MULTI GPU IMPLEMENTATION OF ITERATIVE TOMOGRAPHIC RECONSTRUCTION
ALGORITHMS

Byunghyun Jang, David Kaeli

Northeastern University
Department of ECE
Boston, MA U.S.A.

ABSTRACT

Although iterative reconstruction techniques (IRTs) have
been shown to produce images of superior quality over con-
ventional filtered back projection (FBP) based algorithms, the
use of IRT in a clinical setting has been hampered by the sig-
nificant computational demands of these algorithms. In this
paper we present results of our efforts to overcome this hurdle
by exploiting the combined computational power of multiple
graphical processing units (GPUs). We have implemented
forward and backward projection steps of reconstruction on
an NVIDIA Tesla S870 hardware using CUDA. We have
been able to accelerate forward projection by 71x and back-
ward projection by 137x. We generate these results with no
perceptible difference in image quality between the GPU and
serial CPU implementations. This work illustrates the power
of using commercial off-the-shelf relatively low-cost GPUs,
potentially allowing IRT tomographic image reconstruction
to be run in near real time, lowering the barrier to entry of
IRT, and enabling deployment in the clinic.

Index Terms— lterative reconstruction, GPU, Computed
tomography

1. INTRODUCTION

Advances in Computed Tomography (CT) technology and as-
sociated reconstruction algorithms have increased the need
for increased computing performance. In particular, itera-
tive reconstruction techniques (IRTs) are computationally de-
manding and have not been adopted in clinical settings due
to their computational requirements, despite their superior-
ity over filtered back projections (FBP). Previous work has
looked at how to begin to address these problems [1, 2]
Because of recent advances in computer hardware archi-
tecture, such as multi-core CPUs and general purpose GPUs,
a variety of research fields have started to retool their appli-
cations to harness this unprecedented rate of growth in com-

This work was supported in part by CenSSIS, the Center for Subsur-
face Sensing and Imaging Systems, under the Engineering Research Centers
Program of the NSF (Award Number EEC-9986821), and by equipment do-
nations from nVidia.

978-1-4244-3932-4/09/$25.00 ©2009 IEEE 185

Synho Do, Homer Pien

Massachusetts General Hospital
Department of Radiology
Boston, MA U.S.A.

puting power. GPUs, in particular, have been receiving spe-
cial attention because of their attractive GFLOP/dollar and
GFLOP/watt ratios, and their general availability on desk-
top PCs. Programming difficulties on General Purpose GPUs
(GPGPUs) using traditional graphic APIs have been recently
resolved with the introduction of the CUDA programming en-
vironment. CUDA makes it possible to run general purpose
parallel programs fairly easily, taking advantage of the GPU’s
tremendous computing power. Driven by these advances in
high performance computing, GPUs are becoming the plat-
form of choice for data-parallel compute-intensive applica-
tions in a number of fields.

In this paper, we explore how best to map IRT algorithms
to a system containing multiple GPUs. We report on the re-
sulting speedup of these algorithms, and discuss specific op-
timizations that we apply. Our results show that using the raw
data acquired from a Siemens Sensation-64, our GPU-based
IRT implementation achieved a 71x speedup for forward pro-
jection and a speedup of 137x for back projection (compared
to a serial implementation on high end CPU), without any
modification of the original algorithm and without any loss
of image quality. Our work demonstrates that IRT can po-
tentially be deployed in a clinical setting. To the best of our
knowledge, this work is the first attempt to utilize multiple
GPUs for tomographic image reconstruction. We report on
how we obtained such large speedups, and issues remaining
in this work.

2. BACKGROUND

2.1. Tesla S870 and CUDA

The Tesla series is the first GPU that is dedicated to gen-
eral purpose computing. Tesla was introduced by NVIDIA
in 2007 to enable desktop supercomputing. The NVIDIA
Tesla S870 (server version) integrates four Tesla C870 GPUs;
the C870 is based on NVIDIA’s G80 microarchitecture. The
G80 microarchitecture consists of 16 streaming multiproces-
sors (SMs), each containing 8 streaming cores running at 1.35
GHz. Each SM has 8,192 registers and 16 KB shared memory
that are shared among all threads assigned to the SM. Below

ISBI 2009

Authorized licensed use limited to: Northeastern University. Downloaded on February 7, 2010 at 11:55 from IEEE Xplore. Restrictions apply.

are some highlights of the S870 hardware.

of Streaming Processor Cores 512
Frequency of Processor Core 1.35 GHz
Floating Point Precision IEEE 754 Single
Total Dedicated Memory 6 GB GDDR3
Memory Speed 800 MHz
Memory Bandwidth 76.8 GB/s
Peak Performance 2 TFLOPs

Table 1. Hardware Specification of the Tesla S870.

