NUCAR
Technical Report TR-01
January 2006

Hunting Trojan Horses

Version 1.0

Micha Moffie and David Kaeli



Hunting Trojan Horses

Micha Moffie and David Kaeli
Computer Architecture Research Laboratory
Northeastern University, Boston, MA
{mmoffie kaeli}@ece.neu.edu

Abstract

In this report we present HTH (Hunting Trojan Horses), a security framework for detecting
Trojan Horses and Backdoors. The framework is composed of two main parts: 1) Harrier —
an application security monitor that performs run-time monitoring to dynamically collect
execution-related data, and 2) Secpert — a security-specific Expert System based on CLIPS,
which analyzes the events collected by Harrier.

Our main contributions to the security research are three-fold. First we identify common
malicious behaviors, patterns, and characteristics of Trojan Horses and Backdoors. Second
we develop a security policy that can identify such malicious behavior and open the door for
effectively using expert systems to implement complex security policies. Third, we construct
a prototype that successfully detects Trojan Horses and Backdoors.

1 Introduction

Computer attacks grew at an alarming rate in 2004 [26] and this rate is expected to rise.
Additionally, zero-day attack exploits are already being sold on the black market. Cases in
which malicious code was used for financial gain were reported in the 2005 Symantec Internet
Security Threat Report [31] (for the first half of 2005).

Symantec also reports a rise in the occurrence of malicious code that exposes confidential
information. They further report that this class of malicious code attack represents 74% of
the top 50 code samples reported to Symantec in 2005 [31]. A key characteristic reported was
that six out of the top ten spyware programs were bundled with other programs.

It is difficult to guard against malicious code that exposes confidential information or
tampers with information. These exploits may take the form of Trojan Horses or Backdoors
that are installed without the user’s consent. Moreover, freshly authored malicious code (i.e.,
zero-day attacks) can go undetected by even the most up-to-date anti-virus programs. Since
Trojan horses and Backdoors may have very little immediate impact on the normal operation
of a system, they may go undetected for a significant period of time, allowing the attacker a
large window of opportunity.

We have developed a security framework that can uncover Trojan Horses and Backdoors,
and defend against harmful activity. In this report, we describe HTH, a run-time monitor that
comes coupled with new security policy tools.



In the following section, we present the motivation for our work. We review related work
in section 3. In section 4, we introduce our security policy. In section 5, we explore the design
space for HTH and discuss some of the design tradeoffs made in HTH. Sections 6 and 7 delve
into the design and implementation of Secpert and Harrier. We evaluate HTH effectiveness in
section 8. Initial assessments of HT'H performance are described in section 9. We conclude in
section 10.

2 Security Exploits

2.1 Security Exploits Examples

To establish the basis and motivation for our work we present some real world examples of
malicious code exploits.

1. PWSteal.Tarno.Q is a Trojan horse that logs passwords and information typed into web
forms. The downloader portin of the Trojan arrives as an email attachment. When
the attachment is executed, the main part of the Trojan is downloaded from a fixed
location. The Trojan creates a file and registers it as a browser helper for Internet
Explorer (IE). The helper object is executed every time IE runs. The Trojan monitors
a predefined set of web pages (such as those that contain strings like: bank, cash, gold,
etc.), captures keystrokes and web forms submitted. The Trojan stores the information
in several predefined files. Then the Trojan sends a unique ID (of the compromised
computer) to the attacker (using a predefined http address) and periodically sends the
collected information to a predefined url. [30]

2. The Trojan.Lodeight.A code tries to install malicious code on the compromised computer
and open a Backdoor. When this Trojan is executed, it connects to one of two predefined
websites and downloads a remote file and executes it (the remote file may be a Beagle
worm). Then this Trojan opens a Backdoor on a TCP port 1084. [30]

3. W32.Mytob.J@mm is a mass-mailing worm which includes a Backdoor. The worm sends
itself via email and uses a remote buffer overflow to spread through the network.

The worm copies itself to a system folder and modifies the registry such that the worm is
executed every time Windows starts. It collects email addresses and sends itself to some
of those addresses (according to predefined characteristics). The worm starts an FTP
server, connects to one of two predefined IRC channels, and listens for commands that
allow the attacker to download files, execute files, restart the system or run other IRC
commands [30].

4. As part of an adware program, the Trojan.Vundo presents the user with pop-up ad-
vertisements. One component of Trojan.Vundo (HTML code that exploits a Microsoft
internet vulnerability) tries to download and execute a downloader component. If suc-
cessful, this downloader component will create an executable file and save it in one or
more directories. In addition, the downloader component will download (from a specified
IP address) an adware component of the Trojan and cause it to execute (this component
is a dynamically linked library and is injected into different processes). It will also mod-
ify the Windows Registry to execute itself upon startup. Once executed, the Trojan will



degrade Windows performance by decreasing the amount of virtual memory available, as
well as displaying advertisements on the infected machine [30].

. The Windows-update.com is a fake web site that exploits an internet explorer vulnera-

bility to download and install Trojan horses. Using a vulnerable version of IE to access
the fake windows site may cause the following: 1) an executable will be downloaded and
executed on the computer. 2) the executable will run and download configuration infor-
mation from a predefined website (lol.ifud.cc/63.246.131.30). And 3) connect to a third
web site and choose one of many unknown custom Trojan Horse programs to download
(depending on the configuration downloaded) [9].

. W32/MyDoom.B virus is an executable file that can infect a Windows system. When

executed, the virus attempts to generate files and add entries to the Windows registry.
The virus modifies the registry to execute itself (at log in time) and to reference a
Backdoor component. In addition, the virus downloads and installs a Backdoor. The
Backdoor component (ctfmon.dll) opens a TCP port and can accept commands, execute
additional code, or act as a TCP proxy. (US-CERT Alert TA04-028A) [32].

The Phatbot Trojan can be controlled by an attacker on a remote site (using a p2p
protocol). The Trojan has a large set of commands which can be executed. A few
of these commands include: stealing CD keys, running a command using system(..),
displaying system information, executing file from an ftp url and killing a process [9)].

. The Trojan Horse version of the Sendmail Distribution contains malicious code that is

executed during the process of building the software. The Trojan forks a process that
connects to a fixed remote server on port 6667. The forked process allows an intruder
to open a shell running as the user who built the Sendmail software (CERT Advisory
CA-2002-28) [33].

. A Trojan horse version of TCP Wrappers can provide root access to intruders who are

initiating connections with a source port of 421. Also, upon compilation of the program,
this Trojan horse sends email to an external address. The email includes information
which can identify the site and the account that compiled the program. Specifically, the
Trojan sends the information obtained from running the commands whoam: and uname
-a (CERT Advisory CA-1999-01) [33].

The examples above include very recent examples of Trojans and Backdoors. Next, we
use these and other examples to characterize Trojan Horses and Backdoors and uncover their

common execution patterns.

2.2 Trojan Horses and Backdoors Characteristics

If we study the set of the Trojan Horses and Backdoors just discussed (as well as others
malicious code examples), we can detect several distinct characteristics and behaviors:

1.
2.

Executables are downloaded and executed without user intervention.

The malicious code may create and/or update files in the file system (possibly the Win-
dows registry) with fized (i.e., hard-coded) values.

. The code initiates a connection to a fized remote host. The code may then download

executables/data or upload private information.
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4. The code allows a remote user to initiate commands or control the execution of the local
host.

5. The code may degrade computer performance.

6. The malicious code may execute only under specific conditions (e.g., execute only on a
specific port number).

To characterize a Trojan Horse or a Backdoor, one must consider the environment in which
these exploits operate. From an attacker’s point of view, his malicious program - the Trojan
Horse - is operating in an unfriendly environment. First, a user can not control the malicious
code, nor can the attacker until a connection is made. This means that the malicious code must
be self-contained, and it must execute without any guidance from the user or the attacker.
Second, the user or an anti-virus program may try to terminate the program as soon as it is
detected; it is therefore beneficial for the program to hide and disguise itself as well as conceal
its execution.

The common execution patterns of Trojan Horses and Backdoors are summarized below:

1. The malicious code is executed without user intervention.

2. The malicious code may be directed by the remote attacker once a connection is estab-
lished.

3. Resources used by the malicious code, such as file names and network addresses, are
hard-coded in the binary.

4. OS resources (Processes, memory) used by the malicious code may be consumed for the
purpose of degrading performance.

In Table 1, we summarize the execution patterns exhibited by the different malicious examples.

Exploit Name No user Remotely | Hard-coded | Degrading
intervention | directed | Resources | performance

PWSteal. Tarno.Q
Trojan.Lodeight. A
W32.Mytob.J@mm
Trojan.Vundo
Windows-update.com
W32/MyDoom.B
Phatbot

Sendmail Trojan

TCP Wrappers Trojan

&&

&&

Table 1: Execution patterns exhibited by malicious code.

Table 1 shows how similar Trojan Horses and Backdoors behave. Many of those character-
istic are unique to Trojan Horses and Backdoors and are exploited to distinguish good from
malicious behavior. These unique behavior patterns are used as a basis for our security policy.



2.3 HTH Objective

Our main objective in this work is to complement anti-virus softwares by targeting unknown
and zero-day attacks. We are particulary focused on Trojan Horses and Backdoor attacks. We
aim to correctly identify and thwart these attacks before any harm comes ot the system, as
well as reduce the number of false positive that typically occur in many firewalling systems.

3 Related Work

There are a number of approaches that can be followed to reduce a system’s security risk to
intrusion from malicious code. However, no prior work has specifically targeted Trojan Horses
or Backdoors.

