
1

A Unified Synchronization and Cache
Coherence Mechanism

Zhenghua Qi, Raksit Ashok, Richard Weiss* and Csaba Andras Moritz

Electrical and Computer Engineering Department
University of Massachusetts, Amherst

*Hampshire College

Motivation
Continued advances in technology
result in highly capable and
complex multiprocessor systems

Synchronization in shared-
memory systems becomes more
and more important to address

– E.g., in fine-grained single-chip
multiprocessors

– Synchronization cost increases
with # of processor nodes

Synchronization Coherence:
provides a novel solution to
support fine-grained
synchronization in hardware and
transparently to processor nodes

A Directory-based Multiprocessor System

Synchronization Overview

Coarse-grained Synchronization � A synchronizing variable is
associated with multiple shared locations and is used to control the order
of accesses to these locations.

Speculative Synchronization (J.R. Martinez et al, 2002)

Speculative Lock Elision (R.Rajwar et al, 2001)

Fine-grained synchronization � A synchronizing variable is
associated with a single word or a block of memory.
– Examples: HEP, Tera, and MIT’s Alewife machine.

Fine-Grained Synchronization (FGS) �

Implementation
Hardware Support
– A fine-grained synchronization mechanism can be implemented with FE-memory,

where an F/E bit is associated with each word.

CPU

Hub

Miss
Information
holing
registers
and logic
(state and
cache
misses)

Cache
Tags

Cache
FE-
state

Cache
Data

Data

D
irectory

FE-State

Cache
Controller

Interconnection Network

2

Fine-Grained Synchronization � Implementation

Full/Empty memory operations

Typically supported in SW on top
of cache coherence (Alewife)
FGS access semantics

– J structure

– L structure

– M structure

We implement J structures
Combine cache coherence and
synchronization into one
mechanism

What is Synchronization Coherence?

An efficient mechanism, unifying the cache-coherence and fine-
grained synchronization mechanisms in hardware

Treats a synchronization miss a special case of cache miss,
resolving by hardware

Implementation of non-faulting and waiting FE memory
operations

Key benefits
– Reduced occupancy in the memory controllers and network

bandwidth consumed by protocol messages
– Reduced synchronization related overheads
– FGS that is transparent to the processor nodes

Synchronization Coherence �

Architecture Support

FE-bit:

1 – The data is ready to use

0 – The data is not ready yet

P-bit (pending):

1 – There are consumers
waiting for data

0 – No pending consumers

Synchronization Coherence � Protocol
Examples

Case1: Synchronization read hit

Case 3: Synchronization read miss

Case2: Synchronization read miss

3

Experimental Setup
Simulator modules

– Developed on top of Sim-out-
order core from simple-
scalar3.0

– Extension module for thread
control.

– Directory-based cache-
coherence module

– Interconnection module
supporting k-ary n-cube
networks

Benchmark � MICCG3D
– Solving Ax = b, using LU

factorization. Where, A is a
sparse matrix, b is a given
vector and x is the vector to be
solved, representing data in a
3-D space

4 cyclesMessage launch delay

2 cycles for the first flitRouter delay

2 cycles per hopInterconnect speed

32 bitsFlit size

4x2, 4x4, 8x4, 8x8, 16x8,16x16

2^3, 2^4, 2^5, 2^6, 2^7, 2^8

Interconnect Layout

18 cycleDRAM Latency

1 cycleL1 Hit Latency

16kB, 4-way, 32byte lineL1 D-Cache

Configuration

Performance Improvement
for 2-D Mesh Network

Performance Improvement
for Hypercube Network

Input Data Size: x = y = 8, z = 256
SC: Synchronization Coherence Mechanism
SW: Software-based FG Mechanism (baseline)

Results � Performance

�� � � � � � � �
�� � � � � � � �

�� � � � � � � �
�� � � � � � � �

�� � � � � � � �
�� � � � � � � �

	� � � � � � � �
	
 � � � � �
 � 	��
 ���� �� ��� �� �� � �

����
���

���
� � !�"�#

$

%&%'

() * * *) * * *
+) * * *) * * *

,) * * *) * * *
-) * * *) * * *

.) * * *) * * *
/) * * *) * * *

0) * * *) * * *
1 23 45 36 2 51789 :;<= >? <=@ ;A A= < A

BCDE
FDG

HIJ
C KJ LJMCN

O

PQPR

Speedup for 2-D Mesh Network

Average: 8%

Speedup for Hypercube Network

Average: 5%

Results � Speedup

S
ST UV

ST UW
ST UX

ST UY
S T S

ST S V
ST S W

Y S X Z V X W S V Y[\] ^_`a bc `ad _e ea ` e

f ghhi
j gklf

mnf
o

Input Data Size: x = y = 8, z = 256
SC: Synchronization Coherence Mechanism
SW: Software-based Mechanism (baseline)

p
pq rs

pq rt
pq ru

pq rv
pq p

pq p s
pq p t

v p u w s u t p s vxyz {|}~ �� }~� |� �~ } �

����
���

���
� �� �����

�

Conclusions

Synchronization coherence can reduce the
synchronization related overhead and improve
performance

Future work:
– More applications need to be evaluated
– Support for better and adaptive routing protocols
– More efficient non-blocking cache model
– Compilation support
– SMP applicability