To allow users to more easily interface to GPUs, NVIDIA
introduced a software framework called CUDA, which is an
extension of the standard C/C++ languages. The program-
ming model of CUDA is single instruction multiple threads
(SIMT) where a single instruction is executed in multiple
threads. Each thread specified by the programmer is mapped
to one scalar processor core by the SIMT unit of the stream
multiprocessor. Each thread is able to be executed indepen-
dently, with its own instruction address and register state,
and a group of 32 threads called warps are created, managed,
and scheduled by the SIMT unit. Consequently, hundreds or
thousands of threads are executed simultaneously, providing
the ability to hide much of the memory latency incurred on
the GPU.

While many programmers now enjoy the benefits of
CUDA, there is a general lack of support for optimizing the
resulting CUDA code. Optimization would require a deeper
understanding of the underlying hardware. Recent work on
GPUs has focused on optimizations [3, 4, 5]. We present
some of key optimization techniques used in this work in the
following sections.

2.2. Iterative Reconstruction Techniques (IRTSs)

Tomographic reconstruction is pervasive in medical imaging.
X-ray transmission computed tomography (CT) is conven-
tionally solved analytically, by applying filtered back projec-
tion (FBP) based approaches. While FBP has helped to bring
about considerable advances in medical imaging, the current
push for larger coverage cone-beam CT systems, working at
lower radiation doses and higher image resolution, have moti-
vated researchers to consider alternative image reconstruction
schemes. Because IRT iteratively estimates the image using a
model of the scanner’s imaging geometry, IRTs can produce
images that are more robust to noise and artifacts, and are of
higher resolution and quality overall [6].

The penalty for using IRT, however, is computational
overhead. By making small corrections at each iteration, IRT
is computationally intensive, requiring either numerous CPUs
working in concert, or long delays in image formation. As
such, GPUs offer an attractive alternative.

In this paper, a least squares reconstruction formulation
is used. Let f denote the image to be reconstructed, g be

186

the observed projection data, and H the projection operator
which maps f into g. Then the least-squares solution is given
by the minimization of £ = |g — H f||?>. Although more
sophisticated formulations with different prior models can be
imposed, the principles of using GPUs to compute forward
and back projections can best be illustrated using this sim-
pler formulation. Note in particular that, as the area of cov-
erage gets larger in modern multi-detector CT systems, FBP
requires approximations to interpolate cone-beams into paral-
lel fan-beams, and fan-beams into parallel lines of projection.
To make the problem worse, FBP method is more suscepti-
ble to measurement noise. In contrast, iterative reconstruc-
tion technique (IRT) solves the same problem by minimizing
the difference between measurement and a forward projection
operation.

3. GPUIMPLEMENTATIONS

3.1. Implementation and Optimizations on single GPU

The first step toward a GPU implementation is to determine
which portion of the application should be run on the GPU.
Generally, in data parallel computation, nested loops provide
for the greatest amount of explicit data parallelism. Thus, the
forward projection and back projection building blocks of IRT
are chosen to be offloaded. In cases where the depth of nesting
is deep (e.g., the forward projection routine), the program-
mer must select which inner loop to be offloaded onto the
GPU. There are trade-offs between utilizing large and small
kernels. Large kernels are challenging to optimize due to the
large range of optimization variables and unpredictable inter-
play between a large number of threads. Targeting smaller
kernels can be ineffective due to insufficient arithmetic inten-
sity (i.e., the ratio between ALU and memory instructions)
which needs to be high in order to benefit from massive mul-
tithreading.

If a kernel has multiple nested loop, the next step is to
determine which loop to map to a thread. Since the GPU re-
quires a sufficiently large number of threads to not only hide
memory latency, but to compensate for the overhead associ-
ated with hardware pipelining, loops with the the largest trip
counts (i.e., iterations) is generally the best choice (each iter-
ation of loop becomes a thread). We chose to generate threads
on an angle basis for forward projection and on a voxel basis
in back projection. We found that we could not use angles to
generate threads in back projection due to a case where mul-
tiple threads in the same warp try to access the same memory
location. This could lead to nondeterministic results.