In this section we review related work in several related areas, including static and dynamic
information flow systems, intrusion detection systems, and isolation and confining systems. We
also discuss prior work in machine learning and data mining approaches for security.

3.1 Information Flow Systems

Information flow security systems have focused on language-based and static analysis mech-
anisms [2, 20]. These systems only allow the programmer to specify the policy. This means
that the user puts his trust in the code developer and is not able to enforce his own security
policy.

In contrast, RIFLE is an architectural framework for user-centric information flow security.
This system can track information flow in all programs. This equips the user (in contrast to the
programmer) with a practical way of enforcing any information flow policy [34]. Information
tracking can also be used to defeat malicious attacks by identifying spurious information flows
and restricting their usage [29].

Perl introduced a new taint mode. This mode enables Perl’s interpreter to track all user
input data (which is tainted) and restrict the actions the Perl program is allowed to perform
on that input [24].

Valgrind [21] has been used to rewrite the binary during runtime to dynamically check
for overwrite attacks [23]. It was also used to detect undefined value errors at the bit level
[28]. The authors add a shadow bit for every data bit, indicating if the bit is undefined, and
instruments the data during value creation. The MIT DOG project [36] uses binary rewriting
to track user input (tainted data) very efficiently. DOG introduces an average slow down of
5.5 times compared to native execution.

Run time information systems are becoming more prevalent in security systems. Many
of those runtime systems specialize in tracking one source of data such as user input, and
develop security policies for common exploits. In HTH we consider different sources of data
and dynamically track all of them to support our policy.

3.2 Intrusion Detection Systems

Program shepherding was introduced by Kiriansky et al. [13] and is used to enforce a security
policy. Program shepherding thwarts attacks that change the control flow (such as buffer



overflow attacks) by monitoring the program’s dynamic control flow.

System call monitoring is often used to detect malicious code [15] [14] [8] [5] [27] [3]. Mon-
itoring can be used to differentiate between normal behavior which was recorded beforehand,
and anomalous behavior [15]. The history of access requests can be also be used to dynamically
classify programs on-line and execute them with appropriate privileges [3].

Software wrappers can be used to detect and remedy system intrusions [14]. These wrap-
pers are software layers that are dynamically inserted into the kernel, and that can selectively
intercept and analyze system calls at runtime. Using software wrappers in the kernel can sig-
nificantly reduce the performance overhead associated with profiling, but offer less information
on the call compared to the detailed information available in user space.

Run time monitoring of untrusted helper applications was proposed by Goldberg et al.
in [8]. The authors proposed to create a secure environment for untrusted helper applications
by limiting program access to operating system resources.

Scott et al. developed a portable extensible framework for constructing a safe virtual
execution system [27]. They demonstrated how to easily profile system calls and how a simple
policy can be constructed. They present several policies that can track specific malicious
behaviors.

Gap et al. [5] perform an analysis of many host-based anomaly detection systems. These
systems monitor a process running a known program by tracking the system calls the process
makes. They organize previously proposed solutions across three dimensions:

e Runtime information that the detector uses to check for anomalies. This includes system
call number, as well as arguments and information extracted from the process address
space, such as the program counter and return addresses.

e The atomic unit that the detector monitors, i.e. a single system call or a variable-length
sequence of system calls.

e The history - the number of atomic units the detector remembers.

System call monitoring is so prevalent in Intrusion Detection Systems because it provides a
lot of insight on program behavior. In addition, system call tracing can be done very efficiently
and introduce limited overhead to program execution. As such system call monitoring is a key
aspect of HTH.

3.3 Isolation and confining Systems

The Alcatraz system, presented in [16] is a isolation system that implements the idea of logical
isolation. The actions of the program are invisible to the rest of the system until they are
committed by the user. The Alcatraz system intercepts all operating system calls, and all file
operations are redirected to a 'modification cache’ that is invisible to the rest of the system.

Terra [6] is an architecture for trusted computing. Terra builds on a TVMM - a trusted
virtual machine monitor - which allows terra to partition the platform in to multiple, isolated
VMs (virtual machines). Each VM can be tailored to provide for a particular level of security
and compatibility. This allows each application to run in its own VM, either as an ”"open
box” VM with the semantics of a modern open platform, or as a ”"closed box” VM with
dedicated, tamper-resistant, hardware accompanied by a tailored that can protect the privacy
and integrity of its content.



Isolation and confining systems have the advantage of separating the execution affects of
malicious code from the rest of the system. The main disadvantages of such approaches are
several: Terra separates the execution into different virtual machines and thus, the sharing of
data between several VM’s may become more difficult and less intuitive. This problem does not
exist is the Alcatraz system where the user can decide whether to commit the changes. How-
ever, if the user is to successfully identify malicious behavior he will need to be knowledgeable
about the program’s behavior. In other words, the user will need to be an expert.

3.4 Expert Systems

Expert systems such as CLIPS [12] [7], are designed to model human expertise and knowledge.
They can be used to develop systems for diagnostics or consultation, and can eliminate the
need for a human expert. Automatic intrusion detection systems can also benefit from an
expert system tool. A case for using expert systems for emulating human security experts is
presented by A. Chesla in [1].

Human security expert are very adaptive when analyzing new attacks and intrusions. An
expert system will therefore need to be adaptive learn new security exploits. S. Wiriya-
coonkasem et. al. [35] show how a neural network can be used to allow the expert system to
learn from experience, and effectively improve the expert system.

Enhancing Intrusion Detection Systems with Expert Systems can improve the quality of the
intrusions detected, i.e. it will be possible to detect more complex patterns which are currently
detected by human security experts. In addition, the ability to model human knowledge may
reduce the number of false positives as well as give advice to the non-expert user.

4 Security Policy

In this section we introduce our security policy. Based on the unique behavior of Trojan Horses
and Backdoors described in section 2.2 we develop rules that determine which patterns are
malicious. Our policy is composed of a set of rules, where each rule is designed to detect
different type of malicious behavior. Our rules are designed to oversee different types of
program behavior. We classify our rules into three categories where each category groups
similar malicious execution patterns. Our categories include:

e Execution flow.
e Resource abuse.
e Information flow.

Each rule has an associated severity label which is assigned according to our confidence
that the behavior detected is actually malicious. The label is intended as a additional guide to
the user when he makes his decision to continue or kill the application. We distinguish three
severity levels: Low, Medium and High. Low severity is used where our confidence that this
code is malicious is low, Medium severity when our confidence is higher and High when we are
most confident the code is malicious.

In the next sections, we give examples of our rules in each of the different categories. We
do not present all the rules implemented but rather a representative set of rules.



4.1 Execution Flow

In our policy we monitor the execution flow of the program, which includes the invocation and
execution of new processes. Our target is to detect malicious code being executed. It is more
likely that a program is malicious if it (the program) is executing processes with hardcoded
names present in the binary or if the process names originate from a socket (potentially a
remote attacker). Our policy implements the following rules:

1. A rule that verifies the name of a newly created process is not hardcoded:

if (new process) and (process name is hardcoded) then
Warn user (Low);
end if;

2. A rule that verifies that the name of a new process does not originate from a socket!:

if (new process) and (process name originated from a socket) then
Warn user (High);
end if;

3. A rule that verifies the name of a newly created process is not hardcoded, and that this
code is infrequent:

if (new process) and (process name is hardcoded) and
(code frequency is low) and (program started a while ago) then
Warn user (Medium);
end if;

Our policy takes into account how often code is being executed. If a code segment is rarely
executed it may reinforce the suspicion of the presence of malicious code. Rarely can be defined
as once during an execution or once across multiple executions. For example, malicious code
such as the CIH/Chernobyl Virus execute on predefined dates in the year (CERT IN-99-03)
[33]. In our policy, we increase the severity level from Low to Medium when a program name
is hardcoded and this program is being executed rarely.

Our policy takes into account the origin of the program name. When the program name
is hardcoded, we have less confidence in our warning since this may also occurs in trusted
programs, therefore the severity level is Low. On the other hand, when the program name
originates from a socket, we have more confidence that the program is malicious and label the
warning High.

In the next section we present rules to counter Resource abuse.

'In our policy we assign a high warning to process names that originate from a socket. Future implementations
may check if the socket name was hardcoded or provided by the user. This distinction is already made by other rules
in our policy.



4.2 Resource Abuse

Resource abuse includes allocating and using different resources from the operating system with
the purpose of draining the OS resources and impacting performance. Examples of resource
abuse include:

e Executing numerous new processes

e Allocating a large amount of memory (such as the malicious code Trojan.Vundo does, as
described above).

In our policy we monitor the number of new processes created, as well as the rate of creation
of new processes. Our policy implements the following rules:

1. A rule that tracks the number of a newly created processes:

if (new process was created) and (number of new processes created is high) then
Warn user (Low);
end if;

2. A rule that tracks the rate of newly created processes:

if (new process was created) and (the rate of new created processes is high) then
Warn user (Medium);
end if;

In our policy, we monitor the creation and execution of new processes. We are more
confident when the rate of the creation of new process is high and therefore assign it a higher
severity label. We leave other types of resource management or resource abuse (e.g., memory
allocation) to future implementations of our system.

In the next section we present rules that monitor the information flow.

4.3 Information Flow

Information flow includes the flow of information between the following different sources and
targets:

e The user input (information source only).

OS files and sockets (information source and target).

The program binary (information source).

The hardware (information source?).

