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Switching Frequency Dependent Averaged 
Models for PWM DC-DC Converters 

Brad Lehman, Member, IEEE, and Richard M. Bass, Senior Member, IEEE 

Abstract-This paper introduces a new averaging method for 
PWM dc-dc converters which yields averaged models that are 
switching frequency dependent. The new models are obtained 
by using periodic ripple functions to improve the averaging 
approximation. Two important benefits are the correction of 
dc offset error in steady-state and the modeling of switching 
frequency effects on closed-loop performance and stability. 

I. INTRODUCTION 

VERAGING techniques provide the analytical founda- A tion for most power electronic design procedures at 
the system level. For pulse-width modulated (PWM) dc-dc 
converters, the three most popular approaches are known as 
1) the state space averaging method, 2) the circuit averaging 
method, and 3) the injected-absorbed-current method. 

The state space averaging method formulates the dynamic 
equations in state space form for each of the topological 
modes. The averaged model is then obtained by taking a 
weighted average of the system matrices, where the weight- 
ing factor for each topological mode is its duty ratio [l], 
[ 2 ] .  The circuit averaging approach replaces each circuit 
element, whose terminal characteristics are given as instan- 
taneous current and voltage relations, with a corresponding 
averaged circuit element. The averaged circuit element cap- 
tures the relationship between the one-cycle average value 
of terminal quantities. For nonlinear elements, such as power 
electronic switches, the averaged i-v relation is only approxi- 
mate [3]. The injected-absorbed-current method is also based 
on the one-cycle average of instantaneous quantities. The 
relation between averaged terminal quantities of a switching 
cell is assumed to exist and is linearized. The exact form 
of the nonlinear averaged relation is not always known, 
and a difference approximation to the time derivative is 
utilized [4]. 

A theoretical foundation which provides a rigorous math- 
ematical justification for widely used averaging methods in 
PWM dc-dc converters [5], [6] is the basis for the new 
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averaged models proposed in this paper. This new averaging 
procedure is based on formal mathematical methods for pe- 
riodic differential equations. Unlike conventional approaches, 
the resulting averaged models incorporate switching frequency 
effects. 

Section I1 highlights two fundamental deficiencies in tradi- 
tional averaged models. A derivation of new averaged models 
is outlined in Section 111, with a more detailed theoretical 
interpretation included as the Appendix. Transient simulations 
for the new and traditional models are compared in Section 
IV. Section V discusses the practical implications, and the 
unique features of the averaging method are summarized in 
Section VI. 

11. LIMITATIONS OF EXISTING AVERAGED MODELS 

Averaging is the underlying approximation upon which a 
large body of work in power electronics is premised. While 
averaging has been the topic of numerous investigations, 
fundamental deficiencies and unresolved questions remain. 
In this section, two limitations of practical consequence are 
discussed. 

A. DC OfSset 

The dc-dc boost converter with PWM feedback control 
shown in Fig. 1 will be used to illustrate the steady-state dc 
offset error exhibited by the conventional averaged model 
[l]. The equations for this circuit are given in Section 
IV. For this example, the component values are E = 5 
V, L = 50 pH, C = 4.4 pF, and R = 28 0. The 
controller parameters are Vref = 0.13 V, IC1 = 0.174, and 
kz = -0.0435. A simulated start-up transient is given in 
Fig. 2. The output voltage transient wc(t)  for the averaged 
model is shown together with a family of switching transients 
for several switching frequencies: f s  = l /T = 50 kHz, 
100 kHz, and 1 MHz. It can be seen that the approximation 
improves as switching frequency increases. Conversely, at 
the slower switching frequencies, the averaged model fails 
to accurately capture the average value in steady-state. This 
is a practical concern in applications where semiconductor 
device capabilities constrain the controller to operate at slower 
switching frequencies. The dc offset discrepancy has been 
previously reported for open-loop converters [ 121. This affects 
the linearization. However, it can often be compensated for 
by including an integrator in the control loop for variables 
of interest. 
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Fig. 1. Boost converter with PWM feedback control. 
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Fig. 2. Output voltage: simulated start-up transient for averaged and switching models. 

