
MULTI GPU IMPLEMENTATION OF ITERATIVE TOMOGRAPHIC RECONSTRUCTION
ALGORITHMS

Byunghyun Jang, David Kaeli

Northeastern University
Department of ECE
Boston, MA U.S.A.

Synho Do, Homer Pien

Massachusetts General Hospital
Department of Radiology

Boston, MA U.S.A.

ABSTRACT

Although iterative reconstruction techniques (IRTs) have

been shown to produce images of superior quality over con-

ventional filtered back projection (FBP) based algorithms, the

use of IRT in a clinical setting has been hampered by the sig-

nificant computational demands of these algorithms. In this

paper we present results of our efforts to overcome this hurdle

by exploiting the combined computational power of multiple

graphical processing units (GPUs). We have implemented

forward and backward projection steps of reconstruction on

an NVIDIA Tesla S870 hardware using CUDA. We have

been able to accelerate forward projection by 71x and back-

ward projection by 137x. We generate these results with no

perceptible difference in image quality between the GPU and

serial CPU implementations. This work illustrates the power

of using commercial off-the-shelf relatively low-cost GPUs,

potentially allowing IRT tomographic image reconstruction

to be run in near real time, lowering the barrier to entry of

IRT, and enabling deployment in the clinic.

Index Terms— Iterative reconstruction, GPU, Computed

tomography

1. INTRODUCTION

Advances in Computed Tomography (CT) technology and as-

sociated reconstruction algorithms have increased the need

for increased computing performance. In particular, itera-

tive reconstruction techniques (IRTs) are computationally de-

manding and have not been adopted in clinical settings due

to their computational requirements, despite their superior-

ity over filtered back projections (FBP). Previous work has

looked at how to begin to address these problems [1, 2]

Because of recent advances in computer hardware archi-

tecture, such as multi-core CPUs and general purpose GPUs,

a variety of research fields have started to retool their appli-

cations to harness this unprecedented rate of growth in com-

This work was supported in part by CenSSIS, the Center for Subsur-

face Sensing and Imaging Systems, under the Engineering Research Centers

Program of the NSF (Award Number EEC-9986821), and by equipment do-

nations from nVidia.

puting power. GPUs, in particular, have been receiving spe-

cial attention because of their attractive GFLOP/dollar and

GFLOP/watt ratios, and their general availability on desk-

top PCs. Programming difficulties on General Purpose GPUs

(GPGPUs) using traditional graphic APIs have been recently

resolved with the introduction of the CUDA programming en-

vironment. CUDA makes it possible to run general purpose

parallel programs fairly easily, taking advantage of the GPU’s

tremendous computing power. Driven by these advances in

high performance computing, GPUs are becoming the plat-

form of choice for data-parallel compute-intensive applica-

tions in a number of fields.

In this paper, we explore how best to map IRT algorithms

to a system containing multiple GPUs. We report on the re-

sulting speedup of these algorithms, and discuss specific op-

timizations that we apply. Our results show that using the raw

data acquired from a Siemens Sensation-64, our GPU-based

IRT implementation achieved a 71x speedup for forward pro-

jection and a speedup of 137x for back projection (compared

to a serial implementation on high end CPU), without any

modification of the original algorithm and without any loss

of image quality. Our work demonstrates that IRT can po-

tentially be deployed in a clinical setting. To the best of our

knowledge, this work is the first attempt to utilize multiple

GPUs for tomographic image reconstruction. We report on

how we obtained such large speedups, and issues remaining

in this work.

2. BACKGROUND

2.1. Tesla S870 and CUDA

The Tesla series is the first GPU that is dedicated to gen-

eral purpose computing. Tesla was introduced by NVIDIA

in 2007 to enable desktop supercomputing. The NVIDIA

Tesla S870 (server version) integrates four Tesla C870 GPUs;

the C870 is based on NVIDIA’s G80 microarchitecture. The

G80 microarchitecture consists of 16 streaming multiproces-

sors (SMs), each containing 8 streaming cores running at 1.35

GHz. Each SM has 8,192 registers and 16 KB shared memory

that are shared among all threads assigned to the SM. Below

185978-1-4244-3932-4/09/$25.00 ©2009 IEEE ISBI 2009

Authorized licensed use limited to: Northeastern University. Downloaded on February 7, 2010 at 11:55 from IEEE Xplore. Restrictions apply.

are some highlights of the S870 hardware.

of Streaming Processor Cores 512

Frequency of Processor Core 1.35 GHz

Floating Point Precision IEEE 754 Single

Total Dedicated Memory 6 GB GDDR3

Memory Speed 800 MHz

Memory Bandwidth 76.8 GB/s

Peak Performance 2 TFLOPs

Table 1. Hardware Specification of the Tesla S870.

