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Extensions of Averaging Theory 
for Power Electronic Systems 

Brad Lehman and Richard M. Bass, Senior Member, IEEE 

Abstruct- This paper extends averaging theory for power 
electronic systems to include feedback Controlled converters. New 
averaging techniques based on the integral equation description 
provide theoretical justification for commonly used averaging 
methods. The new theory provides a basis for answering fun- 
damental questions about the averaging approximation. A ripple 
estimate expression is presented, along with the simulation results 
for a feedback controlled boost converter. 

I. INTRODUCTION 

TATE space averaging techniques are commonly used in 
the analysis and control design of pulse width modulated 

(PWM) power electronic systems [I]-[3]. However, it was 
not until recently that rigorous mathematical justification [3] ,  
[4] was given that theoretically explained the applications of 
these averaging techniques. As [3] and [5] have pointed out, 
the theoretical development of PWM systems lags far behind 
the many practical control applications. 

In [ 3 ] ,  classical Russian averaging techniques [6], [7] are 
shown to be applicable to several types of PWM power elec- 
tronic systems, such as open loop dc-dc converters. Besides 
using these classical averaging techniques to prove stability. 
[31 also gives a ripple estimate for improving the accuracy of 
the averaging technique, even for systems with large ripple. 
However, the application of the results of [3] is limited to 
systems with time discontinuities.’ 

In fact, the classical averaging theory used in [3] is not 
applicable when there are state discontinuities. This is sig- 
nificant because all feedback controlled converters are state 
discontinuous. In [3] ,  the argument is made that smooth 
commutation models can be used in place of the discontinuous 
Heaviside unit step function to avoid any state discontinuity 
in the mathematical system model. In essence, this idea 
was introduced by Filoppov [SI to justify what is meant by 
solutions to state discontinuous differential equations. The 
work of [9] continues this line of thinking by presenting 
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‘In this paper, a system with “time discontinuity” is described by a 

differential equation whose right-hand side is discontinuous with respect 
to time. A system with “state discontinuity” is described by a differentia1 
equation whose right-hand side is discontinuous with respect to a state 
variable. 

stability results which rely on abstract averaging theory (see 
references in [9]) that partially combine the results of [6] and 
171 with the theory of Filoppov [SI. 

It is the purpose of this paper to introduce averaging 
techniques that are general enough to encompass both time 
discontinuity and large classes of state discontinuity, without 
utilizing the (difficult) theory of Filippov. Because the proofs 
are straightforward (essentially relying on the Fundamental 
Theorem of Calculus and Gronwall’s inequality), insight on 
both transient and asymptotic behavior of PWM feedback 
controlled dc-dc converters is obtained. The results of this 
paper begin to provide theoretical justification for commonly 
used averaging techniques. In addition, this work points out 
some shortcomings in the averaging technique (which to 
our knowledge have not been documented before). Some 
readers may question whether there is a significant contribution 
in writing a paper that theoretically justifies models that 
have been in use for so many years. However, we believe 
that it is vital to bridge theory with practice in order for 
future fundamental contributions to be made. In fact, the 
theoretical results of this paper have led to the discoveries of 
new, more accurate switching-frequency-dependent-averaged 
models [ IO] ,  published in a separate paper. 

Section I1 reviews some of the mathematical issues asso- 
ciated with state discontinuous systems. The primary theoret- 
ical contribution of this paper is contained in two theorems 
presented in Section 111. Section IV discusses the practical 
implications of the results of Section 111 and gives numer- 
ical examples and computer simulations. Section V draws 
conclusions. 

11. THEORETICAL PRELIMINARIES 

The difficulty in mathematically justifying averaging 
approximation techniques of state discontinuous differential 
equations can be best explained through an example. Consider 
the state discontinuous differential equation 

k ( t )  = f(z) + bu(d(z) - tri ( t :  7’)) (2.1) 

where x E R”, b E R”, f :  R” i R” and d :  72” i R are 
both continuous functions with 0 5 d(x) 5 1, and U ( . )  is the 
Heaviside step function, i.e., u ( s )  = 1 for s 2 0 and u ( s )  = 0 
for s < 0. The function tri ( t :  T )  = ( t / T )  - f l oor ( t /T )  = 
( t  mod) TIT is shown in Fig. 1. Equation (2.1) is a typical 
representation of a feedback controlled PWM Buck converter 
[3]. The theory presented in [3], however, only applies to 
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t r i ( t , T )  

Fig. 1. Tri(t ,  T )  

open-loop control and does not extend to feedback controlled 
converters. 

The usual condition for a unique solution of (2.1) to exist 
is that the right-hand side satisfy a Lipschitz condition. (A 
function, f ( z )  is said to be Lipschitz with constant k > 0 
if I l f (z )  - f(y)II 5 k / l z  - y/ I  for any z E R", y E R".) 
However (2.1) is not Lipschitz since it is discontinuous with 
respect to 2. Hence, standard approaches fail when trying to 
prove the existence of a unique solution-which implies that 
formal averaging approximations of (2. 1) cannot, in general, 
be directly derived. There is an extensive amount of literature 
on differential inclusions that shows how one can redefine 
what is meant by a unique solution to (2.1) (see Filippov [SI). 
However, this paper shows that, under the standard operating 
conditions of power electronic systems (no chattering), the 
theory of differential inclusions is not needed to theoretically 
justify averaging approximations. 

