
Programming Parallel Processors 

    Rodrigo Dominguez 
Ph.D student 

Northeastern University 
March 18, 2010 



Goals 

▪ Understand General Purpose Computing on GPU (a.k.a. GPGPU) 

▪ Experience CUDA GPU programming 

▪ Understand how massively multi-threaded parallel programming 
works 

▪ Think about solving a problem in a parallel fashion 

▪ Experience the computational power of GPUs 

▪ Experience the challenges in efficient parallel programming 



Outline 

▪ GPU: Graphics Processing Unit 

▪ CUDA: Programming Model 

▪ Application 1: Image Rotation 
▪ Introduction and Design (15 min) 

▪ Preparation (5 min) 
▪ Installing a skeleton code, compile test, image view test 

▪ Hands-on Programming (30 min) 
▪ Replace ??? with your own CUDA code 



Outline 

▪ Application 2: Matrix Multiplication 
▪ Introduction and Design (15 min) 

▪ Preparation (5 min) 
▪ Installing a skeleton code, compile test 

▪ Hands-on Programming (40 min) 
▪ Replace ??? with your own CUDA code 

▪ Conclusion 



Parallel Programming 

  Goal: You have 1 minute to pick 100 apples 
  There are 10 apple trees 
  And you are a team of 10 people 



Parallel Programming 

  You can assign each person to one apple tree 
  Give them each a basket to collect the apples 
  They may not be able to reach the apples at the top 



Parallel Programming 

  Or you can assign two people to one apple tree! 



Graphics Processing Units 

            2003      2004      2005      2006      2007      2008 

FLOPS = FLoating point Operations Per Second 



The System 

MCH = Memory Controller Hub 

ICH = I/O Controller Hub 

DDR = Double Data Rate 



CPU vs GPU 

Irregular data 
accesses 

Regular data 
accesses 

ALU = Arithmetic Logic Unit 
Cache: Like the apple basket 



GPU Hardware Architecture 

 Many cores 
 My laptop: 2 cores 
  Some of the newer desktops: 8 cores 
  GPUs: 16 x 768 = 12,288 cores!!! 

 Many memory spaces 
 device (GDDR): Large but slow 
 shared (cache): Small but fast… 

this is the apple basket 
 constant and texture 



How to program GPUs 

1.  Transfer data from CPU to GPU 

2.  Decide how many threads (people) and how many groups (teams)  

3.  Write the GPU program (pick apples) 

4.  Transfer back the results from GPU to CPU 



Thread Structure 
CUDA terminology: 

  The GPU program is called the 
kernel 

  The kernel is executed by a grid of 
threads 

  Threads are grouped into blocks 
which execute together on a core 

  Each thread has a unique ID within 
the block 

  Each block has a unique ID 

  Threads within a block have access 
to common shared memory 

Device 

Grid 2 

Host 

Kernel 1 

Kernel 2 

Block (1, 1) 

Thread 

(0,1,0) 

Thread 

(1,1,0) 

Thread 

(2,1,0) 

Thread 

(3,1,0) 

Thread 

(0,0,0) 

Thread 

(1,0,0) 

Thread 

(2,0,0) 

Thread 

(3,0,0) 

(0,0,1) (1,0,1) (2,0,1) (3,0,1) 

Grid 1 

Block	
  
(0, 0) 

Block	
  
(1, 0) 

Block	
  
(2, 0) 

Block	
  
(0, 1) 

Block	
  
(1, 1) 

Block	
  
(2, 1) 



Array Addition (CPU) 

void arrayAdd(float *A, float *B, float *C, int N) { 
   for(int i = 0; i < N; i++) 
      C[i] = A[i] + B[i]; 
} 

int main() { 

   int N = 4096; 
   float *A = (float *)malloc(sizeof(float)*N);       
   float *B = (float *)malloc(sizeof(float)*N);    
   float *C = (float *)malloc(sizeof(float)*N); 

   init(A); init(B);  

   arrayAdd(A, B, C, N); 

   free(A); free(B); free(C); 
} 

Computational kernel	



Allocate memory	



Initialize memory	



Deallocate memory	





Array Addition (GPU) 

__global__ 
void gpuArrayAdd(float *A, float *B, float *C) { 

   int tid = blockIdx.x * blockDim.x + threadIdx.x 

   C[tid] = A[tid] + B[tid]; 
} 

GPU Computational 
kernel	



threadIdx.x	


blockIdx.x	



blockDim.x = 32	



(0,0) (1,0) (2,0) ... (31,0) 

(0,0) 
...	



