
Soft Errors in Microprocessors

Shubu Mukherjee
Intel Labs

Abstract:
With each technology generation, we are experiencing an increased rate of cosmically-
induced soft errors in our chips. In the past, the impact of such errors could be minimized
through protection of large memory structures. Unfortunately, such techniques alone are
becoming insufficient to maintain adequately low error rates. Although, to a very rough
approximation, the fault rate per transistor is not changing much, the increasing number
of transistors is resulting in an ever increasing raw rate of bit upsets. Thus, we are starting
to see a dark side to Moore's Law in which the increased functionality we get with our
exponentially increasing number of transistors is being countered with a exponentially
increasing soft error rate. This will take increasing effort and cost to cope with.

In this talk I will describe the severity of the soft error problem as well as techniques to
estimate a processor's soft error rate. These estimates should help designers choose
appropriate error protection schemes for various structures within a microprocessor. A
key aspect of our soft error analysis is that some single-bit faults (such as those occurring
in the branch predictor) will not produce an error in a program's output. We define a
structure's architectural vulnerability factor (AVF) as the probability that a fault in that
particular structure will result in an error in the final output of a program. A structure's
error rate is the product of its raw error rate, as determined by process and circuit
technology, and the AVF. Unfortunately, computing AVFs of complex structures, such as
the instruction queue, can be quite involved. To guide such complex AVF calculation,
we identify numerous cases, such as prefetches, dynamically dead code, and wrong-path
instructions, in which a fault will not affect correct execution. Our simulations using
these techniques show that the AVFs of a Mckinley-like microprocessor's instruction
queue and execution units are 29% and 9%, respectively.

This is joint work with Todd Austin, Joel Emer, Steve Reinhardt, and Chris Weaver.