While in general "standard" solutions to (2.1) are not known 
to exist, under the proper conditions (see Section 11-A), there 
are a finite number of jumps in the right-hand side of (2.1) 
on any finite time interval, and each jump (switch) is norm 
bounded due to the fact that 0 5 U ( . )  5 1. This implies 
that (under these conditions) the right-hand side of (2.1) is 
Lebesgue integrable for all t 2 t o  and that the solution of the 
integral equation 

z ( t ;  t o ,  z(to)) = z ( t )  

E 4 t o )  + 1; [ f ( z ( s ) )  

+ bu(d ( z ( s ) )  - tri (s, T ) ) ]  ds (2.2) 

is unique and satisfies state differential equation (2.1) almost 
everywhere. Hence, when no chattering occurs in the system, 
the "standard" solution to (2.1) can be derived and will 
be equal to the solution of integral equation (2.2) almost 
everywhere. 

Furthermore, when there is no chattering, z( t ;  t o ,  .(to)) = 
x ( t ) ,  as given by (2.2), is a continuous function that depends 
continuously on its switching period, T .  Using this fact, [4] 
develops approximation techniques by examining (2.2) instead 
of (2.1). This work by Sira-Ramirez shows that the solution 

of (2.2) can be accurately approximated by an autonomous 
averaged system by letting T -+ 0. In [4], it is shown that there 
always exists a sufficiently small sampling period T ,  for which 
the deviations between the actual PWM controlled responses 
(of an integral equation) and those of an averaged model, 
under identical initial conditions, remain arbitrarily close to 
each other. This, ol; course, is an immediate consequence of 
continuity on T .  

Therefore, it seems reasonable to approach the problem 
of approximating the dynamics of (2.1) by using classical 
averaging techniques on integral equation (2.2). Classical aver- 
aging techniques have the advantage over the techniques of [4] 
because they provide answers to fundamental questions about 
the validity of the approximation. By performing averaging 
on an integral equation instead of a differential equation, this 
paper will show that the difficulties due to many types of state 
discontinuities are eliminated. This approach allows a rigorous 
explanation, which was not provided in [3] and [9]. 

Most classical averaging techniques [6],  [7], though, are not 
directly applicable to integral equations. However, recently, 
new state space averaging theory has been developed that 
relies entirely on the representation of solutions of differential 
equations by their corresponding integral equation [11], [12]. 
The results of [ 1 11 and [ 121 are written for infinite dimensional 
dynamical systems, but the techniques, as this paper shows, 
can also be applied to ordinary differential equations. 

111. AVERAGING OF STATE DISCONTINUOUS 
POWER ELECTRONIC SYSTEMS 

In general form, feedback pulse width modulated systems 
considered in this paper will be modeled by the integral 
equation 

" ( t ;  t o ,  x ( to) )  = Z ( t )  

. u ( d L ( z ( s ) )  - tri (s, T ) )  ] d s  (3.1) 

where it will alwaiys be assumed that z E R", t o  denotes 
initial time, and f,: R" + R" are locally Lipschitz functions, 
i.e., there exists an open neighborhood R c R" such that for 
every z1 E R, x2 E R, there are constant positive k ,  satisfying 
l/fi(.l) -f,(z2)11 5 k z l / z l  -z21/. The functions d,: Rn -+ R 
are the duty ratios and will also be assumed locally Lipschitz in 
R with Lipschitz constant m,. Furthermore, they will always 
satisfy 0 5 d L ( z )  5 1. 

Along with (3. I ), consider the corresponding "averaged" 
integral equation 

y(t;  t o ,  Y(t0) )  =y(t)  
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where f t ,  and d, are as previously defined and y E R". This 
section will discuss the conditions under which solutions to 
(3.2) can approximate solutions to (3.1). Since (3.2) is both 
continuous and autonomous, its analysis is much simpler than 
that of discontinuous and nonautonomous (3.1). For example, 
if f L  and d, have continuous partial derivatives with respect to 
z, then the stability properties of (3.2) may be determined 
by examining the eigenvalues of the linearization of (3.2) 
about each steady state. No such simple statement can be said 
about determining the stability of (3.1). The two theorems 
presented in this section extend the results of [3] to the state 
discontinuous case, i.e., to the feedback control case. 

