©High ILP: use more, or smaller FIFOs		
©Low ILP: use few FIFOs		
©Change number and size of FIFOs dynamically according to program needs		
\$ brown universitr	BARC 204	5

How Do We Decide When to Switch?
(e)Assumption: short term past behavior is a good indicator of behavior in the near future
©How do we keep track of "program needs"?
4 Keep track of statistics while a program is running
©Help decide the optimal configuration eWe use an array of monitors

8 $\frac{1}{5}$ BROWN UNIVERSITY \quad BARC 2004

Conclusions
eIssue queue is a major contributor to power PFlexible schemes so we do not hamper performance
eDynamically reconfigurable, FIFOstructured issue queue can save power with negligible performance impact