B. Closed-Loop Stability 
The same PWM controlled converter of Fig. 1 will be used 

to illustrate the effect of switching frequency on closed-loop 
stability. For this example, the component values are E = 4 
V, L = 5.24 pH, C = 0.2 pF, and R = 16 R. The controller 
parameters are Vref = 0.48 V, IC1 = -0.1, and k2 = 0.01. 
A simulated transient is given in Fig. 3. The output voltage 
transient vc(t)  for the averaged model is shown together 
with the switching transients for the switching frequencies 
f s  = 500 kHz and f s  = 1 MHz. Note that the closed-loop 
system is stable for f s  = 1 MHz, but unstable for f s  = 500 
kHz. Additional simulations confirm the closed-loop system 
is stable for frequencies greater than f s  = 500 kHz and 

unstable for lower frequencies. As expected, Fig. 4 shows that 
the averaging approximation improves as switching frequency 
increases ( f s  = 10 MHz in this case). 

The conventional averaged model [l], which is independent 
of switching frequency, predicts that the closed-loop system is 
stable. The averaging approximation is based on the assump- 
tion that the switching frequency is “fast enough.” While it 
is not known precisely how fast is “fast enough,” designers 
typically take a rule-of-thumb linearized loop-gain crossover 
frequency on the order of 1/4-1/10 of the switching frequency. 
The practical concem here is that the conventional averaged 
model gives no insight or guidance as to “how fast” the 
switching frequency needs to be for acceptable closed-loop 
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Fig. 3. Output voltage: simulated transient for averaged and switching models. 

performance. As a result, transient performance is sacrificed. 
To our knowledge, the stability discrepancy has not been pre- 
viously cited, perhaps because designers avoid slow switching 
frequencies in order to have confidence in the averaged model. 
However, we have observed this instability phenomenon at 
slow switching frequencies in laboratory experiments. 

111. DERIVATION OF NEW AVERAGED MODELS 

In general form, feedback controlled pulse width modulated 
dc-dc converters in continuous conduction mode can be written 
as 

j: = Aoz + bo + [Aiz + bl]u(d(z) - tri(t, T ) )  (1) 

w h e r e z e  Rn,d(x)=V,,f-[kl,kz,...,k,]z,OId(s) 6 1  
and U ( . )  is the Heaviside step function, i.e., U(.) = 1 for 
s 2 0 and U(.) = 0 for s < 0. The function tri(t,T) = 
$ - floor( $) = 

It has been rigorously shown (see [6]) that when T is 
sufficiently small, solutions to (1) can be approximated by 
the autonomous averaged system 

is shown in Fig. 5. 

i = AoY + bo + [AlY + b l l 4 l J )  (2) 

which is the conventional averaged model [l]. This section will 
show how improvements can be made on (2). Note that (1) is 
a state discontinuous differential equation. Under the proper 
conditions, given in [6], this causes no additional difficulties. 

A. ModiJed Averaging Technique for PWM DC-DC Converters 

The techniques detailed in the Appendix will now be used to 
derive a more accurate averaged model of (1). In this section, 

reference will be made to the original equation in “standard 
form” (1 9) 

j: = &f(t,  .) 

z = z + &Q(t, z ,  &) 

Y = 4 Y ,  

the “near identity” periodic transformation (30) 

and the new averaged model (32) 

which is obtained by simultaneously solving (27) and (29) 

; I’ f ( t ,  z + &Q)dt g (z ,  E )  

Wt, 2, E> = / [ f ( t ,  z + &Q) - d z ,  E)ldt 

+ h(z ,  E )  

where h is a function chosen so that Q has zero average. This 
new model will change as the switching period changes and 
therefore takes into consideration the effects of error terms 
that occur because T is not vanishingly small. It is very 
important to note, however, that the model derived (and, for 
that matter, all general averaged models) is valid only when 
T is sufficiently small. 

In order to place (1) in “standard form,” convert to slow 
time by letting in (1) T = t /T to obtain 

~ ’ ( 7 )  = T[Aoz + bo + [Alz + b ~ ] u ( d ( z )  - tri(.r, l))] (3) 

where we switch notation so that x’ represents the derivative 
of z with respect to T and j: denotes the derivative of z with 
respect to t. Now (3) is in the “standard form” of (19), with 
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Fig. 4. Output voltage: simulated transient for averaged and switching models. 

the perturbation parameter E = T.  Derivation of the averaged 
model will now be performed in slow time. 

Using the “near identity” periodic transformation (30) in 
(3), (23) becomes (neglecting an O ( T 2 )  term) 

Ao(z + TQ) + bo +   AI(^ + + b11 

where Q ( T ,  z ,  T )  is a periodic function that gives the ripple 
in the state variables [6]. 