A. Chattering 

By representing state discontinuous differential equations by 
a corresponding integral equation, it is possible to rigorously 
explain averaging approximations in power electronic systems. 
However, it will always be necessary to assume that the 
models under consideration have a finite number of right- 
hand side state discontinuities on any bounded time interval 
and that each discontinuity is Lebesgue integrable. This, 
however, is not always true for mathematical models of power 
electronic systems. For example, when systems are switching 
infinitely often (chattering), there exists no compact time 
interval in which the right-hand side of the state discontinuous 
differential equation is continuous. Hence, a unique solution 
to a corresponding integral equation will not exist in the usual 
sense unless the theory of differential inclusions [SI is used. 

In this paper, we will always assume that the system is 
not chattering. The physical implication of this assumption is 
that power electronic switches turn on and off only once each 
PWM switching period. Conditions for guaranteeing this are 
presented in [13] and will not be discussed here. However, it 
is important to note that the averaging results presented below, 
are only valid when chattering does not occur. 

B. Theoretical Results 

We begin this section by outlining the general averaging 
procedure that will be taken in this paper to justify the 
approximation of (3.1) by (3.2). 

Given a nonautonomous, integral equation [such as (2.1) or 
(3.1)] z ( t )  = z(to) + Ji g ( s ,  ~ ( s ) ,  T )  d s ,  consider the cor- 
responding autonomous "averaged' integral equation y(t) = 

y(t0) + JL g(y(s))ds, where g(.) is an "average value" of 
y ( t ,  ., .) and J ( . )  does not depend on time, t ,  or on the 
switching period, T .  

Step 1: Take the difference between the two integral equa- 
tions to obtain 

Step 2: Show that for any 6 > 0, however small, and any 
L > t o ,  however large, there will always exist a To = To(6, L )  

and a constant K > 0 such that for 0 < T 5 TO 

for any t E [ t o ,  L ] .  
Step 3: Immediately from Step 1, Step 2, and Gronwall's 

inequality, this implies that for t E [ t o ,  L ] ,  L > t o ,  and 
0 < T s T o  

l l4t) - Y ( t ) l l  I (Ilz(t0) - y(to)ll + 6)eK(L- to )  

where 6 i 0 as T 4 0. This implies that on any arbitrarily 
large but bounded time interval, if z(t0) = y(to), then x ( t )  and 
y(t)  can remain arbitrarily close to each other for a sufficiently 
small switching period. 

Step 4: Assume that z(to) = y ( t 0 )  and that y(t) ap- 
proaches a uniformly asymptotically stable equilibrium point, 
y3. Then, there will always exist a sufficiently small To = 
To(6) such that, for 0 < T 5 TO 

lIz(t) - Y ( t ) / l  < 6, t 2 t o .  

Furthermore, this result will remain valid for initial conditions 
that satisfy l I ~ ( t 0 )  - y( to ) l l  I p, where p > 0 is sufficiently 
small. 

Step 4 basically states that if averaging can be proven 
on a finite time interval, then it can always be extended 
to an infinite time interval in the special case when the 
averaged solution approaches a uniformly asymptotically sta- 
ble equilibrium point. This statement has been proven by 
many authors [3], [6], 171, [12] and is standard to averaging 
theory. 

Once Step 2 is completed, Steps 3 and 4 will immediately 
follow. However, it turns out that, for PWM systems, com- 
pleting Step 2 is extremely difficult and relies on some very 
recently developed mathematical tools [ 1 11, [ 121. Keeping the 
above algorithm in mind, it is now possible to prove the 
main results of this paper. The proof of Theorem 3.1 relies 
on several Lemmatta, which are presented in the Appendix. 

Theorem 3.1: Let z ( t )  and y(C) denote the solutions to (3.1) 
and (3.2), respectively. Then, for any constant L > t o  and for 
any constant 7 > 0, there exists a TO = To(q, L) > 0 and a 
constant K > 0 such that, for 0 < T 5 To, 

ll4t) - Y ( t ) l l  I (Ilz(t0) -y(to)ll+rl) exp{K(t-to)} (3.3) 

for all t E [ t o ,  L] .  

3: R" --f R" and W :  R" -+ R" as 
Proof of Theorem 3.1: For simplicity, define operators 

. u(d i ( z (s ) )  - tri (s, T ) )  ds (3.4) 
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Under the assumption of no chattering, x ( t ) ,  the solution to 
(3.1) will be continuous. Therefore, it is well known (Theo- 
rems 24.4 and 24.5, [14]) that x ( t )  can be approximated by 
piecewise constant functions. Construct N + 1 such piecewise 
constant functions &(t) E R", z = 0, 1, . . . , N ,  such that 
for any t E [ to ,  L], 0 5 [ d , ( z ( t ) )  - d Z ( & ( t ) ) ]  5 S, for 
i = 1, 2, . . . , N ,  where 6, > 0 are a set of positive constants. 

Furthermore, choose &(t) such that for any 
t E [ t o ,  L ] ,  I l fL(x( t ) )  - f,(Za(t))lI I 6, also, for 
i = 0, 1, 2, . . . , N .  Since f i ( . )  and rip(.) are Lipschitz 
functions, such &(t) can always be constructed for arbitrary 
6, > 0. Define ( J Z ) ( t )  as 

(J?)(t)  =z(to) + fo(&(s))  ds lot 
u(di(Zi(s)) - tri (s, T ) )  ds. 