To allow users to more easily interface to GPUs, NVIDIA

introduced a software framework called CUDA, which is an

extension of the standard C/C++ languages. The program-

ming model of CUDA is single instruction multiple threads
(SIMT) where a single instruction is executed in multiple

threads. Each thread specified by the programmer is mapped

to one scalar processor core by the SIMT unit of the stream

multiprocessor. Each thread is able to be executed indepen-

dently, with its own instruction address and register state,

and a group of 32 threads called warps are created, managed,

and scheduled by the SIMT unit. Consequently, hundreds or

thousands of threads are executed simultaneously, providing

the ability to hide much of the memory latency incurred on

the GPU.

While many programmers now enjoy the benefits of

CUDA, there is a general lack of support for optimizing the

resulting CUDA code. Optimization would require a deeper

understanding of the underlying hardware. Recent work on

GPUs has focused on optimizations [3, 4, 5]. We present

some of key optimization techniques used in this work in the

following sections.

2.2. Iterative Reconstruction Techniques (IRTs)

Tomographic reconstruction is pervasive in medical imaging.

X-ray transmission computed tomography (CT) is conven-

tionally solved analytically, by applying filtered back projec-

tion (FBP) based approaches. While FBP has helped to bring

about considerable advances in medical imaging, the current

push for larger coverage cone-beam CT systems, working at

lower radiation doses and higher image resolution, have moti-

vated researchers to consider alternative image reconstruction

schemes. Because IRT iteratively estimates the image using a

model of the scanner’s imaging geometry, IRTs can produce

images that are more robust to noise and artifacts, and are of

higher resolution and quality overall [6].

The penalty for using IRT, however, is computational

overhead. By making small corrections at each iteration, IRT

is computationally intensive, requiring either numerous CPUs

working in concert, or long delays in image formation. As

such, GPUs offer an attractive alternative.

In this paper, a least squares reconstruction formulation

is used. Let f denote the image to be reconstructed, g be

the observed projection data, and H the projection operator

which maps f into g. Then the least-squares solution is given

by the minimization of E = ‖g − Hf‖2. Although more

sophisticated formulations with different prior models can be

imposed, the principles of using GPUs to compute forward

and back projections can best be illustrated using this sim-

pler formulation. Note in particular that, as the area of cov-

erage gets larger in modern multi-detector CT systems, FBP

requires approximations to interpolate cone-beams into paral-

lel fan-beams, and fan-beams into parallel lines of projection.

To make the problem worse, FBP method is more suscepti-

ble to measurement noise. In contrast, iterative reconstruc-

tion technique (IRT) solves the same problem by minimizing

the difference between measurement and a forward projection

operation.

3. GPU IMPLEMENTATIONS

3.1. Implementation and Optimizations on single GPU

The first step toward a GPU implementation is to determine

which portion of the application should be run on the GPU.

Generally, in data parallel computation, nested loops provide

for the greatest amount of explicit data parallelism. Thus, the

forward projection and back projection building blocks of IRT

are chosen to be offloaded. In cases where the depth of nesting

is deep (e.g., the forward projection routine), the program-

mer must select which inner loop to be offloaded onto the

GPU. There are trade-offs between utilizing large and small

kernels. Large kernels are challenging to optimize due to the

large range of optimization variables and unpredictable inter-

play between a large number of threads. Targeting smaller

kernels can be ineffective due to insufficient arithmetic inten-

sity (i.e., the ratio between ALU and memory instructions)

which needs to be high in order to benefit from massive mul-

tithreading.

If a kernel has multiple nested loop, the next step is to

determine which loop to map to a thread. Since the GPU re-

quires a sufficiently large number of threads to not only hide

memory latency, but to compensate for the overhead associ-

ated with hardware pipelining, loops with the the largest trip

counts (i.e., iterations) is generally the best choice (each iter-

ation of loop becomes a thread). We chose to generate threads

on an angle basis for forward projection and on a voxel basis

in back projection. We found that we could not use angles to

generate threads in back projection due to a case where mul-

tiple threads in the same warp try to access the same memory

location. This could lead to nondeterministic results.

