
1

Power Reduction 
with 

Transactional Memory

Power Reduction 
with 

Transactional Memory

Tali Moreshet*, Maurice Herlihy†, 

R. Iris Bahar* and Richard Weiss‡

*Brown University, 
Division of 

Engineering

†Brown University, 
Department of 

Computer Science

‡ Hampshire College, 
School of 

Cognitive Science

MotivationMotivation

l N threads running on N parallel processors execute code

l Only one thread is allowed in the critical section at a time

l Coarse grain lock
¤ Easy to implement
¤ Not scalable
¤ Limits parallelism

increment()
{

tmp = value;
tmp = tmp + 1;
value = tmp;
return value;

}

critical section

l Fine grain lock
¤ Hard to program
¤ Scalable
¤ Enables parallelism

Lock TypesLock Types

l Spin lock
¤ On failure: repeatedly test lock 

(spinning, busy -wait)
¤ Many main memory references

l Queue lock
¤ Queue of threads waiting on a lock
¤ Each thread spins on the lock of 

its predecessor
¤ Fewer main memory references
¤ Expensive to set up

Transactional ModelTransactional Model

l Locks are conservative

l Locks are expensive

l Alternative to locks

l Transaction: Critical section lock() à unlock()

l Speculative execution – optimistic
¤ No conflicts à commit
¤ Conflicts detected à roll back, reissue

l Hardware requirements
¤ Additional memory or dedicated cache (victim cache) 

¢ Storage area for old transaction data
¤ Changes to cache coherence protocol

¢ Data within a transaction not visible to others
¢ Requests for ownership deferred



2

Transactional ModesTransactional Modes

l WRITE
¤ Transaction may modify memory location
¤ No concurrent accesses

l READ
¤ Transaction cannot modify memory location
¤ May be read by concurrent transactions
¤ Enables concurrent accesses to a tree-like data structure

l Other modes are useful for certain specialized cases
¤ TEMP allows to read a memory location and then release it
¤ Decreases the number of memory accesses 

Alternative TechniquesAlternative Techniques

l Lock-free - first priority
Fall back - locking (in case of failure) 

l Prioritize lock acquire requests
Delay the low priority requests

l Predict data for critical section
Forward with lock transfer

l Our work based on:
¤ “Transactional Lock-free Execution of Lock-based Programs”,

Ravi Rajwar and James Goodman, ASPLOS 2002.
¤ “Transactional Memory: Architectural Support for Lock-Free 

Data Structures”, 
Maurice Herlihy, J. Eliot B. Moss, ISCA 1993.

l What about power?

Data CenterData Center Power ConsumptionPower Consumption

l Large embedded systems
¤ Disk arrays
¤ Multiprocessor blade servers
¤ Multi-CPU network routers

l Data center: 
Frames of tightly packed boards with multiple CPUs 
and memories

l Cooling problems
¤ Fans within a frame
¤ Outside air conditioning

l Power supply problems
¤ Increased by cooling power requirements
¤ Require specially equipped building to meet 

power demands



3

Hot-Cold Aisle CabinetHot-Cold Aisle Cabinet Transactional Memory and PowerTransactional Memory and Power

l Main memory accesses
¤ Reduce performance
¤ High power consumption

l Transactional memory
¤ No locks à Fewer memory accesses

But… 
¤ May require roll-back and re-execution

à Re-fetch data from main memory 
OR 
à Fetch data from other local cache
àWrite buffer holding old data

l Other synchronization techniques share similar power issues

Method and GoalsMethod and Goals

l Our goal: 
Compare power dissipation of locking and 
transactional models

l Benchmarks:
¤ Synthetic micro benchmarks
¤ Larger benchmarks from SPLASH (?)

l Is one approach better than the others when power 
is considered?

l The relationship between power and performance is 
not well understood