The averaged equation in slow time is given by (32) with 
g given as in (27) as 

1 

g(y, T )  = 1 1  [Ao(y + TQ) + bo + [Ai(y + TQ) + b i ]  
0 

x u ( d ( y  + TQ) - tri(r, I ) ) ] d r  (5) 

and, by (29), P is given in slow time as 

Q(r, Y, T )  

= /[Ao(u + T g )  + bo + ([Al(y + TQ) + bi]  

x u ( d ( y  + 2’8) - tr i(7,I)))  - g(y, T ) ] d 7  - h(y, T ) .  

(6) 

The function h is chosen so that Q has zero average. The 
averaged model requires simultaneous solution of (5) and (6) 
for g and P. 

tri ( t , T )  

Fig. 5. PWM canier waveform, tri(t, T )  

(5) and (6). Due to the special properties of the Heaviside step 
function, it is possible to obtain very close solution estimates. 

Let ~-r, denote the instant of slow time when d(z  + TP) = 
tri(r, 1). This represents the instant of time when the Heavi- 
side step function in (4) switches from one to zero. 

Assume the following, which guarantee that P = [PI, P2IT 

has components Qz in the form of Fig. 6: 

i) Q is zero average, and in addition, 9 has a symmetry 
with respect to r ,  such that 

B. Solving for  the New Model ii) 8, is a triangle wave that is strictly increasing or de- 
creasing on the intervals r E [m,m + T ~ )  and r E In order to obtain new models for PWM feedback controlled 

dc-dc converters, it will be necessary to estimate solutions to [mfTs,7i’Lfl) ,m = 0 , 1 , . . ‘  
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Combining Facts 1-3, the new averaged model of (3) becomes 
(in slow time) 

The next step is to estimate the value of T ~ .  If the compo- 
nents of XiJ are triangle waves in the form of assumption (ii) 
above, then this implies that Q is obtained by neglecting the 
AoT9 and the A l T 9  terms in (6), i.e. 

where g(y, 7') = Aoy + bo + TS(A1y + b l ) ,  as derived above. 
Since u(d(y + TQ)) - tr i(7,l))  switches from 1 to 0 at T,, 

Assumption ii) appears to introduce some error. In essence, 
we are estimating exponential curves by straight lines. The 
accuracy of this approximation is dependent on the decay rate 

is equivalent to 

of solutions to (3). 

(5) by noting the following facts: 
Under these assumptions, we can explicitly evaluate g in 

r1 - [AlY + b1]7s)d7 - q y ,  T )  (9) 
[Ao(Y + TQ) + bold7 = AOY + bo 

[AiQu(d(y + TQ) - tri(7,l))dT = 0 2 )  

+ 1; AlQu(d(y + T 9 )  - t r i ( T , l ) ) d ~  . 1 A 

It has been assumed that U switches at T ~ .  Since tri(0,l) = 

where h is chosen so that Q has zero average. However, (9) 
is in a form that has explicit solution (see [6]) as 

Q M ([Aly + bl]{ [u(T, - tri(.r, 1)) - ~ , ] t r i ( ~ ,  1) 

1 
2 + [ I -  u(TS - tri(7, 1>)17~ + -TS(7, - I.)}). (10) 

It is now possible to explicitly solve for rs, using (10) and 
the fact that 

0, and 0 5 d 5 1 (with d(x) = Kef - Kx), this implies that 
u(d (y  + TQ)  - tr i(7,l))  = 1 on T E [O,.r,) and equals zero 

By (lo), it is known that 

on [.rS, 1). Hence the above equation becomes 

which by assumption i) is zero. 0 

3) 

Therefore, when d(x) = Kef - Kx,  where K = 
[IC1 , k2,  . . . , k,],  ( 1 1) simply yields a second-order polynomial 
in rs given by 

Kef - K Y + -[Aiy + b i ]  [ ~ s  - 7," = 7s l1 [A1y + h]u(d(y + TQ) - t r i (7 , l ) )  d r  = [Aly + b i ] ~ ,  G I> 
where 7, is the instant of time that d(y + TQ) = tr i(7,l)  
(= .rS). (Therefore, 7, is a function of d, y, and T.) 

or equivalently 

Proof of Fact 3: As in Fact 2, we know that u(d(y + 
T@)-tr i (~,  1)) switches from one to zero at T = T ~ .  Therefore 

T 
d(y) - 5 (7s - 7,2)K[AlY + b l ]  = 7s. (13) 

l l [ ~ l y  + bl]u(d(y + TQ) - tri(.r, 1))d. 