The first optimization step to pursue in CUDA program-

ming is to tune the two-level thread hierarchy called the exe-
cution configuration. A execution configuration is defined by

the thread block (a group of threads) and thread grid (a group

of thread blocks). Selecting the correct size for a thread block

is particularly key for performance since it determines the

186

Authorized licensed use limited to: Northeastern University. Downloaded on February 7, 2010 at 11:55 from IEEE Xplore. Restrictions apply.

number of threads that can be run simultaneously. CUDA pro-

vides a handy tool called the occupancy calculator which al-

lows the programmer to easily calculate the best thread block

size based on register and shared memory usage of a kernel.

The most effective and important optimization opportu-

nities are to explore efficient utilization of the GPU memory

units. The peak performance of the Tesla S870 is 2 TFLOPs,

although this is only achievable if we can hide all memory la-

tencies. There are different types of memories on the G80 se-

ries hardware; our optimizations need to consider how best to

utilize this space for the given application. In our implemen-

tation, the read-only data possessing 2D locality is mapped to

texture memory, while the read-only data that exhibits 1D lo-

cality is stored in constant memory. The fastest shared mem-

ory is used for temporary storage whenever possible. The ef-

fect of this is reflected in 3rd bar in figure 3 labeled Memory.

Another effective optimization is to utilize caching. Tex-

ture and constant memory on the GPU uses caching and so

we maximize the preservation of spatial and temporal data lo-

cality to help improve performance. To increase cache perfor-

mance in our implementation, the input data that is mapped

to constant memory is loaded as one big chunk based on the

program’s access pattern. The effect of this optimization is

reflected in 4th bar in figure 3 labeled as Caching.

Other optimization techniques considered include regis-

ter usage minimization and utilization of the device runtime

mathematical functions. Note that registers are the hardware

resource that directly affects the number of active threads.

The device runtime mathematical functions run in less time,

but produce less accurate results, so they should only be used

where precision is not critical. These techniques are included

in our implementation, even though their impact on perfor-

mance is not shown explicitly in the graph.

3.2. Multi GPUs

The NVIDIA Tesla S870 is equipped with four independent

C870 GPUs. Therefore, the programmer must decide how

many GPUs will be used and how each GPU will be exploited.

Since we aim at improving kernel execution time rather than

utilizing each GPU differently, the first thing to do is to de-

termine a workload distribution. There are two schemes: one

is to distribute the number of threads to be executed among

GPUs and the other is to divide workloads inside the kernel

body. In either case, we need to merge outputs from each

GPU to get final results.

To minimize the overhead that occurs in data copying,

kernel invocation, etc., we create the same number of CPU

threads as GPUs to be utilized, each of which takes care of

an individual GPU. Each thread copies input data from the

CPU to the GPU, executes the kernel, and copies results back

to the CPU. The host CPU waits for all CPU threads to com-

plete and merges results into one. This process is illustrated

in figure 1.

Fig. 1. Multi GPU Utilizations

4. RESULTS AND CONCLUSIONS

To compare both performance and image quality, we start

with a baseline system equipped with a Intel Core 2 Duo pro-

cessor (only one core is utilized) clocked at 2.66 GHz, with

4 MB cache and 2 GB of memory. Raw data of a cadaveric

heart image obtained from a Siemens Sensation-64 MDCT

scanner is used. The image field of view of 350*350*9 is re-

constructed from data obtained from 1280 angles. Figure 2

shows the resulting image reconstruction from running 30 it-

erations on both a GPU and a CPU. Figure 2(c) shows the

difference between the GPU and CPU implementations - note

that the mean squared difference is approximately 5 × 10−4,

a difference that is imperceptible.

−1000

−500

0

500

1000

1500

2000

(a) Image reconstructed on GPU

−1000

−500

0

500

1000

1500

2000

(b) Image reconstructed on CPU

−3

−2

−1

0

1

2

3

4
x 10−3

(c) Difference map between CPU

and GPU

Fig. 2. Comparison of images reconstructed on the GPU and

a CPU.