Consider 

(3.6) 

- u ( d i ( Z i ( s ) )  - tri ( s ,  T))ll ds. (3.7) 

By Lemma A.2, for any t E [ to ,  L],  Ilfi(&(t))lJ 5 Mi; 
i = 1, 2 ,  . . .  , N .  Let M = max{Mi}; i = 1, 2, . . .  , N .  
Then, using the fact that 11u(.)11 _< 1 and using the fact that 
Zi have been constructed so that Il f i(x(t))  - fi(Zi(t))ll _< Si 

for any t E [ t o ,  L],  i = 0, 1, 2, . . . , N ,  (3.7) becomes 

u(d ; (&(s ) )  - tri ( s ,  T))ll ds (3.8) 

for any t E [ t o ,  L ] .  However, &(.) and 6, have been cho- 
sen so that d,(Z.,(t)) 5 d,(x( t ) )  5 d , (&( t ) )  + S,, i = 
I, 2, . . .  , N for any t .  Define N new piecewise constant 
functions, h%(Z-i( t ) ) ,  where h,(&(t)) = min(1, d,(Z,(t))+ 
S,}; i = 1, 2 ,  . . .  , N .  Note that d, (&( t ) )  5 d , ( z ( t ) )  5 

~ 

545 

h,(lc,(t)) for all t ci ( t o ,  L ) ;  i = 1, 2, . . .  , N .  Then, by 
Lemma A. 1, this implies 

II(J-x)(t) - (J-lc)(t>ll I 
So(N + l)( t  - t o )  

N t  

+ M E; lo I IU(ha(&(S))  - tri(s, TI) 
,=I 

(3.9) 

Using Lemma AS. there will always exist a TO = To(a,, L )  

- u(d,(i. ,(s)) - tri (s, T))ll ds. 

such that, for 0 < 'I' 5 TO 

Il(J-x)(t) - ( J4 ( t ) I l  5 So(N + 1)(t - t o )  
N 

+ M [a, + S,(t  - t o ) ]  
2 = 1  

= 0 + Yl(6) (3.10) 

where cr = M E,=] cr, goes to zero as T + 0, S = 
[SO, . . . , 6 ~ ]  and y1(S) is a positive constant that approaches 
zero as 6, 4 0. 

1v 

Similarly, for any t E [ t o ,  L] 

Noting that I l f , (&( t ) ) l l  I M ,  for any t E [ to ,  L] and that 
lld,(.)11 5 1, (3.11) becomes 

N 

II(W4(t) - (Wn:)(t)lI 5 So( t  - t o )  +Ad &(t - t o )  
2=1 

N 

+ &,(t - t o )  
2 = 1  

I Yz (6) , 
for any t E [ t o ,  L] .  Clearly yz(6) 4 0 as 6, + 0. 

Consider now the inequality 

II(Jx)(t) - (Wx)(t)II 5 Il(Jz>(t) - (W( t ) l I  
+ II(JZ)(t) - (wz)(t)lI 
+ II(W?)(t) - (Wx)(t)II (3.12) 

which is true for all t. Using the above discussion and 
Lemma A.4, there exists a TO = To(cr, 0, L )  such that, for 



~ 

z ( t )  is continuous. from basic averaging theory, it can be derived that TO is 
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0 < T 5 To, 

where CJ and p are positive constants that approach zero as 
T -+ 0, as defined in (3.10) and Lemma A.4, respectively. 
Constants yl(6) and r~(6) can be made arbitrary small by 
making &(.) approximate z( .) with arbitrary accuracy. There- 
fore, without loss of generality, it can be assumed that 6, + 0, 
which implies that for a sufficiently small switching period 

where = c7 + p, and + 0 as T + 0. 
Finally, consider the inequality 

The following is always true: 

Noting that f ;  (.) and di (.) are Lipschitz and that 0 5 d; (.) I 
1, one obtains 

where m, are the Lipschitz constants of d,(.) and k,  are 
the Lipschitz constants for f ,( .) .  Let K = M m, + 
E,"=, IC,. Then (3.15) becomes 

for any t E [ t o ,  L] .  Applying Gronwall's inequality completes 
the proof of the theorem. Q.E.D. 

Remark 3.1: The main trick of the proof of Theorem 3.1 
is to construct N + 1 piecewise constant functions f i i( t) ,  
i = 0, 1, . . .  , N ,  which accurately approximate z ( t )  on 
t E [ t o ,  L] .  Such functions can always be constructed since 
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Then, using the notation defined in (3.4)-(3.6) and (3.1 1) 

Now, Step 2 of the averaging algorithm must be performed. 
Each term on the right-hand side of (3.17) is considered 
separately. By constructing &(t )  to approximate z ( t )  with 
arbitrary accuracy, the quantities I I (Jz) ( t )  - ( 3 2 )  ( t )  I I and 
II(W?)(t) - (Wx)(t)I/  can be made arbitrarily small. In 
essence, this is due to the Fundamental Theorem of Calculus, 
which states that any integral can be estimated by the sums 
of the areas of rectangles. Since &(t) is piecewise constant, 
(J?) ( t )  and (W?)(t) represent nothing more than areas 
under the curve of a piecewise constant function which is 
equivalent to summing the areas of rectangles. Of course, 
due to the discontinuities that appear in J(.), more advanced 
theoretically arguments must be made in order to justify these 
approximations. 

