A Unified Synchronization and Cache
Coherence Mechanism

Zhenghua Qi, Raksit Ashok, Richard Weiss* and Csaba Andras Moritz

Electrical and Computer Engineering Department
University of Massachusetts, Amherst

*Hampshire College

Motivation

Continued advances in technology
result in highly capable and / \
complex multiprocessor systems

() voe)

Synchronization in shared-

memory systems becomes more
and more important to address
— E.g., in fine-grained single-chip
multiprocessors | Interconnection Network |
— Synchronization cost increases I I
with # of processor nodes
Memory g SORHEE “‘ Directory
Synchronization Coherence: 7 Y
provides a novel solution to presence bits dirty bit
support fine-grained
synchronization in hardware and \ /

transparently to processor nodes
A Directory-based Multiprocessor System

Synchronization Overview

Coarse-grained Synchronization — A synchronizing variable is
associated with multiple shared locations and is used to control the order
of accesses to these locations.

Speculative Synchronization (J.R. Martinez et al, 2002)
Speculative Lock Elision (R.Rajwar et al, 2001)

Fine-grained synchronization — A synchronizing variable is
associated with a single word or a block of memory.
— Examples: HEP, Tera, and MIT’s Alewife machine.

Fine-Grained Synchronization (FGS) —
Implementation
& Hardware Support

— A fine-grained synchronization mechanism can be implemented with FE-memory,
where an F/E bit is associated with each word.

Miss
Information
holing
registers
and logic
C P U (state and
cache
misses)

Data

Kiowena

FE-State.

Hub

Interconnection Network

Fine-Grained Synchronization — Implementation

¥ Ful/Empty memory operations
& Typically supported in SW on top

of cache coherence (Alewife)
B FGS access semantics
FE-memory operations.
— J structure Ty
e L
— Lstructure Conditional Unconditional
— M structure P " T P T P T p——

pa: it lweite and: sol to fulll st to full

¥ We implement J structures Fa
¥ Combine cache coherence and Non waiting
synchronization into one PN iy oo e g
mechanism P S
Non-faulting Faulting

it H B ‘
g

. /

What is Synchronization Coherence?

& An efficient mechanism, unifying the cache-coherence and fine-
grained synchronization mechanisms in hardware

E Treats a synchronization miss a special case of cache miss,
resolving by hardware

® Implementation of non-faulting and waiting FE memory
operations

& Key benefits
— Reduced occupancy in the memory controllers and network
bandwidth consumed by protocol messages
— Reduced synchronization related overheads
— FGS that is transparent to the processor nodes

Synchronization Coherence — Architecture Support

CACHE

Writeback to directory

synchronized write
Transition to Shared state

FE-bit:

1—The data is ready to use

TAG Array
Data Array

0 — The data is not ready yet
P-bit (pending):

FE-bils

1 — There are consumers
waiting for data | mmeememmm e

DIRECTORY

0 — No pending consumers “”‘"\“k%w @

1

Full Bit Vector FE-bils _P-Bits
(ibit per node) (1 bit per word)

Synchronization Coherence — Protocol
Examples

® Casel: Synchronization read hit ® Case2: Synchronization read miss

RDSWNC RD_SYNC

rowned Shared
FE-bit0

DIR

Pobito

DIRECTARY BLOCK

2
SHD REPLVENCI_REPLY s

Mark node in SMB enlry

® Case 3: Synchronization read miss

) N
=@

Exclusive

CACHE BLOCK

Set P-bit
‘Transition to Busy_Syne

INTERVENTION_SYNC

Mark node in SMB entry

secp-oit @

SYNG NAK dmnsmon back to Exclusive /

Experimental Setup

Simulator modules B Configuration

— Developed on top of Sim-out-
order core from simple-

Results — Performance

Input Data Size: x = y = 8, z = 256
SC: Synchronization Coherence Mechanism
SW: Software-based FG Mechanism (baseline)

scalar3.0 L1 D-Cache 16kB, 4-way, 32byte line
— Extension module for thread L1 Hit Latency lcycle
csjmm" DRAM Latency 18cycle
— Directory-based cache-
coherence module Interconnect Layout 4x2, 4x4, 8x4, 8x8, 16x8,16x16
- Interconnection module 213,214, 2"5, 26, 2'7, 28
supporting k-ary n-cube Hit size 32 bits
networks

Interconnect speed 2 cyclesper hop

Router del 2 cyclesfor the first it
Benchmark —MICCG3D outer delay cyclesfor the first fli

— Solving Ax = b, using LU Message launch delay | 4 cycles

Parformance (oyoles)

factorization. Where, A is a
sparse matrix, b is a given
vector and x is the vector to be
solved, representing data in a

Performance Improvement

Performance Improvement
for 2-D Mesh Network

for Hypercube Network

3-D space
Results — Speedup
Input Data Size: x =y = 8, z= 256
SC: Synchronization Coherence Mechanism
SW: Software-based M echanism (baseline)
e e
i I
- L
Speedup for 2-D Mesh Network Speedup for Hypercube Network

Average: 8% Average: 5%

Conclusions

i Synchronization coherence can reduce the
synchronization related overhead and improve
performance

¥ Future work:
— More applications need to be evaluated
— Support for better and adaptive routing protocols
— More efficient non-blocking cache model
— Compilation support
— SMP applicability