We elaborate on the different data sources in section 5.1.
Next, we present several rules implemented in our policy:

2In current implementations, hardware is only a source of information, future implementation may include in-
structions that can write information to the hardware.
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1. A set of rules that alerts the user when information is flowing from a file to a socket
(Note, that the both the file name and the socket address May be hardcoded or given by
the user.):

if (information source is a file) and (information target is a socket) then

if (user gave file name) and (hardcoded socket address) then
Warn user (Low);
end if;

if (hardcoded file name) and (user gave socket address) then
Warn user (Low);
end if;

if (hardcoded file name) and (hardcoded socket address) then
Warn user (High);
end if;

end if;

2. A rule that notifies the user when information is flowing from hardware to a hardcoded
file:

if (information source is hardware) and (information target is a file) and
(file name is hardcoded) then
Warn user (High);
end if;

In our policy, several more rules are implemented. Those rules are very similar to the ones
presented above, their sources and/or targets are different and are therefore not presented
here.

5 HTH Design

To be able to implement the policy described above and identify the different types of malicious
behavior, we need to track and analyze dynamic program behavior. We separate the analysis
and policy implementation from the tracking mechanism to allow for a flexible and independent
development of each component. Figure 1 shows the HTH high-level software architecture. In
sections 6 and 7 we describe the design and implementation of each component.

Next, we elaborate on the different data sources that need to be tracked for information
flow. Then we discuss the design space for our implementation of the tracking mechanism.
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Figure 1: HTH software architecture

5.1 Data Sources

Our policy rules take into account the source of the data. We maintain enough information
about each data source to enable our policy to make fine-grained distinctions. For example,
we maintain more than just one 'Taint’ bit. A single Taint bit only allows us to distinguish
between two different data sources For example, a single bit can indicate whether the data
was input to the program or not [24, 36, 23]), or if the data was defined or undefined [28].

We are interested in maintaining additional information. In particular, we would like to
know the type and name of each resource. The following resource types (for data sources) are
defined to support our policy:

e USER_INPUT
e FILE

e SOCKET

e BINARY

e HARDWARE

The USER_INPUT, FILE and SOCKET data sources types are self explanatory. The BINARY
data source type is used to find hardcoded values. When the program itself or shared libraries
are being loaded, the corresponding memory addresses are tagged BINARY.

The HARDWARE data source is used to tag data that originated from hardware. An
example of this is the X86 cpuid instruction which stores processor identification information
in the #EAX, %EBX, %ECX and %EDX registers. Although this is a simple example, future
processors may hold more information in hardware. This information may include user secrets,
hardware secrets, and information used for auditing.

We have several reasons for tracing the resource name:

1. it allows us to specify trusted resources (for example, trusted libraries such as libc.so),

2. we are able to give the user more information about the source or target of the information
flow,

3. we are able to use the name during debugging 3.

The data sources are used for identifying the source of data. They are also used to identify
the source of function arguments, such as strings or numbers. In particular, they can be used
to identify the source of a resource name or address. For example, if a file is opened and the
file name was hardcoded, the data source of the file name (the string itself) will be BINARY. If

3Note, for the security policy, it is only necessary to track the data source type and a minimal set of trusted
resources.
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the file name was given by the user, the data source would be USER_INPUT. In the rest of this
report we will use resource ID (identifier) or origin to denote the resource file name or socket
address, and use resource ID (origin) data source to denote the data source corresponding to
the resource ID (origin).

Table 2 shows all the possible combinations of data sources and the resource ID (origin)

data sources 4.

Data Source Resource ID Resource ID (Origin) Data Source

USER_INPUT | — —

FILE File name USER_INPUT
FILE
SOCKET
BINARY

SOCKET Socket name (address) | USER_.INPUT
FILE
SOCKET
BINARY

BINARY — —

HARDWARE | — —

Table 2: Data source combinations.

5.2 Design consideration and tradeoffs

In this section we motivate our design choices. We first describe several design alternatives and
explain the tradeoffs associated with them. Next we examine which events we need to track to
collect all the relevant information needed to support our policy and clarify the implications of
tracking all those events. We end with presenting the design choices we made and the reasons
for those choices.

5.2.1 Static vs. runtime behavior tracking

A program can be analyzed statically or dynamically. Static analysis is performed at compile
time, link time or post link time. Static analysis does not introduce any runtime overhead. Run
time tracking on the other hand may impose significant overhead, but furnishes the monitor
with all runtime information not available statically.

Accurate runtime information can provide more information to the analysis and may lead
to a more accurate policy. A static tool may not be able to discover all the code being executed,
and thus, limit the effectiveness of the policy °. For example, dynamically linked libraries are
only loaded at runtime and may not be available prior to execution. Another example, is
self-modifying code which cannot be analyzed statically.

4Qur prototype, as well as any incomplete implementation may need to consider an UNKNOWN data source as
well
SIf all dynamically linked libraries are trusted, this may be less of an issue.
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Code execution profiles, as well as real time data from the user or the network (which can
be monitored and analyzed), are only available at runtime.

A run time system, although slower, has a significant advantage of having all the run time
data available to it. Having such rich data set may lead to a more accurate analysis and reduce
the number of false positives.

5.2.2 Source code vs. binary

Analyzing a program for vulnerabilities can be done using several different methods. We can
choose to analyze source code or binary code. One key difference is that source code analysis
has the advantage of maintaining the high-level semantics of the program behavior. Binary
analysis introduces a semantic gap between the low-level behavior that can be observed (e.g.,
assembly instructions) and the high-level behavior the program exhibits (e.g., method calls).

Since the source code maintains high level semantics, analyzing it to discover the program
behavior may be more accurate. The main drawback however, is that the source code needs
to be available. This is usually not the case.

5.2.3 Events monitored at different abstraction levels

There are numerous events that need to be monitored to accommodate the information we
need for our policy. We divide the events into 3 categories:

e Architectural (ISA) events - (instructions executed),
e OS (API) events - system calls, and
e Library (API) events - library routines

Events such as OS and Library calls allow us to collect information related to the program
semantics and program information flow. Architectural events allow us to collect information
related to program information flow and program frequency.

Dividing these events into categories emphasizes the need to accommodate different levels
of abstraction in our system.

5.3 Design choices

HTH is a runtime monitoring system. This will allow us to maintain runtime information and
enable us to perform detailed and accurate behavior analysis. Future research will look into
developing hybrid approaches in which static analysis may be used to accelerate the runtime
monitor.

In this initial implementation, our goal was to keep the monitor as lean, generic, and
general as possible. Analyzing source code would limit our analysis to one particular language
or, would require a specialized front-end for each language. Moreover, the source code may
frequently be unavailable. Therefore HTH analyzes the program binary. This alternative does
tie us to a specific architecture and OS (an executable format may bound us to a specific OS),
though we have started to think about how to design this for portability.

Even though we could potentially track all events at every abstraction level (architectural,
OS and library), we will benefit if we can reduce the number of events monitored to a generic
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and preferably small number of events. Tracking all the libraries API may very well be in-
tractable. Since HTH analyzes the program binary and has no access to the source code,
we are only able to monitor calls that are made to shared objects. We do not assume that
debug information is available in the binary and thus restrict ourselves to shared objects with
a defined API can be monitored.

HTH will monitor architectural and OS events, as well as track selected library calls. The
main reason for tracking a subset of library calls is to overcome the semantic gap introduced
by working with only architectural and OS events.

5.3.1 HTH classification

HTH falls into the class of program monitors called white boz detectors, as defined by Gao et
al. [5]. A white box detector is a system that uses all information available to it including:

e system calls and system call arguments,
e program memory usage and,

e source code and binary code.

HTH is chosen to be a run time security monitor. We believe that this alternative is the
most flexible and applicable for most users. In addition we believe that run time analysis
can provide the best accuracy and minimize the number of false positives. Future work will
consider the run time implications of such a system.

In the next sections we pesent Secpert the expert system which is responsible for analyzing
the program behavior and Harrier which is the run time monitor which tracks all the events.

6 Secpert Design and Implementation

Secpert (Security expert) is the HTH component responsible for analyzing program behavior
and implementing the policy. It is implemented as an expert system. In figure 2 we show a
high level view of Secpert Expert system architecture.

Secpert is driven by program events. The events are used to analyze a program’s behavior.
Based on the policy adopted, the runtime behavior is monitored and a warning will be issued
to the user if an exploit is detected.

We first describe the events Secpert will address and then describe our implementation
using the CLIPS expert system.

6.1 Secpert Events

To implement the policy we have described early, Secpert is notified whenever an event occurs.
To keep Secpert running efficiently, we only notify Secpert on predefined events and attach all
relevant information to those event.
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Figure 2: Secpert Expert System architecture

6.1.1 Events timing

In our current implementation, Secpert is notified whenever a relevant system call, socket call
or library call is about to be executed. These types of events allow Secpert to focus on program
behavior and mask irrelevant details (such as data flow). Since these events are usually rare,
we should be able to analyze the event without a significant impact on performance (Secpert
should never become a performance bottle-neck).

6.1.2 Events types

We categorize interesting calls into two types:
1. resource access, and
2. write to or read from a resource.

We attach all relevant information to each of these events. The information attached to a
resource access includes the call number, resource name and type, as well as the resource ID
(name) itself along with the associated resource ID data source. In addition, we also collect
the time, code frequency, and code address.