Likewise, because f, (.) and d, (.) have been assumed Lips- 
chitz, it is not too difficult to show that for any t E [ t o ,  L] 

Now, the only term left to consider in (3.17) is II(J%)(t) - 
(W2) ( t )  / 1 .  However, this term only considers the difference 
between the integrals of piecewise constant functions, which, 
as the theorem shows, is a much simpler problem to handle 
(based on the lemmatta in the Appendix). 

Remark 3.2: When .(to) = y ( ta ) ,  Theorem 3.1 guarantees 
that there will always exist a sufficiently small switching 
period such that for any 17 > 0, however small, I I z ( t ) - y ( t ) l  I < 
7 on any finite time interval. This bound is true, even when 
(3.1) or (3.2) are unstable. For the case when solutions are 
bounded, however, more powerful theorems can be stated. 

Remark 3.3: The choice of TO is best found through numer- 
ical simulation, since theoretical estimates are often extremely 
conservative. One reason for poor theoretical estimates of TO 
is that Theorem 3.1 does not distinguish between stable and 
unstable systems. For unstable systems, it is possible that 
solutions to (3.1) and (3.2) grow exponentially, making it 
difficult to estimate the difference, l lx( t )  - y(t)ll. With this 
in mind, we make these general statements: 

For general systems, from the proof of Theorem 3.1 and 
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sufficiently small if all three of the following conditions are 
satisfied: 

1) there exists no chattering in the system; 
2) TO << e--kc(Lpto) ,  where k,  are the Lipschitz constants 

3) To << where m, are the Lipschitz constants 

This is not to say that for every system in question, the 
switching period must be chosen so that 1)-3) are satisfied. 
For example, if solutions to (3.2) decay exponentially to an 
equilibrium point, then condition 2) can often be relaxed. It is 
important to remark that condition 1) must always be fulfilled 
or else the solutions of (3.1) will not be defined in the usual 
sense. 

Remark3.4: Based on the Theorem 3.1 and the above 
discussion, it is possible to determine general conditions that 
suggest the improvement of the accuracy of approximation 
between the original (3.1) and the approximate (3.2) system. 
Clearly, the approximation becomes better as the switching 
period becomes smaller, but also, as Remark 3.3 notes, the 
approximations will tend to improve for systems with smaller 
Lipschitz constants, i.e., the smaller k,  and m, are, the 
more accurate the averaging technique will tend to be (for 
general systems) and the better for linear systems than for 
nonlinear systems. Additionally, as Theorem 3.2 suggests 
below, if the averaged system is stable, then the averaging 
approximations will also improve. Conversely, if the averaged 
system is unstable, the averaging approximation tends to 
worsen. Finally, as is clear from (3.3), a necessary condition 
for the solutions of (3.2) to approximate the solutions of (3.3) 
is that the initial conditions of the two systems must be chosen 
in appropriate neighborhoods. 

Remark 3.5: One of the main advantages of the averaging 
technique is that nonlinearities are maintained in the averaged 
system. Hence, the approximation of (3.1) by (3.2) is valid 
even when the states, x, become large, which would not be 
true if a linearization technique were to be used. The averaging 
approximation is, therefore, valid for large signals. 

As stated earlier, when the solution to the averaged equa- 
tion approaches a uniformly asymptotically stable equilibrium 
point, the solutions of (3.1) and of (3.2) will remain close 
to each other on an infinite time interval for a sufficiently 
small switching period. The following theorem is an immediate 
consequence of this fact. The proof is almost identical to 
Proposition 4 of [3] or Theorem 2.2 of [12], and therefore, 
is omitted. 

Theorem 3.2: Let ~ ( t )  and y ( t )  denote the solutions to (3.1) 
and (3.2), respectively, and let ys E R (ys # y ( t 0 ) )  denote 
a uniformly asymptotically stable equilibrium point. Suppose 
that y(t) i ys as t 4 00. 

Then there are constants Po(q) and To(q) such that, for any 

for f , ( . ) ;  

for d,(.). 

v > 0, any I l 4 t o )  - Y( t0 ) l l  < P, 0 5 P < Po < v>  and 
O < T < T o  

Il4t) - Y( t ) l l  < r/ (3.19) 

for all t 2 t o .  

Remark 3.6: The above theorem gives conditions in which 
the interval in Theorem 3.1 can be made infinite. For the 
case when y ( t )  apprloaches a uniformly asymptotically stable 
equilibrium point, y.., the difference, Ilz(t) - y ( t ) l l ,  can be 
made arbitrarily small1 for all t 2 t o  assuming I Iz(t0) - y(to) I I 
and the switching period are sufficiently small. 