GRID	



BLOCK	



(0,0) (1,0) (2,0) ... (31,0) 

(1,0) BLOCK	



tid = blockIdx.x * blockDim.x + threadIdx.x 



Vector Addition (GPU) 

Run kernel (on GPU)	



Copy results back to CPU	



Deallocate memory on GPU	



int main() { 

   int N = 4096; 
   float *A = (float *)malloc(sizeof(float)*N);       
   float *B = (float *)malloc(sizeof(float)*N);    
   float *C = (float *)malloc(sizeof(float)*N) 

   init(A); init(B);  

   float *d_A, *d_B, *d_C;   
   cudaMalloc(&d_A, sizeof(float)*N); 
   cudaMalloc(&d_B, sizeof(float)*N); 
   cudaMalloc(&d_C, sizeof(float)*N); 

   cudaMemcpy(d_A, A, sizeof(float)*N, HtoD); 
   cudaMemcpy(d_B, B, sizeof(float)*N, HtoD); 

   dim3 dimBlock(32,1); 
   dim3 dimGrid(N/32,1); 

   gpuArrayAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C); 

   cudaMemcpy(C, d_C, sizeof(float)*N, DtoH); 

   cudaFree(d_A); 
   cudaFree(d_B); 
   cudaFree(d_C); 

   free(A); free(B); free(C); 

Allocate memory on GPU	



Initialize memory on GPU	



Configure threads	





Application 1: Image Rotation  
- Introduction - 

▪ Rotate an image by a given angle 

▪ A basic feature in image processing applications 

Original Input Image Rotated Output Image 



▪ What the application does: 
Step 1. Compute a new location according to the rotation angle 

(trigonometric computation) 

Step 2. Read the pixel value of original location 

Step 3. Write the pixel value to the new location computed at Step 1 

▪ Create the same number of threads as the number of pixels 

▪ Each thread takes care of moving one pixel 

▪ Our goals are 
▪ To understand how to use GPU for data parallelism 

▪ To know how to map threads to data 

Application 1: Image Rotation  
- Introduction - 



Application 1: Image Rotation  
- Design - 

Thread 
Block 
(0, 0) 

Thread 
Block 
(0, 1) 

Thread 
Block 

(0, 63)


Thread 
Block 

(63, 0)


Thread 
Block 

(63, 63)


512 

Threads Mapping 512 

8 

8 



1. Deploy the skeleton code in the proper directory 

[..@compute-0-8]$ tar xvf TeamProjects.tar 

2. Compile 

[..@compute-0-8]$ cd Projects/cuda/src/ImageRotation/ 
[..@compute-0-8]$ make clean 
[..@compute-0-8]$ make 
To use printf() to debug, use “make emu=1” instead of “make” 

4. Execute 

[..@compute-0-8]$ ../../bin/linux/release/ImageRotation 

5. Convert image from “pgm” to “jpg” format 

[..@compute-0-8]$ convert data/RadHouse_out.pgm data/RadHouse_out.jpg 

6. Download “RadHouse_out.jpg” to your workstation to view it 

Application 1: Image Rotation  
- Preparation - 



▪  Replace ??? in the skeleton code with your own CUDA code 

▪  Refer to the hints and comments in skeleton code 

▪  Talk to me if you have any questions or are done 

▪  Try to finish by 6:30 pm 

▪  Help others if you finish early 

Application 1: Image Rotation  
- Hands-on Programming - 



Application 2: Matrix Multiplication 
- Introduction - 



Application 2: Matrix Multiplication 
- Introduction - 

▪ Serial implementation looks like  

▪ Calculating C[i][j] happens in parallel 

▪ We will use a fast shared memory to store per-block matrices 
(As and Bs) because shared memory is faster 

for (int i=0; i < HC; i++) 
  for (int j=0; i < WC; j++) 
   for (int k=0; i < WA; k++) 
   C[i][j] += A[i][k] * B[k][j]; 



Application 2: Matrix Multiplication 
- Design - 

▪ Matrix multiplication without using shared memory 



Application 2: Matrix Multiplication 
- Design - 

▪ Matrix multiplication using shared memory 



1. Compile 
[..@compute-0-8]$ cd Projects/cuda/src/MatrixMul 

[..@compute-0-8]$ make clean 

[..@compute-0-8]$ make  

To use printf() to debug, use “make emu=1” instead of “make” 

2. Execute 
[..@ac ~]$ ../../bin/linux/release/MatrixMul 

4. Check output message 
“*** TEST FAILED”: something wrong 

“*** TEST PASSED”: you got it 

Application 2: Matrix Multiplication 
- Preparation - 



Application 2: Matrix Multiplication 
- Hands-on Programming - 

▪  Replace ??? in the skeleton code with your own CUDA code 

▪  Refer to the hints and comments in skeleton code 

▪  Talk to me if you have any questions or are done 

▪  Try to finish by 8:00 pm 

▪  Help others if you finish early 



Conclusions 

▪ What we’ve learned throughout the two projects 
▪ Understood a massive parallel computing on GPU 

▪ Experienced what CUDA programming looks like 

▪ Understood how to explicitly program hardware resources 

▪ Understood the importance and challenges in parallel programming 

▪ Experienced solving problem in massively parallel fashion 

▪ GPU is the platform of choice for data-parallel computationally- 
intensive applications 

▪ In a few years, we are likely to see many people buying a new 
graphics card to increase the desktop’s computing performance, 
not to increase 3D game performance 

▪ What if my GPU is not CUDA-compatible? OpenCL! 



More information 
  NVIDIA GPU Computing Developer Home Page 

http://developer.nvidia.com/object/gpucomputing.html 

  CUDA Download 
http://developer.nvidia.com/object/cuda_2_3_downloads.html 

  Khronos OpenCL                       
http://www.khronos.org/opencl/ 

  Programming Massively Parallel Processors: A Hands-on 
Approach, David B. Kirk and Wen-mei W. Hwu 



Thank you! 


