
Performance Characterization of SPEC CPU2006

Integer Benchmarks on x86-64 Architecture

Dong Ye†, Joydeep Ray‡, Christophe Harle‡, and David Kaeli†

†ECE Department, Northeastern University, Boston, MA 02115

{dye, kaeli}@ece.neu.edu
‡Advanced Micro Devices, Austin, TX 78741

{joydeep.ray, christophe.harle}@amd.com

EXTENDED ABSTRACT

As x86-64 processors become the CPU of choice for the

PC (personal computer) market [1], it becomes increasingly

important to understand the performance benefits we should

expect as we migrate applications from 32-bit environments

to 64-bit environments. For applications that require the

additional memory addressing capability provided by 64-bit

computing (e.g., commercial databases and digital content

authoring tools), it is not surprising to see that x86-64 has

become the platform of choice. However, for less-demanding

desktop applications that can fit in a 32-bit address space, we

would like to know whether we can obtain any performance

benefit by moving to this wider instruction set architecture.

In this work [2], we report on the performance differences

obtained when benchmarks are compiled as 32-bit binaries

versus compiled as 64-bit binaries (and both binaries are run

natively on an x86-64 based system.) Using the experimental

system shown in Table I, we run 64-bit binaries in 64-bit mode

and 32-bit binaries in compatibility mode (we refer to this

mode as 32-bit mode in this paper.)

CPU
AMD Athlon

TM
64 X2 4400+, 2.2 GHz,

dual-core, with an integrated dual-channel
DDR memory controller

Memory
2 DIMMs of 1GB DDR400 memory mod-
ules, with peak memory bandwidth 6.4 GB/s

OS
Novell SUSE R© Linux Professional 9.3 x86-
64 Edition [3], run level 3, kernel 2.6.11

Compiler

GCC 4.1.1, “-O3” turned on to build all
benchmarks except 400.perlbench, “-O2”
turned on to build 400.perlbench

TABLE I
THE EXPERIMENTAL SYSTEM

We studied the integer benchmarks taken from the SPEC

CPU2006 suite [4]. We used the GCC 4.1.1 C/C++ com-

piler [5] to generate both 64- and 32-bit binaries. For each

benchmark, we used the same optimization flags to generate

both binaries. In addition to optimization flags, we used the -

64 and -m32 switches to generate the respective 64-bit and

32-bit binaries. We run all the experiments on the single

platform shown in Table I. In order to reduce the variation

introduced by an operating system with SMP support on a

multi-core system, we run benchmarks exclusively on one

core by wrapping around the benchmark invocation command

inside the operating system’s CPU affinity binding command.

To minimize the variations introduced by multitasking, we run

the operating system at level 3 and disable some heavy-weight

daemon processes while we collected performance data.

We have observed that for the SPEC CPU2006 integer

benchmarks, 64-bit mode offers a sizable performance ad-

vantage over 32-bit mode (7% on average) as shown in Fig-

ure 1. However, the advantage (or disadvantage) varies from

benchmark to benchmark. For a handful of programs, running

in 64-bit mode is significantly slower than running in 32-bit

mode. We collected a number of performance characteristics of

these benchmarks (e.g., code size, dynamic instruction count,

runtime memory footprint, cache behavior as well as memory

controller utilization). In these studies, we have focused on

the difference of various performance characteristics between

these two modes.

Fig. 1. 64-bit vs. 32-bit speedup in CPU2006int.

We further analyze five benchmarks: 429.mcf, 456.hm-

mer, 462.libquantum, 464.h264ref, and 483.xalancbmk. These

benchmarks have shown some biggest differences between

the performance observed under these two modes. We aim

to better understand the program characteristics that favor or

disfavor a 64-bit architecture.

Table II presents some key performance metrics (64-bit vs.

32-bit mode differences) of these selected five benchmarks

and a summary of the reasons responsible for the observed

performance differences.

67



Benchmark
Run time

increase

Memory footprint

increase

Dynamic instruction

count decrease

Data cache request

rate increase

Cause of performance

difference

429.mcf 26.35% 100.12% 5.74% 33.40%

Larger memory footprint due to
use of long and pointer data
types in 64-bit mode.