Remark 3.7: Suppose f,(.) and di(.) have continuous par- 
tial derivatives. Then, for an equilibrium point, ys, of (3.2) to 
be uniformly asymptotically stable, it is possible to check that 

8.f 0 (Ys Det S I  - -- { ay 

have all solutions with Re(s )  < 0. 
Remark 3.8: Theorem 3.2 guarantees that under the proper 

conditions, when (3.2) is stable, then so is (3.1). Unlike 
(3.2), however, the solution to (3.1) will not in general 
approach an equilibrium point as t + 00, since (3.1) is a 
time varying integral equation. In general, the solution to 
(3.1) will (assuming it is stable) approach a periodic orbit. 
However, this periodic orbit will not necessarily be in the 
vicinity of the equilibrium point of the averaged equation, 
unless T is sufficiently small. In fact, (the theory clearly 
shows that) it is possible to construct examples in which 
(3.1) has an asymptotically stable periodic orbit for all T ,  
but is only in the vicinity of the equilibrium point of (3.2) 
when T + 0 (see Section IV). This behavior becomes more 
pronounced in feedback controlled (as opposed to open loop) 
PWM dc-dc converters due to the nonlinearities, and is not 
noted in [3] and [9]. We further explain this phenomenon in 
[lo]. 

Remark 3.9: In Theorems 3.1 and 3.2, the feedback signals 
are compared with tri(t, T ) ,  shown in Fig. 1. However, all 
the above theorems remain valid for triangle waves as shown 
in Fig. 2 also, provided that they are rescaled to vary between 
zero and one (see Section IV). Furthermore, it is not necessary 
to compare each d, (.) with the same function with the same pe- 
riod. For instance, in (3.1) we might have U(&( . )  - tri (., T,)) 
instead of U(&( . )  - tri (., T ) ) ,  where T, might not equal T3, 
for i # j. As long as each T, is sufficiently small, all previous 
results will remain valid. 

C. Ripple Estimate 

It is often desirable to obtain an estimate on the ripple of 
the system, which will be denoted in this paper as Q(t ,  T ,  .). 
Then, practical applications of averaging tell us that a better 
approximation of the solution to (3.1) will be given by 

where ~ ( t )  and y(t) are the solutions of (3.1) and (3.2), 
respectively, T is thie switching period, and Q(t ,  T ,  .) is the 
ripple estimate obtained by the following algorithm. 



548 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 11, NO. 4, JULY 1996 

(4 
Fig. 2. Other possible triangle waves. 

Consider only the right-hand sides of (3.1) and (3.2). Let 
z(t0) = y ( t o ) ,  and replace every z(s)  and y(s) in (3.1) and 
(3.2) by the constant c E 72". Now take the difference between 
(3.1) and (3.2) to obtain 

N 

(3.21) 

where s, h(t)  d t  denotes the indefinite integral of h(t)  (math- 
ematically referred to as the primitive). The ripple estimate is 
given as 

1 r 7  

Replacing c by y ( t )  yields Q(t ,  T ,  .). Performing integrations 
(3.21) and (3.22), using (3.1) and (3.2), an estimate on the 
ripple is computed to be 

As the switching period becomes smaller, the amplitude 
of q(t ,  T ,  .) will also become smaller and ripple of the 
system will become negligible. Additionally, an adjustment 
on the initial condition can be made by solving the equation 
.(to) = y ( t o )  + Q(t ,  T ,  & t o ) ) ,  for y(t0) in terms of .(to). 
The general expression for the ripple estimate (3.23) is an 
important contribution of this work and has been used in [lo] 
to help model the effects of switching at lower frequencies. 

IV. APPLICATION EXAMPLE 

Consider the PWM boost converter with feedback control 
structure as shown in Fig. 3. Open-loop operation of this con- 

verter was considered in [3]: however, the theory developed 
in [3] does not extend to closed-loop operation (as do the 
theorems in this paper). Assuming the converter is operating 
in the continuous conduction mode, the closed loop (rescaled) 
system description is given by 

E 
b =  [f] 

where the components of x ( t )  = [ i ~ ( t ) ,  vc(t)lT are the 
inductor current and capacitor voltage. Note, that since the 
triangle wave in Fig. 3 varies from 0.7-3 V, it is necessary to 
rescale the system into (4.1) so that Theorems 3.1 and 3.2 can 
be applied. This is easily done scaling the duty ratio function 
using the minimum (trimin = 0.7 V) and maximum (trimax 
= 3.0 V) values of the triangle wave: 

g(z) - trimin 
trimax - trimin 

d(x) = 

where g(z) is defined in Fig. 3. For this specific g(z), we have 
VREF = 0.312.3, kl = 0.412.3, and = -0.112.3. 
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E =  5V 