The information attached to a write to or read from resource includes the call number,
and information about the source of the data. This source information includes the source
resource name and type, as well as the source resource ID data source. Similar information is
sent regarding the target, including the target name and type, as well as information about
the target name itself (i.e., the target resource ID data source). For target, we also provide
the time, code frequency, and code address information.
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6.2 Secpert Implementation

We have implemented our policy using the CLIPS expert system [7][12].

6.2.1 CLIPS

CLIPS is a tool that is used to build expert systems. It was designed to allow the user to
develop software (expert system) that can represent human expertise and knowledge.

CLIPS can represents two types of knowledge: heuristic knowledge and procedural knowl-
edge. Heuristic security knowledge is based upon a security expert experience. This knowledge
can be represented by rules; mainly conditional if-then-else clauses. Procedural knowledge can
be represented in CLIPS by functions, generic functions, and object oriented programming
and is used to represent more algorithmic knowledge.

CLIPS has 3 main components [7]:

e Rules - The set of if-then-else statements which represent the (human) expert’s knowl-
edge.

e Facts - The data entered by the user to the expert system. This data represents all the
information the user provides to the human expert.

e CLIPS inference engine - The engine that controls the execution of the rules.

CLIPS programming is data-driven. The inference engine will execute the rules according
to the data, (or facts) provided. The CLIPS inference engine will choose to execute (or fire)
the rule corresponding the the associated “if” condition that is satisfied. There may be more
than one rule that will be fired. Note, that data is essential for the execution of the rules, and
without the data the rules will not be executed.

The main advantage of using an expert system over other approaches (e.g., neural networks)
is because an expert system has the ability to reason about its decision making. An expert
system can give the user all of the information that was used to reach its conclusion.

6.2.2 Secpert - The Security Expert

Implementing Secpert using CLIPS consisted of implementing both the facts and the rules.
The facts are asserted (inserted into the system) on predefined calls. During each of the events
(as described 6.1.1 and 6.1.2) a new fact was created and inserted into the system. Each new
fact contains all event-relevant data. An example of a fact being asserted in CLIPS is shown
in appendix A.1.

We have implemented all the rules described in section 4 as CLIPS rules. An example
implementation of an implemented rule is shown in appendix A.2.

When a rule is fired, it’s output contains enough information for the user to understand
the warning. An example of a fact being asserted in CLIPS is shown in appendix A.3.

7 Harrier Design and Implementation

Harrier is the HTH component responsible for tracking and monitoring program execution.
The component is called Harrier after the Northern Harrier which systematically searches for
prey (see Appendix C).
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Harrier tracks the program’s execution and generates events that are sent to Secpert for
analysis. Harrier will generate events to support execution flow tracking, resource tracking,
and information flow monitoring.

We start by describing the events tracked by Harrier, including the system calls monitored,
the source/target of the data flow, the library calls (socket API), the architectural events
monitored, and the code frequency. We then describe our implementationt.

7.1 System calls

Harrier tracks multiple system calls for several different reasons. We track the execve system
call to facilitate execution flow. We also track the clone system call to enable resource abuse
analysis. Whenever such a system call is issued, and just before it is executed, an event is
generated and sent to Secpert. Harrier will interrupt the execution of the program and wait
until Secpert analysis is done.

System calls such as open, close, write and read are tracked also. We track the open
and close system calls in order to match future reads and writes to the same resource. In
addition tracking these system calls allows us to find the data source of the resource id (source
name).

Additional system calls such as create, dup and socketcall are tracked as well. When
these system calls are executed, Harrier will generate events just as it does for execve and
clone. But since Harrier is a prototype, not every system call is tracked.

7.1.1 Sources and targets of data flow

The read and write system calls represent entry point for information flow (read) as well
as exit points (write). These system calls are tracked because they represent the source and
target of the information.

Tracking these system calls is not enough to implement full information flow tracking, but is
an essential step. When data is being read from a file or socket and stored in memory, Harrier
will tag that data with the appropriate data source. This tag will be referred to whenever the
data is used. For example, when data is being written to a file or a socket the tag of the data
(i.e., the data source) is sent to Secpert for analysis.

Tracking system calls is key to understand the program behavior. System calls are used to
monitor program execution flow and resource usage. In addition some of the system calls are
entry and exit points for the data flowing in the program. Although much of the program
behavior can be extracted from the system calls, some of the behavior cannot. In the next
section we present the motivation for tracking Library calls, and show how we can overcome
the semantic gap introduced by working with system calls.

7.2 Library calls

Harrier tracks the socketcall system call and several of its sub calls such as socket, bind,
connect and others. Several of the tasks that need to be done in order to open a socket (for
instance a client) include calling additional routines that are implemented as a library API.
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These routines include: gethostbyaddr and gethostbyname. These routines are important to
track because they can tie the resource id (the socket name) to the connect call. In other words,
the routines are used to track the data source of the resource id (socket name or address) from
its origin to its usage in the connect system call.

As an example, an ordinary client may follow the following steps to connect to a server:

1. Open a socket, using the socket (sub) system call
2. Use the gethostbyname routine to get the host network address
3. Connect to the server socket using the host network address

Now, assume the server address is hardcoded. For instance if the client attempts to connects
to pop.mail.yahoo.com, this string will be hardcoded and will be used as an input to the geth-
ostbyname routine. Next, the host network address (which pop.mail.yahoo.com symbolizes)
can be used to in the connect system call®.

Our goal is to convey to Secpert the information that the string pop.mail.yahoo.com (the
resource ID) was hardcoded. This will be done when the connect system call is executed.
The connect call is being tracked by Harrier, since the network host address is one of its
arguments, the data source of that argument can be found and sent to Secpert. The problem
arises when we consider the source id of the host network address. We would like the source
id to reflect the source id of the pop.mail.yahoo.com string, but in reality the network host
address originates from the gethostbyname routine.

The gethostbyname routine resolves the host name to a network address. The resolution
may be done using a local host file, a domain name server, or other methods. The network
address returned may originate for example, from the local host file or from the domain name
server.

Tracking data flow through any function which performs a translation will fail to tag the
translated data with the same tag as the input data. Instead, the translated data will be tagged
with its own new source. If the translation table resides in a binary, the tag of the translated
data will be BINARY. If the translation table resides on a remote server, the translated data
will hold the tag of the server (since the origin of the translated data originated from the
server).

Our solution is to identify the gethostbyname routine and short circuit the data flow.
Essentially, we will tie the hardcoded address in the example with that of the resulting host
network address. We can do this by treating the routine as an atomic operation and copy the
resource ID tag directly to the resulting host network address.

7.2.1 Bridging the Semantic Gap

The example shown above shows that occasionally the information flow is outside of the pro-
gram and we need a different approach to profile it. We would run into similar problem if
we wanted to profile the setting and reading of environment variables. Although we would
prefer only to track system calls and keep the implementation simple and generic, this type of
information flow can not be obtained through monitoring system calls alone.

6We ignore a step that may include a copy from the hostent struct to a sockaddr struct since in this step data
being copied from one location in memory to another. This will be handled by the regular data flow mechanisms.
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The semantic gap between the socket library API and the system calls is too wide. A new
mechanism must be introduced to track the information flow at the appropriate abstraction
level. For this reason we monitor a minimal set of library API functions.

7.2.2 Constraints imposed by tracking library API

Tracking library APIs may place some restrictions on Harrier. These limitations are imposed
because we may need extra information in the binary to locate these routines. Usually the
libraries are implemented as shared objects and the routines are therefore easy to find.

A problem may arise when the program is statically compiled without any debug informa-
tion. Luckily, in the case of the gethostbyname routine, this should never occur. Trying to
statically compile a client with the gethostbyname routine produces the following warning (gcc
3.4.2):
warning: Using ’gethostbyaddr’ in statically linked applications requires at
runtime the shared libraries from the glibc version used for linking.

This restriction is present to ensure that the program uses the local methods for host resolution.

7.3 Data flow
7.3.1 Data flow & Architectural events

Harrier monitors a program’s architectural events to facilitate information flow tracking. Ar-
chitectural events - such as instructions executed - generate values and move data to and from
registers and memory. Harrier tags each register and memory location with one or more data
sources. Note that a tag may contain multiple data sources - this indicates that the data is
produced by multiple input operands originating from different sources.

Whenever an data producing instruction is executed, the tag of the newly assigned memory
or register is updated. The new tag will hold a composite of the data sources of the source
operands. The following are a few examples:

e The mov %esp,%ebp instruction moves data from the %esp register to the %ebp register.
In this case the data sources of %esp will be assigned to be those of %ebp as well.

e The movl $0x4, mem instruction moves the immediate 4 to a memory location. In this
case the data sources of the memory location are assigned the data sources of the im-
mediate. In reality, the immediate has only one data source - BINARY, and this data
source will be assigned to mem’s memory location.

e The add %ebx, %eax instruction adds the %ebx and %eax registers and stores the result
in the %eax register. In this case, the data sources of %eax will include all the data
sources of both %ebx and %eax registers. (In effect, the resulting set of data sources will
be the union of the two sets of data sources, where both %ebx and %eax have each a set
of data sources.)

e The cpuid instruction assigns %eax, %ebx, %ecx and %edx a value (part of the cupid).
Here, each of the registers will be assigned the HARDWARE data source
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Harrier tracks instructions executed” and continuously updates the tags and data sources.
This allows Harrier to track all the data flow inside the program, as well as data flow from the
hardware. When a system call is made, the data sources of the arguments, as well as of the
data itself is passed to Secpert for analysis.

