
1

A Unified Synchronization and Cache 
Coherence Mechanism

Zhenghua Qi, Raksit Ashok, Richard Weiss* and Csaba Andras Moritz

Electrical and Computer Engineering Department 
University of Massachusetts, Amherst

*Hampshire College

Motivation
Continued advances in technology 
result in highly capable and 
complex multiprocessor systems 

Synchronization in shared-
memory systems becomes more 
and more important to address

– E.g., in fine-grained single-chip 
multiprocessors

– Synchronization cost increases 
with # of processor nodes

Synchronization Coherence: 
provides a novel solution to 
support fine-grained 
synchronization in hardware and 
transparently to  processor nodes

A Directory-based Multiprocessor System

Synchronization  Overview

Coarse-grained Synchronization � A synchronizing variable is 
associated with multiple shared locations and is used to control the order 
of accesses to these locations.

Speculative Synchronization (J.R. Martinez et al, 2002)

Speculative Lock Elision (R.Rajwar et al, 2001)

Fine-grained synchronization � A synchronizing variable  is 
associated with a single word or a block of memory.
– Examples: HEP, Tera, and MIT’s Alewife machine.

Fine-Grained Synchronization (FGS) �

Implementation
Hardware Support 
– A fine-grained synchronization mechanism can be implemented with FE-memory, 

where an F/E bit is associated with each word. 
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Fine-Grained Synchronization  � Implementation

Full/Empty memory operations

Typically supported in SW on top
of cache coherence (Alewife)
FGS access semantics

– J structure

– L structure

– M structure

We implement J structures
Combine cache coherence and 
synchronization into one 
mechanism

What is Synchronization Coherence? 

An efficient mechanism, unifying the cache-coherence and fine-
grained synchronization mechanisms in hardware

Treats a synchronization  miss a special case of cache miss, 
resolving by hardware

Implementation of non-faulting and waiting FE memory 
operations

Key benefits
– Reduced occupancy in the memory controllers and network 

bandwidth consumed by protocol messages 
– Reduced synchronization related overheads
– FGS that is transparent to the processor nodes 

Synchronization Coherence �

Architecture Support

FE-bit: 

1 – The data is ready to  use 

0 – The data is not ready yet

P-bit (pending):

1 – There are consumers 
waiting for data 

0 – No pending consumers

Synchronization Coherence � Protocol 
Examples

Case1: Synchronization read hit

Case 3: Synchronization read miss

Case2: Synchronization read miss
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Experimental Setup
Simulator modules

– Developed on top of Sim-out-
order core from simple-
scalar3.0

– Extension module for thread 
control.

– Directory-based cache-
coherence module

– Interconnection module 
supporting k-ary n-cube 
networks

Benchmark � MICCG3D
– Solving Ax = b, using LU 

factorization. Where, A is a 
sparse matrix, b is a given 
vector and x is the vector to be 
solved, representing data in a 
3-D space

4 cyclesMessage launch delay

2 cycles for the first flitRouter delay

2 cycles per hopInterconnect speed

32 bitsFlit size

4x2, 4x4, 8x4, 8x8, 16x8,16x16

2^3, 2^4, 2^5,  2^6,  2^7,  2^8

Interconnect Layout

18 cycleDRAM Latency

1 cycleL1 Hit Latency

16kB, 4-way, 32byte lineL1 D-Cache

Configuration

Performance Improvement 
for 2-D Mesh Network

Performance Improvement 
for Hypercube Network

Input Data Size: x = y = 8, z = 256
SC: Synchronization Coherence Mechanism
SW: Software-based FG Mechanism (baseline)

Results � Performance
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Speedup for 2-D Mesh Network

Average: 8%

Speedup for Hypercube Network

Average: 5%

Results � Speedup
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Input Data Size: x = y = 8, z = 256
SC: Synchronization Coherence Mechanism
SW: Software-based Mechanism (baseline)
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Conclusions

Synchronization coherence  can reduce the 
synchronization related overhead and improve 
performance

Future work:
– More applications need to be evaluated
– Support for better and adaptive routing protocols
– More efficient non-blocking cache model
– Compilation support
– SMP applicability