The first optimization step to pursue in CUDA program-
ming is to tune the two-level thread hierarchy called the exe-
cution configuration. A execution configuration is defined by
the thread block (a group of threads) and thread grid (a group
of thread blocks). Selecting the correct size for a thread block
is particularly key for performance since it determines the

Authorized licensed use limited to: Northeastern University. Downloaded on February 7, 2010 at 11:55 from IEEE Xplore. Restrictions apply.

number of threads that can be run simultaneously. CUDA pro-
vides a handy tool called the occupancy calculator which al-
lows the programmer to easily calculate the best thread block
size based on register and shared memory usage of a kernel.

The most effective and important optimization opportu-
nities are to explore efficient utilization of the GPU memory
units. The peak performance of the Tesla S870 is 2 TFLOPs,
although this is only achievable if we can hide all memory la-
tencies. There are different types of memories on the G80 se-
ries hardware; our optimizations need to consider how best to
utilize this space for the given application. In our implemen-
tation, the read-only data possessing 2D locality is mapped to
texture memory, while the read-only data that exhibits 1D lo-
cality is stored in constant memory. The fastest shared mem-
ory is used for temporary storage whenever possible. The ef-
fect of this is reflected in 3rd bar in figure 3 labeled Memory.

Another effective optimization is to utilize caching. Tex-
ture and constant memory on the GPU uses caching and so
we maximize the preservation of spatial and temporal data lo-
cality to help improve performance. To increase cache perfor-
mance in our implementation, the input data that is mapped
to constant memory is loaded as one big chunk based on the
program’s access pattern. The effect of this optimization is
reflected in 4th bar in figure 3 labeled as Caching.

Other optimization techniques considered include regis-
ter usage minimization and utilization of the device runtime
mathematical functions. Note that registers are the hardware
resource that directly affects the number of active threads.
The device runtime mathematical functions run in less time,
but produce less accurate results, so they should only be used
where precision is not critical. These techniques are included
in our implementation, even though their impact on perfor-
mance is not shown explicitly in the graph.

3.2. Multi GPUs

The NVIDIA Tesla S870 is equipped with four independent
C870 GPUs. Therefore, the programmer must decide how
many GPUs will be used and how each GPU will be exploited.
Since we aim at improving kernel execution time rather than
utilizing each GPU differently, the first thing to do is to de-
termine a workload distribution. There are two schemes: one
is to distribute the number of threads to be executed among
GPUs and the other is to divide workloads inside the kernel
body. In either case, we need to merge outputs from each
GPU to get final results.

To minimize the overhead that occurs in data copying,
kernel invocation, etc., we create the same number of CPU
threads as GPUs to be utilized, each of which takes care of
an individual GPU. Each thread copies input data from the
CPU to the GPU, executes the kernel, and copies results back
to the CPU. The host CPU waits for all CPU threads to com-
plete and merges results into one. This process is illustrated
in figure 1.

187

Create 4 CPU threads

CcPU Thread 1 Thread 2 Thread 3 Thread 4

i Data Copy || Data Copy | Data Copy | Data Copy
GPU GPU 1 GPU 2 GPU 3 GPU 4
CPU

Result Copy; Result Copy:|Result Copy {Result Copy

Merge results

Fig. 1. Multi GPU Utilizations

4. RESULTS AND CONCLUSIONS

To compare both performance and image quality, we start
with a baseline system equipped with a Intel Core 2 Duo pro-
cessor (only one core is utilized) clocked at 2.66 GHz, with
4 MB cache and 2 GB of memory. Raw data of a cadaveric
heart image obtained from a Siemens Sensation-64 MDCT
scanner is used. The image field of view of 350%350*9 is re-
constructed from data obtained from 1280 angles. Figure 2
shows the resulting image reconstruction from running 30 it-
erations on both a GPU and a CPU. Figure 2(c) shows the
difference between the GPU and CPU implementations - note
that the mean squared difference is approximately 5 x 1074,
a difference that is imperceptible.

2000
1500
1000
500
0
-500
-1000

(b) Image reconstructed on CPU

2000

1500

1000

(a) Image reconstructed on GPU

(c) Difference map between CPU
and GPU

Fig. 2. Comparison of images reconstructed on the GPU and
a CPU.