456.hmmer -34.34% 9.84% 8.72% 15.80%
More registers available in 64-
bit mode.

462.libquantum -35.38% -31.44% 53.71% 62.50%
Native 64-bit integer arithmetic
in 64-bit mode.

464.h264ref -35.35% 5.73% 9.96% 22.94%

Faster calling convention (be-
cause of more registers) in 64-
bit mode.

483.xalancbmk 13.65% 33.87% 7.60% 28.32%
Larger memory footprint due to
pointers in 64-bit mode.

TABLE II
PERFORMANCE DIFFERENCES OF FIVE SPEC CPU2006 INTEGER BENCHMARKS (64-BIT MODE RELATIVE TO 32-BIT MODE.) AS WELL AS THEIR

FIRST-ORDER REASONS

Some of the common traits of these programs that lead to

performance benefits for 64-bit mode are: (1) The use of 64-bit

integer arithmetic; (2) The presence of loop bodies that require

many registers (note that loop unrolling is a common compiler

optimization that can also increase register pressure); (3) Many

calls to small functions that can be economically inlined.

Some major traits of these programs that present potential

performance degradation for 64-bit mode are: (1) Memory

intensive applications; especially those that have already ex-

perienced a high data cache miss rate in a 32-bit environment;

(2) Intensive use of long and pointer data types in terms of

the amount of memory allocated for such data types and the

frequency of their access.

Fig. 2. 64-bit vs. 32-bit speedup for CPU2000int.

Finally, we take a look at the performance difference be-

tween these two modes as observed by the integer benchmarks

of the previous generation of SPEC CPU suite: CPU2000 [6].

On average, CPU2000 integer benchmarks obtain very little

(less than 1%) performance gain when run in 64-bit mode

compared to 32-bit mode, as shown in Figure 2. This lack

of performance improvement from 32-bit mode to 64-bit

mode is largely due to one benchmark, mcf. As included in

both suites, this particular benchmark underwent some source

code changes when moving from CPU2000 to CPU2006.

Interestingly, the dip in performance in 64-bit mode is much

smaller for mcf in CPU2006 than for mcf in CPU2000. When

moving to CPU2006, several heavily populated data structures

in this benchmarks were changed to use an int data type instead

of a long data type. This change helps to reduce the impact of

the increased memory footprint when moving to 64-bit, which

is one major reason why mcf experiences a cache performance

hit in 64-bit mode.

ACKNOWLEDGMENT

This work was done when Dong Ye worked in AMD Austin

as a co-op engineer. AMD and AMD Athlon 64 are trademarks

of Advanced Micro Devices, Inc. SUSE R© is the registered

trademark of Novell, Inc. Linux R© is the registered trademark

of Linus Torvalds.

Disclaimer: All performance numbers reported in this paper

are estimates because they not fully compliant with SPEC run

and reporting rules [7]. It is expected, though not proven, that

results from a fully compliant run would be very close.

REFERENCES

[1] K. J. McGrath and D. Christie, “The AMD x86-64 ISA: Extending the
x86 to 64-bits,” in Hot Chips 14, August 2002.

[2] D. Ye, J. Ray, C. Harle, and D. Kaeli, “The Performance Characterization
of SPEC CPU2006 Integer Benchmarks on x86-64 Architecture,” in 2006

IEEE International Symposium on Workload Characterization (IISWC

2006), October 2006, pp. 120–127.
[3] Novell. SUSE Linux. [Online]. Available: http://www.novell.com/

products/suselinux
[4] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM

SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, Septem-
ber 2006.

[5] Free Software Foundation. GCC, GNU Compiler Collection. [Online].
Available: http://gcc.gnu.org

[6] J. L. Henning, “SPEC CPU2000: Measuring CPU Performance in the
New Millennium,” IEEE Computer, vol. 33, no. 7, pp. 28–35, July 2000.

[7] SPEC. SPEC CPU2006 Documentation. [Online]. Available: http:
//www.spec.org/cpu2006/Docs

68