= 1" [Aly + b11d7 = [AIY + b117,. 0 

As the examples in the paper show, it is fairly simple to solve 
for the root of the second-order polynomial (in T ~ )  given in 
(13). From (13), it is apparent that T~ is a function of T,y,  
and d as expected. It is interesting to note that, by (13), when 
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Fig. 7. Output voltage: simulated start-up transient for conventional, new, and switching models. 

T --f O , r s  = d(y), which gives the conventional averaged 
models presently being used. 

Using the value for T ~ ,  given in (13), all parameters in (7) 
are known, and hence, (7) and (13) completely specify the new 
averaged model. As a final step, we convert back to fast time 
and obtain the new averaged model to be 

(14) i ( t )  = Aoy + bo + Ts[Aiy + h] 
where rs is given by (13). 

Iv. SIMULATION RESULTS 

The dc-dc converter with PWM feedback control considered 
earlier (Fig. 1) will be used now to illustrate the improvements 
obtained using the new averaged model. The equation for this 
converter, formulated in [6], is in the 

Simulations were performed using 

orm of (1) with 

the SABER simulator 
[13], which permits the entry of the switching circuit net list 
and the averaged model equations in the same template. 

A. DC Offset 

The example considered now is the same as the one con- 
sidered in Section 11-A. Fig. 7 shows a simulated start-up 
transient for the original switching system (l), together with 
the start-up transient for the conventional averaged model (2) 

and the new averaged model (13, 14) for f s  = 100 kHz. 
The new averaged model accurately captures the one-cycle 
average, while the conventional model exhibits a significant 
offset error. 

B. Closed-Loop Stability 

The example considered now is the same as the one con- 
sidered in Section 11-B. Fig. 8 shows a simulated transient for 
the original system (l), together with the conventional (2) and 
new (13), (14) averaged models for f s  = 1 MHz Note that the 
new model provides a much more accurate one-cycle average 
than does the conventional model. 

Fig. 9 shows the transients for the new and switching 
models for two different switching frequencies. Additional 
simulations confirm that the averaged system accurately pre- 
dicts the critical switching frequency for closed-loop stability. 
The reason the “unstable” switching and averaged waveforms 
approach different steady-state values is because PWM satu- 
ration is not included in the averaged model (13), (14). This 
means d ( y )  is permitted to take on nonphysical values less 
than zero or greater than 1. If duty ratio saturation were 
modeled in (13), then the two waveforms would coincide in 
steady-state. This simulation result demonstrates that the new 
model captures the control-loop instability at low switching 
frequencies. The conventional model transient fails to exhibit 
this phenomenon, since it only models the behavior in the 
limit as f s  + 00. 

v. PRACTICAL IMPLICATIONS OF NEW MODELS 
It is interesting to note that in open-loop operation, the 

models in this paper are identical to conventional averaged 
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models [l]. This can be seen by setting d ( y )  = D and K = 
0. Then (13) yields Ts = D which is the conventional answer. 
Therefore, the improvements in accuracy of the proposed aver- 
aged models are due to better approximations of the nonlinear 

It is beyond the scope of this paper, due to length con- 
straints, to derive detailed design algorithms which utilize 
the The purpose Of this paper is to 
introduce new modeling techniques and we defer in-depth 
control design for future research. However, to introduce 

proposed 

feedback dynamics. These nonlinear effects, however, can the reader to a few possible advantages of (13) and (14) 

and in many cases, it is important that they be modeled (see the specific example of the state feedback controlled boost 
Section 11-B). converter as previously discussed. 

have influence on stability properties, overshoot, rise time, etc., Over conventional averaged models, consider, Once again, 
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TABLE I 
EFFECT OF SWITCHING PEMOD ON SYSTEM DYNAMICS 

In order to linearize the boost converter, the nominal steady- 
states must first be obtained by letting the derivatives in (14) 
equal to zero. In this case, a set of three algebraic relationships 
are obtained as 

where IL  and VC are the constant steady-state values of current 
and voltage, respectively, and D is the steady-state constant 
value of T ~ .  If T -+ 0, then D -+ Vref - k l I ~  - ,k,Vc, which 
yields the standard steady-state values. However, finite T can 
have influence on the value of steady-state current and voltage, 
as seen in Section 11-A. This is one advantage of the new 
models. 