L= 50p.H i&) I I 

g(x> = 1 -0.4 iL(t) + 0.1 vc(t) 
-0.4 

0.7 + 2.3 tri (t, 

Fig. 3. Feedback control boost converter 

Application of Theorems 3.1 and 3.2 is now immediate upon 
noting that, using the previous notation, fo(z) = Aoz + b, 
f l ( x )  = Alz, and N = 1. The closed loop switching and 
averaged models were simulated using Saber [15]. Fig. 4 illus- 
trates the switching and averaged trajectories of the capacitor 
voltage for different switching periods. As the frequency of the 
system, f,?, increases, or equivalently as the switching period 
decreases (since f s  = T1), the approximation of z ( t )  by y ( t )  
improves. For example, when f s  = 50 KHz, system (4.1) has 
a capacitor voltage that, in steady state, oscillates about (ap- 
proximately) 7.3 V. The averaged system, on the other hand, 
approaches (approximately) 8.5 V. As the frequency of the 
system increases (the switching period decreases) the capacitor 
voltage for (4.2) more closely approximates the capacitor 
voltage of (4.1). For f s  = 1 MHz, system (4.1) has steady 
state capacitor voltage that oscillates about (approximately) 
8.4 V, representing a significant improvement. Additionally, 
for larger frequency, the amplitude of the ripple decreases. 
This further verifies Theorems 3.1 and 3.2, which state that the 
approximation between the averaged system and the original 
system improves as the switching period decreases and is 
consistent with Remark 3.8. Similar results can be obtained 
for the inductor current. 
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I 

Using (3.23), it is possible to directly compute an estimate 
on the ripple of the system as 

Fig. 5 plots the capacitor voltage and inductor current of the 
original system (4.1) when f s  = 100 KHz. A comparison of 
these plots can be m,ade with Fig. 6, which shows the improve- 
ment of the averaging technique by approximating z ( t )  by 
x ( t )  E y ( t )  + @(t, T ,  y ( t ) )  and updating the initial condition, 
y ( to ) ,  by solving [given .(to)] the nonlinear equation 

Fig. 6 indicates that the “shape” of solutions to averaged 
system (4.2) added to the ripple estimate closely resembles the 
“shape” of solutionrs to the original system (plus, perhaps, a dc 
offset). Therefore, ,the ripple estimate may provide important 
system information, even at a low frequency (large switching 
period). 



550 

O U  t ( S )  

( V )  
9- 

8 . 5 -  

8. 

7 . 5 .  

7.  

6 . 5 .  

6. 

5 . 5 .  

5 .  

4 . 5 .  

1- 

900111- 

IEEE TRANSACTIONS ON POWER ELECTRONICS. VOL. 11, NO. 4, JULY 1996 

9- 

8 5 -  

4 

100m- 

0- 

I 
24, 5 6 ,  7 : ~  l O b u  1 2 \ u  1 5 ' 0 ~  17:u 20011 22\11 25bu 275u 3 

I 

4 5 -  

4 

Fig. 4. 
_ - _ -  fs = 100 kHz; - - - - f. = 50 kHz; - - - - - average. 

Simulated start up transient response of capacitor voltage for (4.1) and (4.2) for different values of switching frequency. __ fa = 1 MHz; 

111 t ( s )  

Fig. 5. Simulated start up transient response of both capacitor voltage and inductor current for (4.1) when switching frequency equals 100 kHz. __ 
vc(t);  - - - - iZ(t). 

V. CONCLUSION 

A rigorous averaging theory for power electronic systems 
has been developed. This new theory extends previous work 

to include state discontinuous (feedback controlled) PWM 
systems. The two theorems Presented in this Paper Provide a 

basis for answering fundamental questions about the averaged 
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Fig. 6. 
equals 100 KHz. __ vcavg(t); - - - - vc r1p ( t ) .  , - - - - - alaVg(t); - - - - - - drlp( t ) ; .  

Simulated start up transient response of both capacitor voltage and inductor current for (4.2) and ripple correction (4.3) when switching frequency 

model and its relation to the original switching model. First- 
order ripple estimates are derived, and an application of the 
theory to a feedback controlled boost converter is presented. 

APPENDIX 

LemmaA.1: Let g1(x) and gz(x) be functions mapping 

Then, for any x E Rn, any T > 0, and any t E R the 
2" -+ R. Suppose that, for any 2 E R", SI($) 5 g 2 ( 5 ) .  

following inequality is always true: 

.(91(4 - tri ( t ,  T ) )  I .(g2(4 - tri (4 TI).  (-4.1) 

Proof of Lemma A.1: If g1 (x) _< gZ(z), then at no time 
can gI(s) - hi (t,  T )  > 0 while g2(x) - tri ( t ,  T )  < 0. Using 
this fact and applying the definition of the Heaviside step 
function, the proof is immediate. Q.E.D. 

