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Motivation

m Data Prefetching has been successful in hiding
memory access latency.
m Different techniques have been proposed
m Software: Mowry *94, Lipasti e/ a/*95, Luk & Mowry 96
m Hardware: Smith *78, Baer *91, Roth ez a/*98, Cooksey et al’02.
m Power and energy consumption becomes more and
more important in recent years.

m How does prefetching affect on-chip energy
consumption?
m The scope of my presentation today

m On longer term we are interested in developing new
energy-aware prefetching solutions.

How Does Prefetching Work?

|| The Prefetch Processor
Englne dCCldCS Prefetch Engin
which data .
(address) to be o
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m No prefetching
if data is already
in L1 Cache. u

Off-Chip Memory Access

Sources of Prefetching Energy

m BExtra Tag-checks in L1 cache
m When a prefetch hits in L1.
m Extra memory accesses to L2 Cache
m Due to useless prefetches from L2 to L1.
m Extra off-chip memory accesses
m When data cannot be found in the L.2 Cache.

m Prefetching hardware: data (history table) and
control logic.




Prefetching Techniques Used

m Prefetching-on-miss (POM) - basic technique

m Tagged Prefetching - A variation of POM.

m Stride Prefetching [Baer & Chen]— Effective
on array accesses with regular strides

m Dependence-based Prefetching [Roth &
Sohi]— Focuses on pointer-chasing relations

m Combined Stride and Pointer Prefetching [new]

— Applied on general-purpose programs

Experimental Setup

m SimpleScalar
m Implementation of prefetching techniques

m Gather statistics which will be used for energy
estimation.

m Energy Estimation for .1 & .2 cache accesses
m Spice simulation with 100-nm BPTM technology
m Benchmark Suites
m SPEC2000 — Array-intensive benchmarks

m Olden — Pointer-intensive benchmarks

Cache Configuration & Power

Performance Speedup

Parameter L1 L2
size 32KB 256KB
tag array CAM-based | RAM-hased
associativity 32-way 4-way
bank size 2KB 4KB
#t of banks 16 64
cache line 32B G64B

| Power (mW) |
P_tag 6.5 6.27
P _read 9.5 100.52
P _write 10.3 118.62
P_leakage 3.1 23.0
P_reduced_leakage | 0.6G2 1.15
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Memory Traffic Increase
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Dynamic Energy Consumption - L1

m .1 Cache Hit Energy increased significantly due
to extra tag lookups.

Dynamic Energy Consumption — L2

m L2 Cache Hit Energy increased slightly in most

situations.
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Adding Leakage Energy for L1
m [eakage dominates the total energy consumption without
leakage optimization.
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Leakage Reduction Techniques

m Many leakage optimizations proposed: body biasing, dual
Vt, VTCMOS, MTCMOS, asymmetric cells, etc
m E.g., leakage can be reduced by 7X for writes and 40X for reads in
cells [Azizi et al ISLPED 2002, evaluated for 130-nm]
m We assume that cache leakage could/will be reduced by
80% with circuit techniques.

Off-Chip Memory Access Energy
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Energy-Delay Product

m Energy-delay product improves with prefetching in
most cases.

Normalized Energy-delay Product
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Conclusion

m Prefetching can be considered as an energy
reduction technique as well, esp. in deep
submicron tech. where leakage becomes dominate.

m Aggressive prefetching techniques increase L1
access energy significantly due to extra tag-checks.
m We are working on a new technique to improve it.

m Effective prefetching techniques consistently

improve energy-delay products (EDP) due to
performance improvements.