Figures 3 and 4 show the performance results and decom-

Authorized licensed use limited to: Northeastern University. Downloaded on February 7, 2010 at 11:55 from IEEE Xplore. Restrictions apply.

position of the execution time, respectively. The leftmost bar
in figure 3 is the execution time of the baseline serial version
and the remaining bars show GPU runtimes for the specific
optimizations discussed in section 3. Note that in the figure,
we just continue to add each optimization as we move from
left to right. We clearly see that our optimizations are effec-
tive and that our multi-GPU approach is beneficial for both
cases. However, we found that our multi-GPU implementa-
tion encounters significant overhead due to CPU thread syn-
chronization. This is caused by the operating system’s thread
scheduling policy, and its impact is particularly apparent in
back projection when using multiple GPUs, as seen in fig-
ure 4. This overhead may cause serious problems in the case
of small kernels whose execution time is very short. If this
problem can be avoided, we estimate that a 234x speedup in
back projection may be achievable.

l 1x CPU —— | L 1x CPU C— |
2500 | X Naive Do 400 Naive moox
Memory & 350 - Memory
. ICaching Caching
g 2000 | |12GPUs S 1 500 | 2 GPUs
K23 4 GPUs ¢ 4 GPUs ©*
£ 1500 | { 250 1
'_
5 200 F 1
3 1000 | 1 150 f :
>
[20.3x
500 | 34.4x 1 100 7.ex 1
35.5x 50 - 48X |
51.9x . 9x7
PARA X
0 . 0 S 137x

(a) Forward Projection (b) Backward Projection

Fig. 3. Performance Comparison (Numbers in y-axis is in
seconds and numbers on top of each bar indicate speedup over
a CPU implementation. Note also that 2nd, 3rd, and 4th bar
are the results of running on a single GPU.)

We found that a GPU is a great choice of platform for to-
mographic reconstruction in terms of performance, cost, and
availability, enabling many exciting possibilities in a clini-
cal setting. Image quality (which was a big concern in ear-
lier GPU implementations [7]) is no longer a concern with
the current generation of GPUs that supports single preci-
sion floating point as a default. For precision-critical appli-
cations, the latest NVIDIA GPUs are capable of double pre-
cision floating point, though with some performance degrada-
tion.

5. REFERENCES

[1] K. Mueller, F. Xu, and N. Neophytou, “Why do com-
modity graphics hardware boards (GPUs) work so well
for acceleration of computed tomography?,” 2007, vol.
6498, p. 64980N, SPIE.

[2] K. Mueller and R. Yagel, “Rapid 3-D cone-beam recon-

188

10
g0 | Thread_Synch mmmmm | Thread_Synch
Data_Copy Data_Copy ===z
70 Kernel_Exec xXxxx1 ernel_Exec &Xxxx3
L B 8|]
o o B 05%
g ©° saes
2 R
® 50 E 6 KX 1
£ —_— RS
= (53 B
o 40 + [RKRH - KRXKI
& R R
= PeSeSe%! 4 b ¥R
3 19650%% RIIXA
8 30t s 1 K
£ k] s
] Fake% (%0205
20 R R
K] 2 R
B R
10 + Rosoesy g 555
1503554 So%eets!
(KX fogetese
[3254 (555
0 b 0 [SER

&
(a) Forward Projection

Fig. 4. Decomposition of Execution Time (All numbers are
in seconds. Note that there is no thread synchronization com-
ponent on single GPU implementation)

struction with the simultaneous algebraic reconstruction
technique (SART) using 2-D texture mapping hardware,”
Medical Imaging, IEEE Transactions on, vol. 19, no. 12,
pp. 1227-1237, Dec. 2000.

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips, “GPU Computing,” in Pro-
ceedings of the IEEE, 2008, vol. 96, pp. 879-899.

M. Silberstein, A. Schuster, D. Geiger, A. Patney, and
J. D. Owens, “Efficient computation of sum-products on
gpus through software-managed cache,” in ICS '08: Pro-
ceedings of the 22nd annual international conference on
Supercomputing, New York, NY, USA, 2008, pp. 309—
318, ACM.

S. S. Stone, J. P. Haldar, S. C. Tsao, W. W. Hwu, Z. Liang,
and B. P. Sutton, “Accelerating advanced MRI recon-
structions on gpus,” in CF ’08: Proceedings of the 2008
conference on Computing frontiers, New York, NY, USA,
2008, pp. 261-272, ACM.

J.-B. Thibault, K. D. Sauer, C. A. Bouman, and J. Hsieh,
“A three-dimensional statistical approach to improved
image quality for multislice helical CT,” Medical
Physics, vol. 34, no. 11, pp. 4526-4544, 2007.

K. Mueller and F. Xu, “Practical considerations for GPU-
accelerated CT,” Biomedical Imaging: Nano to Macro,
2006. 3rd IEEE International Symposium on, pp. 1184—
1187, April 2006.

Authorized licensed use limited to: Northeastern University. Downloaded on February 7, 2010 at 11:55 from IEEE Xplore. Restrictions apply.