Figures 3 and 4 show the performance results and decom-

187

Authorized licensed use limited to: Northeastern University. Downloaded on February 7, 2010 at 11:55 from IEEE Xplore. Restrictions apply.

position of the execution time, respectively. The leftmost bar

in figure 3 is the execution time of the baseline serial version

and the remaining bars show GPU runtimes for the specific

optimizations discussed in section 3. Note that in the figure,

we just continue to add each optimization as we move from

left to right. We clearly see that our optimizations are effec-

tive and that our multi-GPU approach is beneficial for both

cases. However, we found that our multi-GPU implementa-

tion encounters significant overhead due to CPU thread syn-

chronization. This is caused by the operating system’s thread

scheduling policy, and its impact is particularly apparent in

back projection when using multiple GPUs, as seen in fig-

ure 4. This overhead may cause serious problems in the case

of small kernels whose execution time is very short. If this

problem can be avoided, we estimate that a 234x speedup in

back projection may be achievable.

 0

 500

 1000

 1500

 2000

 2500

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

1x

20.3x
34.4x

35.5x
51.9x

71.3x

CPU
Naive

Memory
Caching
2 GPUs
4 GPUs

(a) Forward Projection

 0

 50

 100

 150

 200

 250

 300

 350

 400 1x

17.8x
48x

57.7x
97x137x

CPU
Naive

Memory
Caching
2 GPUs
4 GPUs

(b) Backward Projection

Fig. 3. Performance Comparison (Numbers in y-axis is in

seconds and numbers on top of each bar indicate speedup over

a CPU implementation. Note also that 2nd, 3rd, and 4th bar

are the results of running on a single GPU.)

We found that a GPU is a great choice of platform for to-

mographic reconstruction in terms of performance, cost, and

availability, enabling many exciting possibilities in a clini-

cal setting. Image quality (which was a big concern in ear-

lier GPU implementations [7]) is no longer a concern with

the current generation of GPUs that supports single preci-

sion floating point as a default. For precision-critical appli-

cations, the latest NVIDIA GPUs are capable of double pre-

cision floating point, though with some performance degrada-

tion.

5. REFERENCES

[1] K. Mueller, F. Xu, and N. Neophytou, “Why do com-

modity graphics hardware boards (GPUs) work so well

for acceleration of computed tomography?,” 2007, vol.

6498, p. 64980N, SPIE.

[2] K. Mueller and R. Yagel, “Rapid 3-D cone-beam recon-

 0

 10

 20

 30

 40

 50

 60

 70

 80

Single
2_GPUs

4_GPUs

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Kernel_Exec
Data_Copy

Thread_Synch

67.9

45.0

32.2

(a) Forward Projection

 0

 2

 4

 6

 8

 10

Single
2_GPUs

4_GPUs

Kernel_Exec
Data_Copy

Thread_Synch

0.8

0.4
0.2

(b) Backward Projection

Fig. 4. Decomposition of Execution Time (All numbers are

in seconds. Note that there is no thread synchronization com-

ponent on single GPU implementation)

struction with the simultaneous algebraic reconstruction

technique (SART) using 2-D texture mapping hardware,”

Medical Imaging, IEEE Transactions on, vol. 19, no. 12,

pp. 1227–1237, Dec. 2000.

[3] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.

Stone, and J. C. Phillips, “GPU Computing,” in Pro-
ceedings of the IEEE, 2008, vol. 96, pp. 879–899.

[4] M. Silberstein, A. Schuster, D. Geiger, A. Patney, and

J. D. Owens, “Efficient computation of sum-products on

gpus through software-managed cache,” in ICS ’08: Pro-
ceedings of the 22nd annual international conference on
Supercomputing, New York, NY, USA, 2008, pp. 309–

318, ACM.

[5] S. S. Stone, J. P. Haldar, S. C. Tsao, W. W. Hwu, Z. Liang,

and B. P. Sutton, “Accelerating advanced MRI recon-

structions on gpus,” in CF ’08: Proceedings of the 2008
conference on Computing frontiers, New York, NY, USA,

2008, pp. 261–272, ACM.

[6] J.-B. Thibault, K. D. Sauer, C. A. Bouman, and J. Hsieh,

“A three-dimensional statistical approach to improved

image quality for multislice helical CT,” Medical
Physics, vol. 34, no. 11, pp. 4526–4544, 2007.

[7] K. Mueller and F. Xu, “Practical considerations for GPU-

accelerated CT,” Biomedical Imaging: Nano to Macro,
2006. 3rd IEEE International Symposium on, pp. 1184–

1187, April 2006.

188

Authorized licensed use limited to: Northeastern University. Downloaded on February 7, 2010 at 11:55 from IEEE Xplore. Restrictions apply.