Lemma A.2: Suppose that z(t)  and y ( t )  are given by (3.1) 
and (3.2), respectively. Then for any t E [ t o ,  L], L 2 t o  

I lx(t)l l  L I l ~ ( t 0 ) l l  exp 

Ilv(t)ll L I lY(t0) l l  exp 

where k ,  are the Lipschitz constants of fi, previously defined. 
ProofofLemma A.2: By (3.1 j 

-t 5 .I' Ilfi(+>)ll 
2=1 t o  

. l l ~ ( d z ( ~ ( s ) )  - tri ( s ,  T))ll ds. (A.4) 

Since ft are Lipschitz functions with Lipschitz constants k, 
and since llu(-)\l 5 1, we have 

which, by Gronwall's inequality, implies (A.2). Upon noting 
that lldz(.)ll 5 I, (A.3) can be obtained using almost the same 
arguments. Q.E.D. 

LemmaA.3: Let .D be a constant satisfying 0 5 D 5 1. 
Then, for any t 2 to  

111; [u(D - tri (s. T ) )  - D] ds 5 ( ( D T ( 1  - D)ll. (A.6) 

Proof of Lemma A.3: Without loss of generality, assume 
that t o  = 0 (initial time can always be redefined so that this 
is the case.) By definition 

II 

1 
0 

t E [nT, nT + DT] 
t E [aT + DT, (n  f 1)TI %(I? - tri(t, T ) )  = 

(A.7) n = 0, 1, 2, . . .  . 
Assume that D f 0. (The case when D = 0 is trivially 

proved since both the left and right-hand side of (A.6) are 
identically equal to zero). Suppose 0 5 t _< DT. Then 
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= I l(1 - D)tl I 
I IIDT(1 - o)ll, ( ~ , 8 )  

Proof of Lemma A.4: If c is a constant vector, then d;(c)  
and f z ( c )  are constants also. Therefore 

By Lemma A.3, there exists a To = To(yi, L )  such that, 
(A.9) for o < T 5 To 

Finally, suppose that t 2 T .  Then, there always exists an N 
integer M = M ( t ,  T ) ,  depending on t and T, such that M 2 1 
and MT 5 t 5 ( M  + 1)T. Therefore 

I /  [u(D - tri ( s ,  T ) )  - D] ds  

= 111"" [u(D - tri (s, 7')) - D] ds  

[u(D - tri(s, 5")) - D] d s  . (A.lO) I 1  t 

+ /MT 

MT Due to periodicity, so [u (D - tri ( s ,  T)) - D] d s  = 
M s:[u(D-tri(s, T ) ) - D ] d s a n d J h T  [u(D-tri(s,  7'))- 
D ] d s  = J, [u (D - tri (s, T ) )  - D] ds .  Note that t-MT 

where M(. )  is defined in (A.15), and T~ are arbitrary small 
positive constants. From here, it follows that 

N 

i=l 

for any t o  5 t l  5 t 2  5 L. 
Since z ( t )  is a piecewise constant function, there will 

always exist a sequence to = ao < a1 < a2 < ... < up = t ,  
t I L, and a set of constants { c 3 } ;  j = 1, 2, . . .  , p ,  with 
cI = 5(t)  on the interval t E [u3-1, a3] ,  such that 

which completes the proof. Q.E.D. (A. 19) 
Lemma A.4: Let 5(t)  be a piecewise constant function. 

Then for any constant L > to and any constant p > 0, there Noting that SUP, IIfz(c~)1I 5 SUP, Ilc311 < 00, it is easy 
exists a 7'0 = To(P, L )  such that, for 0 < T 5 TO to see that (A.19) can be made arbitrarily small by making 7% 

arbitrarily small (by choosing To sufficiently small). Defining "g l; fr(z(s))'LL(dz(z(s)) - t'i ( s ,  TI) ds  

r = l  l l  
N 

P = f ( P  + 1) SUP Ilf2(c3>llrz 
z = 1  3 

f z ( ~ ( s ) ) d r ( z ( s ) )  ds 5 P ;  t E [to, LI. J = 1, 2, . . .  , p  (A.20) 

(A. 14) the proof is complete. Q.E.D. 
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Lemma A.5: Let g1 (z) and 9 2 ( 2 )  be continuous functions 
mapping Rn -+ R, with 0 5 gI(z) 5 1 and 0 5 g2(2) 5 1. 
Suppose that 5( t )  is a piecewise constant function and that 
0 5 g l ( s ( t> )  - g2(5(t)) 5 6, for some constant 6 > 0 and 
for all t E [ to ,  L] ,  L > t o .  

Then for any constant L > t o  and any constant 0 > 0, there 
exists a constant To = To(a, L)  such that, for 0 < T 5 TO 

Proof of Lemma A.5: By Lemma A. 1 and simple algebra 

(A.23) 

By Lemma A.4, for any y > 0, there exist a TO = T 0 ( y ,  L )  
such that, for 0 < T 5 To, 

i = 1, 2. (A.24) 

Defining 0 = 2y and noting that 11g1(2(t)) - g2(2(t))ll 5 S 
for all t E [ to ,  L] ,  (A.23) immediately gives (A.21). Q.E.D. 
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