Workload Analysis for Network Processor Design

Ramaswamy, Ning Weng, Tilman Wolf

University of Massachusetts Amherst

UMassAmherst

Network Processing

- Computer Networks are becoming more versatile

 Not just "store-and-forward"
- More functionality performed "inside" network
 - Network Address Translation (NAT)
 - Firewalls
 - TCP/IP offloading
 - Virtual Private Network (VPN)
- Routers are equipped with port processors
 - "Network processors" (NPs)
- NPs are system-on-a-chip multiprocessors
 - Different from workstation/server processors
 - Simple, highly parallel workload
- System-level architecture of NPs is area of current research

UMassAmherst

Network Processors Router architecture - Ports connected through switching fabric Processing is done on port Network Processors Optimized for simple, I/O intensive tasks Employ co-processors for address lookup, checksums What is best system architecture for NPs? Processing resources, inter-connects, memory hierarchy Depends on workload Our approach: Workload analysis to understand application requirements Analytic performance modeling to find optimal architecture **UMassAmherst**

Outline

- Introduction
- Workload simulation
 - PacketBench tool
- Workload Analysis
 - Annotated DAG generation
 - Instruction clustering
- Task mapping for heterogeneous NP designs
- Current research problems
- Summary

UMassAmherst

- Useful to understand workload characteristics
 - Develop better network systems
 - Develop applications that benefit from network processing
 - Allocation of processing tasks to NP
- Network processing workload is unique
 - Different from workstation behavior
 - E.g., simplicity, high I/O
 - Dominated by small tasks
- Need to characterize processing behavior
 - Simulation
 - Need to simulate realistic packet processing environment
 - Separate application characteristics from framework

UMassAmherst

Resulting DAG is architecture-independent representation of application — Used for further analysis and mapping to processing resources

Workload Analysis

UMassAmherst

NPs use co-processors for special tasks Frequently used Suitable for dedicated logic Application analysis can identify potential co-processing task High reuse of same code (loops) The Communication of Co-Processing tasks High reuse of same code (loops) The Communication of Co-Processing tasks When the Communication of Co-Processing tasks the Communication of Co-Processing tasks the Co-P

Current Research Questions

- Given application analysis and mapping algorithm. what is the optimal system architecture for an NP?
 - How do different applications impact architecture (e.g., parallel processors vs. pipelining)?
 - How does the optimal architecture depend on constraints (e.g., chip size, power consumption)?
- What programming abstractions are suitable for heterogeneous processing environments?
 - Programmers should be able to exploit
- How to model processing time for packets?
 - Processing causes considerable packet delays for complex applications
 - Needs to be considerable in network simulations

UMassAmherst

Summary

- Network processing is becoming increasingly important
- Workloads for NPs are very different from workstations/servers
 - Simple and highly parallel
- NP workload analysis
 - Annotated DAG
 - Instruction clustering
- DAG mapping to heterogeneous NP architectures
- Useful to address system-level NP design questions

UMassAmherst