HERE

7.3.2 Data flow & Loader events

Part of data flow tracking includes fining the hardcoded data. This data is embedded in the
binary - the executable itself or libraries that are dynamically loaded.

Harrier monitors events where a binary (the executable or shared library) is loaded. In
effect Harrier carries out a very similar operation to the operation it executes on a read system
call. When the data is being read from a binary and mapped to memory, Harrier will tag that
data with the BINARY data source.

Note, that the loader event can be classified as an OS or system call event. Whether this
is implemented as an OS event or in a separate manner depends on the implementation (of
Harrier). We emphasize this case since it is a special case of a file read and we need to carry
out a slightly different operation.

7.3.3 Data flow & User input

User input needs to be tracked by Harrier. The read system call, using the STDIN file de-
scriptor will read the 'regular’ user input into a memory location. Harrier will identify this
case and tag the memory location with the USER_INPUT data source.

Other channels of user input to the program may be the command line argument as well
as environment and auxiliary variables (argc,argv,env,aux). All this information is stored on
the initial stack as the program starts its execution. Harrier will tag all the initial stack with
the USER_INPUT data source.

To summarize, Harrier tracks data flow and considers the following aspects of data flow:

e Data flow inside the program - instruction that read/write memory and registers

e Special instructions that read data from (and potentially write to) the hardware (CPU).
CPUID is a current example. Attestation may be a future usage.

e Loaded binaries and shared libraries need to be tagged, since they may be a source of
data.

e The initialized stack, which contains the command line arguments, the environment and
aux variables are tagged.

e System calls that write data to or read data from memory are be handled as well.

"harrier is a prototype and as such does not track all X86 instructions. For example, Harrier does not track
floating-point instructions at all. We also do not track control transfer instructions (jump, branch, etc..), although
these instructions may allow implicit information flow. This is left for future work. Harrier does track enough
information to provide significant protection, as the results show.
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e Library calls where the data flows outside the scope of the program, are handled (’short
circuit-ed’).

7.4 Basic block frequency

In our policy we aim to distinguish code segments that are rarely executed. Such segments may
be an indicator of a backdoor which may be seldom used. For example, the TCP Wrappers
Trojan will provide root access to intruders who are connecting from a specific port, we assume
that most of the time connections are 'normal’, and relatively rarely are the intruder connec-
tions made. Another example of malicious code that is rarely executed is the CIH/Chernobyl
Virus. This virus infects executables and is spread when an infected executable is executed.
The CIH virus has several variants. Some are triggered every month on the 26th day, while
other variants are triggered just on April 26th or June 26th. Once the CIH virus executes,
it attempts to erase the entire hard drive and overwrite the system BIOS. (CIH affects only
Windows 95/98 machines) (CERT IN-99-03) [33].

To support this, we need to count the code segments executed. This is done by counting
basic blocks. A basic block (BB) is a sequence of instructions that end with a control transfer
instruction - in other words, if the first instruction of the BB is executed, all other instructions
in the the BB will be executed as well.

Harrier will count the number of times each BB was executed. Whenever an event is sent
to Secpert, it will include the frequency count which represents the number of times the BB
(which contains the event trigger) has executed.

Note that we are interested in the frequency of the application’s code and not in code
executed in trusted dynamic libraries (or shared objects). Assume for example an application
that contains several functions that call the execve syscall and that one of those functions is
malicious. Our goal is to differentiate the different functions and locate the one that exhibits
the malicious behavior. when this application is executed, each call to execve will be diverted
to a dynamically loaded library (libc.so), thus counting the frequency of the actual event -
the execve system call - results in counting the BB of the shared library. This reduces the
effectiveness of code frequency since we cannot distinguish different parts/functions of the
original program.

To solve this problem, Harrier can track only the BB Frequency of the application itself
— this is only done when the shared libraries are trusted. Harrier follows of the execution
of BBs of the application itself and keeps track of the “last” BB executed in the application
before entering the library code. This allows us to distinguish the code in shared objects from
the original application and match the execve system call event to the application BB which
originated the call path to the shared object. Figure 3 show a BB execution path being tracked
by harrier. The figure shows the interface between the application and a shared object.

This scheme can be relatively easily overcome by an adversary, it is therefore used mainly
to reinforce the warnings generated by Secpert.

7.5 Implementation

Harrier can be viewed as layer that virtualizes an application. At this level we can monitor
all Library, OS and ISA abstraction levels as shown in figure 4. Harrier is implemented on
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Figure 3: BB Execution path: from the application to a shared object

top of PIN [17]. Pin is a framework for dynamic instrumentation and supports Linux binary
executables.
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Figure 4: Harrier virtualizes the application execution

Dynamic instrumentation is done ’on top of’ the operating system and "below’ the appli-
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cation. It therefore allows us to access events in all the different abstraction levels. We are
easily able to monitor libraries API, OS system calls and architectural events.

In order to support our policy, we need to track data flow, code frequency and monitor
events such as system and library calls. To gather all this information we instrument the
application in different granularities:

Instruction,

Basic Block - where we conceptually instrument on Basic Block boundaries,

Routine - where we instrument on function call or return,

(image) Section - where we identify the different sections in a binary, and
e Image - where we act when an binary is loaded or unloaded.

In table 3 we summarize for each policy rule which instrumentation granularity is used and
what information is gathered. The table is divided according to the abstraction level in which
the information is gathered.

‘ Policy rule ‘ Instrumentation granularity ‘ Information gathered

Architectural events

Information Flow | Instruction Data Flow (reg/mem
mem/mem, reg/reg)

Information Flow | Instruction Hardware Information (CPUID)

Code Frequency | Basic Block BB frequency

OS (API) events

Execution Flow | Instruction System Calls (execve)

Resource Abuse | Instruction System Calls (clone)

Information Flow | Instruction System Calls (IO read/write)

Information Flow | Section Binary load

Information Flow | Image Binary load

Information Flow | Instruction Initial stack location

Library (API) events

Information Flow | Routine "Short Circuit” Data Flow
(getHostByName)

Table 3: Information gathered in different instrumentation granularities

In figure 5 we show how Harrier uses pin to instrument the code. On the left side, the orig-
inal code is shown in assembly. On the right side, we show how Pin instruments the original
code and inserts new calls to the analysis functions Track DataFlow, Collect_ BB_Frequency
and Monitor_SystemCalls. Note that the Track_DataFlow function is called before each in-
struction that moves or computes data, the Collect_BB_Frequecy function is called before each
new basic blocks is executed and the Monitor_SystemCalls function is called before the system
call (int 80 instruction).

Figure 6 shows the high level software architecture of Harrier. On the left side of the
picture we show the main modules of Harrier instantiated from the 'main’ in PinInstrumentor.
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mov %eax,%oedi Call Track_DataFlow

jne 58 mov %oeax,%edi

mov $0x0,%ebx jne 58

xor  %edx,%edx Call Collect BB_Frequency
mov %esi,%ecx Call Track DataFlow

mov $0x5,%eax mov $0x0,%ebx

int  $0x80 Call Track_DataFlow

xor  %edx,%edx

Call Track_DataFlow

mov %esi,%ecx

Call Track_DataFlow

mov $0x5,%eax

Call Monitor_SystemCalls
int  $0x80

Call Collect BB_Frequency

Figure 5: Harrier instrumentation example

Each of the modules instruments and handles a different aspect of the application (system
calls, routines, instruction data flow, data flow and code executions). The figure shows the
interaction between the different modules and the data structures used to track data flow and
BB frequency.

The system calls are the events which we use to update Secpert with. The figure shows how
the PinSysCallEventGenarator interacts with the EventAnalyzer. This module is responsible
to format and send the events to Secpert (on the left side of the figure). It then waits for a
response from Secpert and updates the user when necessary.

8 Security Accuracy Evaluation

8.1 Micro Benchmarks

In this section we present micro-benchmarks that are used to show all the different aspects of
the policy as well as the implementation. The benchmarks test for malicious code as well as
for trusted behavior.

8.1.1 Execution Flow

In table 4 we show our micro benchmarks for testing execution flow. The table shows results
for 4 different benchmarks. All the benchmarks call execve with the program name originated
from different sources: user input for the “User input” benchmark, hardcode program name
for both the “Hardcode” and “Infrequent execve” benchmarks and a socket source for the
“Remote execve”.
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Figure 6: Harrier software architecture

’ Micro Benchmark ’

execve

User input
Hardcode
Remote execve

Infrequent execve

‘ V Correctly classified benchmark

Table 4: HTH Micro benchmarks - Execution Flow

The Infrequent execve benchmark is similar to the Hardcode, except the program is sleeping
for a while to simulate a malicious code where the execve is executed infrequently. In the case
of user input, HTH did not produce any warning and the benchmark was correctly classified
as not malicious.
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8.1.2 Resource Abuse

In table 5 we show our micro benchmarks for resource abuse. Both benchmarks frequently
call fork. The loop forker has one main thread that calls fork. Each of the children executes
an infinite loop and sleeps. The tree forker benchmark implements a simple loop where fork
is being called and both the child and parent continue with the loop. This creates a tree of
processes, where each process calls fork, produces 2 processes (parent and child) and both
continue with the loop.

‘ Micro Benchmark ‘ ]

fork
loop forker v
tree forker V
‘ J Correctly detected malicious behavior

Table 5: HTH Micro benchmarks - Resource Abuse

In both cases HTH can detect when the number of processes reach a certain threshold as
well as a rate.

8.1.3 Information Flow

Table 6 shows the results for our information flow benchmarks. To test the information flow
we consider several different sources, as discussed in section 5.1: Binary, File, Socket and
Hardware.

In each section of the table, we evaluate benchmarks with different information flow sources
and targets. In addition the benchmarks test different sources for the file names or socket names
(source ID data sources). These may be hard-coded, given by the user or even obtained from
a remote socket.

The benchmarks which use the Hardware source make use of the CPUID X86 instruction.
All the benchmarks that use sockets where tested twice: once as a socket client and the other
a socket server. Note, some of the tests show trusted behavior and are correctly classified.

8.2 Running trusted programs

In this section we evaluate several trusted programs. Our aim is to find out how often to we
get false positives.

Some trusted programs that are not “well behaved” such as software update programs
should be caught by HTH. In such a case the user is able to allow the operation to continue.
A summary of the results are shown in table 7.

Next we describe each exploit and present the output of our tool.

8.2.1 Is
No warning is issued. Our tool does detect that ”.” is opened and the origin is binary (hard-
coded).
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| Micro Benchmark |

Binary — File

User filename
hardcode filename

remote filename

Binary — Socket

User address
Hardcoded address

File — File
User input, User Input

&&

User input, Hardcoded
Hardcoded, User input
Hardcoded, Hardcoded

File — socket

User input, User Input
User input, Hardcoded
Hardcoded, User input
Hardcoded, Hardcoded
Socket — File

User input, User Input

User input, Hardcoded
Hardcoded, User input
Hardcoded, Hardcoded

Hardware — File

User filename V
Hardcode filename J

‘ V Correctly classified benchmark

Table 6: HTH Micro benchmarks - Information Flow

8.2.2 column

In this test, we executed the ’column a b ¢’ command. HTH did not produce any warning -
as expected. Harrier did detect that the data printed to the screen originated from all three
files (a b and ¢) and that those filenames are originated from the user (command line).

This test was the one that prompted the need to track the source of command line argu-
ments. We needed to add the source "USER_INPUT’ to all command line arguments.

8.2.3 make

We executed make on the makefile used to compile Harrier.
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Aplication Name
Is

column

make
g+
awk
pico
tail
diff
we
be

xeyes

— S S S S s S e = = =

V Correctly identified any good behavior

N Partially or Inaccurately identified inappropriate behavior

Table 7: HTH Success in not warning when running well behaved programs

In our first test we executed 'make’ when harrier was already made, so nothing should
execute. No warning were issued from HTH. When running HTH, It found the open syscall
of the 'makefile’ file which was originated from /usr/bin/make, no warning was issued for this
since nothing ’bad’ was done with the content of this file.

When we tested 'make clean’ (when the Harrier was build): HTH issued a warning [Low]
for a hardcoded execve system call: ’/bin/sh’ was hardcoded.

When we executed 'make’ (when Harrier was not built) HTH issued several warnings (Low)
for executing g++. It identifies this commands as hardcoded as well as originated from the
user. It seems that 'make’ tries to find g++ in different directories and that those directories
originates from the PATH environment variable (and therefore tagged as USER_INPUT).

8.2.4 g+-+

For this test we called g++ with two test files: (g++ test.cpp DataFlow.C) HTH issued
warnings for executing a program that were hardcoded. The warnings ([Low|) were generated
for executing ‘cclplus‘ and ‘collect2‘ executables. (The ‘as‘ executable was tracked as well, but
its source ID data source was wrong).

In this case HTH generated a warning for a trusted application. This warning was generated
since the policy specifies this behavior as malicious.

8.2.5 awk

To test awk we executed the following command: ’awk ’/ifdef/’ syscall names.C’. HTH did
not produce any warning. Harrier did detect that the data printed to the screen originated
from the syscall names.C file and that that file was given by the user.
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8.2.6 pico

In this test we monitored the pico editor. Our test includes writing several characters (user
input) and then saving the buffer to a new file called ’a.txt’ (given by the user).

Harrier wrongly identified the source of the data as well as the source of the filename
('a.txt’) and issued the following warning:

Warning [HIGH]  Found Write call to a.txt
The Data written to this file is originated from the BINARY: ("/usr/bin/pico")
Moreover, it seems that the name of the file: a.txt originated
from a BINARY: ("/usr/bin/pico")

This warning was generated because our prototype is incomplete. A complete dataflow
tracking tool would correctly identify the data sources avoiding this warning all together.

8.2.7 tail

We also tested the tail utility. We have executed ’/usr/bin/tail Pinlnstrumenter.C’ and mon-
itored it with HTH. Harrier detected that the file Pinlnstrumenter.C was given by the user
and that the data printed to the screen originated from that file. HTH did not produce any
warning.

8.2.8 diff

No warning is issued. Harrier detected that the output originated from both files and that the
files were given by the user.

8.2.9 wc

We tested the we utility. HTH detected that the output originated from the input file (as
well as the binary) and that the input file was given by the user. HTH did not produce any
warning.

8.2.10 bc

bc is a command line calculator. We used it simply to add two numbers. HTH did not issue
any warning. Harrier did detect that some of the output originated from the user input (bc
echo’s the expression).

8.2.11 xeyes

When we tested xeyes, HTH generated several false warnings, Those include a write to a socket
(on the local host), where the data originated from X11 libraries (1ibX11.so, libXrender.so),
or where the data originated from binaries such as the xeyes binary itself or other hard coded
binaries (xlcDef.so) All the warning generated were of Low severity.
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False positives are bound to occur, HT'H monitors the program behavior and basically tries
to distinguish good from malicious behavior patterns. There is no accurate definition for good
vs. malicious behavior: a malicious behavior for one user may behave as expected for another.

The current policy has strict rules since the policy assumes Secpert only monitors a single
execution of the program. Some of the rules can be relaxed if Secpert would be extended
to monitor multiple executions of the program as well as several programs. For example,
if Secpert would monitor parent/child programs, the warning produced when g++ executed
cclplus and collect2 would be delayed to the point where they misbehave. If those executables
would behave properly no rule would be fired at all. In other words, cclplus and collect2
are part of the g++ program and are run as separate threads, if we would monitor all the
related threads, Secpert would be able to make smarter decisions and not be limited by current
implementation.

Future work will look at these, as well as additional ways to reduce the number of false
positives.

8.3 Real Exploits / Proof of concept

In this section we evaluate several malicious programs found on the web. Several of these
programs are a ”proof of concept” exploits - they shows how to exploit a vulnerability.
A summary of the effectiveness of our policy is shown in table 8.

Exploit Name
ElmExploit
nlspath

procex
grabem
vixie crontab

< S S s S < <

pma
superforker

v Identified malicious behavior

N Partially or Inaccurately identified behavior

Table 8: HTH Success detecting Real exploits

Next we describe each exploit and present the output of our tool.

8.3.1 ElmExploit

This exploit - Electronic Mail for UNIX (Elm) Expires Header Buffer Overflow Exploit [22] -
creates an email and sends it to a given user.
Summary: Found the creation of the crafted email.

Warning [HIGH] Found Write call to tmpmail
The Data written to this file is originated from the
BINARY: ("/proj/archl/mmoffie/PIN/RealExploits/a.out")
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Moreover, it seems that the name of the file: tmpmail originated from a
BINARY: ("/proj/archl/mmoffie/PIN/RealExploits/a.out")

HTH did not find the act of sending of the email. The exploit calls:
system("/bin/cat ./tmpmail | /usr/sbin/sendmail -t") but HTH did not produce a
warning for a hardcoded execve. This is because the system() function executes a command
specified in the string by calling ’/bin/sh -¢” with the string. It then returns after the command
has completed.

HTH does find the relevant event:

CLIPS_write: (assert (system_call_access
(system_call_name SYS_execve)
(resource_name "/bin/sh")
(resource_type FILE)
(resource_origin_name "/1lib/tls/libc.so.6")
(resource_origin_type BINARY)
(time 108)
(frequency 1)
(address "80488e5")

but because Secpert trusts the libc.so library and the ’/bin/sh’ string data source is from
libc.so the event is filtered out.

8.3.2 nlspath

The nlspath [4] vulnerability is an old exploit that uses the NLSPATH environment variable
to exploit setuid root programs that are based on libc (libc version 5.2.18, 1997) and get root
access. The exploit assigns the NLSPATH environment variables a string that was hardcoded
in the exploit itself, it then executes ’/bin/su’. This exploit did not give root access (on RedHat
9).
HTH found the call to execl with the hardcoded ’/bin/su’ string.

Warning [LOW] Found SYS_execve call ("/bin/su")

("/bin/su") originated from ("/proj/archl/mmoffie/PIN/RealExploits/a.out")

Future implementation should consider tracking data flow via environment variables similar
to the way we track library socket calls.

8.3.3 procex

The procex [4] exploit can be used to disclose some information (contents of setuid application’s
environment data) to unprivileged users.

The exploits calls execl twice while reading from ’/proc/pid/environ’ (where pid stands
for the process id). Executing this exploit although printing information did not appear to
disclose any privileged information. HTH did find the two call to execl. Both are hardcoded:

Warning [LOW] Found SYS_execve call ("/bin/ping")

("/bin/ping") originated from ("/proj/archil/mmoffie/PIN/RealExploits/a.out")
Warning [LOW] Found SYS_execve call ("/bin/1s")

("/bin/1s") originated from ("/proj/archl/mmoffie/PIN/RealExploits/a.out")
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8.3.4 grabem

grabem [10] is a simple program that can log user’s password from the console. During grabem
execution it asks for lab#, username and password and stores the user name and password in
a file (that was created if didn’t exist beforehand). The file name is .exrc%.

HTH detects that data is being written to the hardcoded file. It does not detect however
that the data originated from the USER, Nor does Harrier detect the system() function call
which turns the console echo on or off.

Warning [HIGH]  Found Write call to .exrc}
The Data written to this file is originated from the
BINARY: ("/proj/archl/mmoffie/PIN/RealExploits/a.out")
Moreover, it seems that the name of the file: .exrc) originated from a
BINARY: ("/proj/archl/mmoffie/PIN/RealExploits/a.out")

8.3.5 Vixie crontab

Vixie crontab exploit [11] exploits a buffer overflow in crontab to get root. The exploit basically
writes hardcoded data (code) into a file ’./Window’ and executes ’/usr/bin/crontab’. Running
the exploit did not get root.

HTH detects both the data being written to the file and the execution of crontab:

Warning [HIGH]  Found Write call to ./Window
The Data written to this file is originated from the
BINARY: ("/proj/archl/mmoffie/PIN/RealExploits/a.out")
Moreover, it seems that the name of the file: ./Window originated from a
BINARY: ("/proj/archl/mmoffie/PIN/RealExploits/a.out")

If we allow HTH to continue:

Warning [LOW] Found SYS_execve call ("/usr/bin/crontab")
("/usr/bin/crontab") originated from
("/proj/archl/mmoffie/PIN/RealExploits/a.out")

8.3.6 pma

pma [10] - Poor’s Man’s Access, is a daemon which lets a remote attacker issue shell command
from remote.

We have compiled the daemon on linux and the attacker on a sun machine 8. The attacker
can connect and execute (remotly) shell commands such as ls, pwd cd and more. The server
(the daemon) will create two special files using ("/bin/mknod %s p; /bin/mknod %s p")
where part of the name is hardcoded (”inpipe”,”outpipe”) and part is the pid. It will then
create a shell process (system) and redirect the shell’s input and output to the new special

files: sprintf(sbuf, "csh -i <¥s >%s 2>&1 &", iname, oname); system(sbuf); It then

8We have reduced the number of threads in the pma daemon (to two) in order to simplify the monitoring. No
other modification was made.
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continues with two threads: one reads from the outpipe and writes to the socket (attacker)
and the other reads from the socket (attacker) and writes to the pipein shell.

HTH monitors both threads simultaneously. HTH does not warn when the system() func-
tion call is called (libe.so is trusterd).

HTH monitors the daemon server, It detects the deamon openning a hardcoded socket
server (it is hardcoded because we use LocalHost, the port is given by the user) HTH also
detects the accept, the open of the in and out pipes (that were redirected to the shell - using
system command)

HTH detects the daemon writing to the pipe a hardcoded prompt:

Warning [HIGH] Found Write call to inpipe32425
The Data written to this file is originated from the
BINARY: ("/proj/archl/mmoffie/PIN/RealExploits/pma/pmad")
Moreover, it seems that the name of the file: inpipe32425 originated from a
BINARY: ("/proj/archl/mmoffie/PIN/RealExploits/pma/pmad")

pma then compares the password given from the attacker and returns ”ok” or "nope”. In
the first stage, a password is compared and if it is o.k. the deamon prints "echo ok” to the
inpipe so that the outpipe will read ”ok” (and this is what the attacker will see)

Warning [HIGH]  Found Write call to inpipe32425
The Data written to this file is originated from the
BINARY: ("/proj/archl/mmoffie/PIN/RealExploits/pma/pmad")
Moreover, it seems that the name of the file: inpipe32425 originated from a
BINARY: ("/proj/archl/mmoffie/PIN/RealExploits/pma/pmad")

Warning [HIGH] Found Write call

Data Flowing From: outpipe32425

To: gateway:36982 (AF_INET)

source filename was hardcoded in:
("/proj/archl/mmoffie/PIN/RealExploits/pma/pmad")

This program has opened a socket for remote connections. i.e. it is a
server with the address: LocalHost:11116 (AF_INET)

the server address was hardcoded in:
("/proj/archl/mmoffie/PIN/RealExploits/pma/pmad")

HTH then detects data flowing from sockets to inpipe and back from outpipe to socket
(command, result).
In one of the tests we made, we tested the bb frequency:

Warning [HIGH] Found Write call
Data Flowing From: gateway:37047 (AF_INET)
To: inpipe32666
This program has opened a socket for remote connections. i.e. it is a
server with the address: LocalHost:11111 (AF_INET)
the server address was hard oded in:
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("/proj/archl/mmoffie/PIN/RealExploits/pma/pmad")
target file-name was hardcoded in FILE:

("/proj/archl/mmoffie/PIN/RealExploits/pma/pmad")
This code is rarely executed...

Warning [HIGH] Found Write call

Data Flowing From: outpipe32666

To: gateway:37047 (AF_INET)

source filename was hardcoded in:
("/proj/archl/mmoffie/PIN/RealExploits/pma/pmad")

This program has opened a socket for remote connections. i.e. it is a
server with the address: LocalHost:11111 (AF_INET)

the server address was hardcoded in:
("/proj/archl/mmoffie/PIN/RealExploits/pma/pmad")

This code is rarely executed...

8.3.7 superforker

The superforker exploit [10] is a extreme version of the classic fork() denial of service attack.
The program continuously forks processes as well as continuously opening files and writing
garbage data to it.

Executing this exploit on the machine will consume all its processes extremely fast - the
user will not be able to create any new processes any more.

HTH produce the following warnings for creating the hardcoded files, note the file names
where created randomly (using characters that were hardcoded):

Warning [HIGH] Found Write call to ..LDNwGMugQoHTRcbYCeah. ..
The Data written to this file is originated from the
BINARY: ("/proj/arch4/mmoffie/PIN/RealExploits/a.out")
Moreover, it seems that the name of the file: ..LDNwGMuqQoHTRcbYCeah...
originated from a BINARY: ("/proj/arch4/mmoffie/PIN/RealExploits/a.out")

HTH produced the following warnings when the number of processes increased:

Warning [LOW] Found several SYS_clone calls
This call was frequent

And the following warnings when the number continued to increase very fast and passed
another treashold:

Warning [MEDIUM] Found several SYS_clone calls
This call was very frequent in a short period of time

8.4 Macro Benchmarks

In this section we show the effectiveness of HTH on more 'real world’ applications. We modified
a few real applications to include malicious code and test HTH.
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8.4.1 pwsafe

pwsafe [25] is a password database manager. It is used to model malicious code that sends
user’s private information to a remote attacker (i.e. pwunsafe).

pwsafe is a unix command line program. To test it, we have created a simple database
which contain a couple of entries in a ’/.pwsafe.dat’ database file. In our test case we first
execute pwsafe -help - which prints a help message, and then pwsafe --exportdp which
prints out the database content.

When running HTH on pwsafe no warnings are produced. Harrier does detect the write to
STDOUT, but inaccurately identifies one of data source of the data as STDIN.

Next, we added malicious code which sends the data (passwords) to a hardcoded server.
When we run HTH on the malicious version of pwsafe, we detect that data is sent to the
hardcoded socket and produce the following warnings.

Warning [LOW] Found Write call
Data Flowing From: /lib/libcrypto.so.4
To: duero:40400 (AF_INET)
target (client) socket-name was hardcoded in:
("/proj/arch4/mmoffie/PIN/MacroBenchmarks/pwsafe/pwsafe-0.2.0-mod/pwsafe")

Warning [LOW] Found Write call
Data Flowing From: /usr/lib/libreadline.so.4
To: duero:40400 (AF_INET)
target (client) socket-name was hardcoded in:
("/proj/arch4/mmoffie/PIN/MacroBenchmarks/pwsafe/pwsafe-0.2.0-mod/pwsafe")

Note that we do not correctly detect all the sources of the data: One of the sources
should have been the database ’/.pwsafe.dat’ file. Another source, the socket itself should
not be a source at all. The warnings generated are of data flowing from shared objects
(/lib/liberypto.so.4 and /usr/lib/libreadline.so.4) to the socket.

8.4.2 mw2.2.1

mw2.2.1 [19] is a perl script that is used to look up a word at the Merriam-Webster web site.
The script is used to test how well HTH handles resource abuse.

Note that while mw2.2.1 is a perl script, HT'H monitors the perl executable. In other
words, Harrier monitors ’/usr/bin/perl’ (version 5.8.0) which is itself running the script. We
have turned off the dataflow tracking since we were monitoring perl and not the script directly.
Turning off data flow enabled Harrier to run much faster and eliminated false positives asso-
ciated with executing perl instead of the script. HTH did not produce any warning on the
original scripts.

We have modified the script to fork more than 20 children. HTH produced the following
warnings:

Warning [LOW] Found several SYS_clone calls
This call was frequent

and if the script was allowed to continue:
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Warning [MEDIUM] Found several SYS_clone calls
This call was very frequent in a short period of time

HTH was able to detect the simple scenario of resource abuse even though it was running
the script indirectly.

8.4.3 Tic Tac Toe

Ultra Tic Tac Toe [18] is a simple, console based Tic Tac Toe game. We use this game to
model a Trojan which writes malicious code into a file and then executes it.

When running HTH on Tic Tac Toe no warnings are produced. We have then modified the
game to write a hardcoded value to a file. Next, we change the file permissions to allow the
user to execute it and execute the file? on his behalf (from within the game). The file name is
hardcoded in the game.

When the modified game was executed, HTH produced the following warning:

Warning [HIGH] Found Write call to ./malicious_code.txt
The Data written to this file is originated from the
BINARY: ("/proj/arch4/mmoffie/PIN/MacroBenchmarks/uttt/uttt-
0.11.0.micha/src/ttt")
Moreover, it seems that the name of the file: ./malicious_code.txt
originated from a BINARY:
("/proj/arch4/mmoffie/PIN/MacroBenchmarks/uttt/uttt-0.11.0.micha/src/ttt")

and when we allowed it to continue:

Warning [LOW] Found SYS_execve call ("./malicious_code.txt")
("./malicious_code.txt") originated from
("/proj/arch4/mmoffie/PIN/MacroBenchmarks/uttt/uttt-0.11.0.micha/src/ttt")

9 Performance Evaluation

Harrier’s main performance bottle neck is caused be tracking the data flow. Currently, the
prototype implementation is very naive. The data structures used to implement data flow are
not as efficient and are therefore relatively slow. Since we need to instrument almost every
instruction and track the data flowing (between the registers and memory and registers), each
such instruction introduces additional overhead caused by accessing the new data structures.

In our next step we will consider different alternatives to accelerate data flow. Those
alternatives may include hardware support such as RIFLE’s [34] architectural and micro-
architectural extensions, or more efficient binary instrumentation methods and data flow track-
ing such as DOG [36] which was developed in MIT. Initial work with Winnie Cheng from MIT
is already on the way.

9n our test case we just write a string into a file and execute that file, the execution fails since the file is not in
a executable format.
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10 Conclusions and Future work

In this work we show how we can identify common malicious behavior, patterns and charac-
teristics of Trojan Horses and Backdoors. We developed a security policy that can correctly
identify such malicious code segments, and constructed a first prototype which demonstrates
the feasibility of our approach.

Results show that HTH is capable of finding Trojan Horses and Backdoors, thus achieving
the most important goal. HTH does however generate false positives. This issue may be solved
in several different ways including creating custom policies based on the user responses, as well
as expanding Secpert policy to allow HTH to monitor a program across different sessions as
well as monitor different programs simultaneously.

Additional work has to be done to show that HTH can run with an acceptable slow down.

Future work can expand and improve HTH in several different directions:
1. Adding hardware support for improving the performance of HTH such as [34].

2. Considering hybrid approaches in which static analysis may direct the runtime monitor.
This may allow us to benefit from less runtime overhead (some of the analysis can be
done statically) while having access to all dynamic information.

3. Expanding the ideas presented in order to identify distributed malicious attacks. An ex-
ample of this type of attacks are bot networks. These new types of treats have increased
during the first half of 2005 and are likely to dominate the new threat landscape [31].
Tracking complex distributed behavior patterns across the network may allow us to ef-
fectively detect such malicious bots.

4. Add new rules to support different types of resource abuse such as memory or network
abuse.

5. Analyze the data downloaded or uploaded from the network or files and incorporate this
information in current and new rules. For instance, if we can analyze and detect what
the type of a downloaded file is (.gif, .doc or .exe) we can incorporate this to our policy.
The detection itself does not need to be based on the suffix, analyzing the content itself
may be more accurate.

6. Cross session - expanding the rules to take into account a program’s behavior during
several different executions. This will allow us to be more accurate and reduce false
positives. We will need to save all the information between two consecutive executions.
If we do this, we will be able to create more fine grain rules, for instance, when data is
downloaded to a file we will be able to see how that file is being used in later executions
instead of immediately producing an error. We can then replace the rule that will warn
that we are saving data to a hardcoded file with a set of rules that track (potentially in
later executions) how that file us being used.

7. Simultaneous sessions - adding support to concurrently monitor different executions on
one machine, and introducing new rules and policy to detect interactions between the
different programs.

8. Reduce the number of false positives. This may be done using user feedback and an
adaptive policy. In addition extending HTH and Secpert to track programs across differ-
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ent sessions as well as tracking multiple programs simultaneously will reduce the number
of false positives.
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Appendix

A CLIPS implementation details
A.1 CLIPS facts

In this section we show an example of a fact (or event) that is asserted in the expert system.

The fact asserted is a resource access type event (as described in 6.1.2). As can be seen,
the execve system is being called, its resource name and type are specified (“/bin/ls/” and
FILE type) as well as information on the resource ID. The resource ID data source contains
the origin of the “/bin/ls/” string, which in this case is the “execve.exe” test program itself
and its type: BINARY. This means that the string “/bin/ls/” was hardcoded. The execution
time, frequency and address of the execve call in the program are given as well.

CLIPS> (assert (system_call_access
(system_call_name SYS_execve)
(resource_name "/bin/ls")
(resource_type FILE)
(resource_origin_name

"/proj/arch4/mmoffie/PIN/MicroBenchmarks/execve/execve.exe")
(resource_origin_type BINARY)
(time 33)
(frequency 1)
(address "8048403")
) )

A.2 CLIPS execve rule

In this section we show an implementation of one rule in CLIPS. We show the implementation
of the execution flow rule as described in section 4.1.

The following rule (defrule) defines the rule. It has two parts, the “if” condition part,
which is the part before the => and the “then” part, which is the part after the =>.

The condition part, matches an ezecve system call (new process) and checks whether the
process name (the origin name and type) is hardcoded or originated from a socket. We use
the filter_binary and filter_socket functions to filter out trusted binaries and sockets.
In our prototype we trust the libc and 1d-linux shared objects. We do not trust any sockets
although our implementation does support this.

In the “then” part, we set the warning variable according to the policy and warn the user
with all relevant information including the binaries or socket from where the process name
originated from.

(defrule check_execve "check execve"
7execve <- (system_call_access
(system_call_name ?sys_name)
(resource_name $7name)
(resource_type $7type)
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(resource_origin_name $7origin_name)
(resource_origin_type $7origin_type)
(time ?7time)
(frequency 7freq)
(address 7addr))
?resolution <- (resolution (status RESOLVE))
(system_call_name (name ?sys_name))
(test (eq 7sys_name SYS_execve))
(test (or
(not (empty-list (filter_binary $7origin_type $7origin_name)))
(not (empty-list (filter_socket $7origin_type $7origin_name))) ))

(bind ?suspicous_binaries (filter_binary $7origin_type $7origin_name))
(bind ?7suspicous_sockets (filter_socket $7origin_type $7origin_name))

; for exec from binary:
(bind ?warning 1) ; low
(if ( and (< ?freq 7*RARE_FREQUENCY*)
(> 7time 7*LONG_TIME*))
then
(bind ?warning 2) ; medium
)
; for exec from socket
( if ( not (empty-list ?suspicous_sockets))
then
(bind ?warning 3) ; High

(print-warning ?warning)
(printout t "Found " ?sys_name " call " 7name crlf)

( if ( not (empty-list 7suspicous_binaries))
then
(printout t 7#TAB* 7name " originated from " 7suspicous_binaries crlf)
else
(printout t 7*TAB* 7name " originated from " 7suspicous_sockets crlf)

; I need the following to give feedback ..
(if ( and (< ?freq ?7+*RARE_FREQUENCY*)
(> 7time 7*LONG_TIME*))
then
(printout t 7*TAB* "This code is rarely executed..." crlf)

)

(retract 7execve 7resolution)
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(assert (resolution (status STOP)))

A.3 CLIPS fires the execve rule

This sections shows CLIPS output when the execve rule (shown in appendix A.2) is fired. The
execve rule is fired when three facts match the “if” part of the execve rule. f-43 is the fact
shown in A.1. Facts f-42 and f-5 are implementation specific facts: {-42 is a fact used to keep
track of CLIPS state, and f-5 fact is asserting that the string “SYS_execve” is a system call.

The output shown, is generated by the execve rule, and shows the warning and the reason
for the warning.

FIRE 1 check_execve: f-43,f-42,f-5
Warning [LOW] Found SYS_execve call ("/bin/1s")
("/bin/1s") originated from
("/proj/arch4/mmoffie/PIN/MicroBenchmarks/execve/execve.exe")

B Secure binary

In this section we introduce a concept we call a Secure Binary.

A Secure Binary is a binary that can be dynamically or statically verified to uphold the
rules, and will be consider safer but not safe with respect to malicious code such as Trojan
Horses and Backdoors.

A Secure Binary must conform to the following rules:

1. There is no hard-coded data in the binary - any data used by the program should be an
input to the program.

This rule is very effective against a lot of the Trojan horses described above which usually

contain some hardcoded resource name. Moreover, it is even effective against TCP wrappers

Trojan which gives root access to intruders that connect via port 421 (where 421 is hardcoded).
But this rule will be too hard to maintain, even a simple loop end condition will be required

to be given as input. Essentially this rule separates the algorithm from its instantiation.
Thus, we will need to relax the rule as follows:

1. There is no hard-coded data in the binary used towards a resource name/type or resource
content - in other words, No file name or socket name my be hardcoded. In addition,
when writing to such a resource the data must never be hardcoded.

This rule will not prevent the TCP wrappers Trojan from giving root access to intruders that
connect via port 421, but will prevent it from sending identifying information to the intruder.

We argue that a Secure Binary is a safer binary and is less likely to contain a Trojan
horse or Backdoor.

45



C Northern Harrier

The Northern Harrier shown in Figure 7 is a small hawk which systematically searches an area
for pray.

\ Rhoto by George Jameson

Figure 7: A female harrier
http://www.mbr-pwrc.usgs.gov/id/framlst/i3310id.html
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