Using these steady-state values, the linearization about the 
nominal steady-states y = [ IL ,  V C ] ~  and E = &N is given as 

(16) 

where Ao, A I ,  and D ,  are as previously defined, Bo = [+, 0IT 
and 

6 = [Ao + DAi + AI&]$ + BOG,, 

exist no physically meaningful solutions to (15), i.e., the 
solutions to (15) are complex. This would explain the reasons 
for instability at low switching frequencies seen in simulation. 
Future research will further examine these and other design 
issues. 

VI. CONCLUSION 

A new averaged model for PWM dc-dc converters is de- 
rived using formal mathematical methods. The new averaged 
model is switching frequency dependent. Simulated transients 
demonstrate the improvement over the conventional approach. 
Two benefits of the new averaged model are the correction of 
the dc offset error and the modeling of switching frequency 
effects on closed-loop stability and performance. 

APPENDIX 
AVERAGING THEORY 

A. Introduction 

One of the most commonly used methods in the analysis of 
periodic and almost periodic differential equations is the so- 
called method of averaging. The classical method of averaging 
[7] was originally developed for periodic systems in the form 

where f ( t  + T,  0 )  = f ( t ,  0 )  and 0 < E << 1. 
Averaging theory addresses the relationship between the 

original, time varying system (19) and the autonomous av- 
eraged system 

Y = &SO(Y) (20) Such a linearization permits a designer to solve for various 
closed-loop transfer functions such as line rejection, output 
impedance, current gains, etc. For example, the line rejection 
for the above boost converter is given as 

where function go is obtained by using the averaging operator 
(always treating y as a constant) 

which yields a scalar transfer function. 
For the purpose of illustration, let the component values of 

the boost converter be as in Section 11-B. Table I summarizes 
some of the switching period effects on system response. For 
this example, as T increases, the steady-state values IL  , %, 
and T~ increase also. Notice that when T = 2.5 ps, there 

Roughly speaking, for sufficiently small 6 ,  solutions of (20) 
provide "good" approximations to solutions of (19). Since 
there are many mathematical tools that can be used to an- 
alyze and control autonomous system (20), the problem of 
determining the behavior of nonautonomous periodic system 
(19) has been greatly simplified. 
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B. Basic Theory Behind Averaging 

There are several methods that can be used to explain aver- 
aging, including infinite series asymptotic expansions [5], [8], 
the Fundamental Theorem of Calculus [6], [9], moving av- 
erages [lo], etc. This paper uses a technique similar to that 
of [ l l ]  because it clearly shows the reasons why the newly 
proposed averaged models for PWM dc-dc converters are more 
accurate. 

According to [ l l ] ,  the basic idea of averaging is to de- 
termine a periodic function 90 such that the “near identity” 
periodic transformation 

(21) IC = z + & 9 O ( t ,  z )  

i = Ego(z) + O ( E 2 )  

takes system (19) into the form 

(22) 

where -+ constant as E -+ 0 and go is as given in 
(20). Then by using basic Lyapunov theory, it is known that 
solutions to (20) approximate solutions to (22) when E is small. 
In order to determine 90, simply substitute (21) into (19) to 
obtain 

d Q 0  I + E- i = E f ( t ,  z + E 9 0 )  - E-. [ 21 at 

Using the fact that [I  + &%Ip1 = 1 + O(E) gives 

(23) 
two 

E- + O(E2). at 
The next step (in [ l l ] )  to prove averaging is, in fact, the 

step which our newly proposed averaging algorithms modify in 
order to improve the accuracy of the PWM averaged models. 
It is to rewrite (23) as 

890 
at 

i = ~ f ( t ,  z ) - E - + E [ ~ ( ~ ,  z + E @ l g ) - f ( t ,  ~ ) ] + O ( E ~ ) .  (24) 

Now, by using continuity and Lipschitz arguments (see [l I]), it 
is known that Ilf(t, z +EXPO) - f ( t ,  z)II = O(E), and therefore 
(24) is of the form 

890 
at 

i = E f ( t ,  z )  - E- + O(E2). 

The final step is to choose 90 so that 
1) Qo has zero average, and 
2) the following relation is satisfied: 

where go is given in (20). 
In this case, (25) becomes identical to (22), and the proof is 
complete. 

Hence, if is defined as (treating z as a constant again) 

9 0 ( t ,  z )  = [ f ( t ,  z )  - go(z)ldt + ho(z) (26) J 
where function h is chosen so that 90 has zero average, then 
substitution (21) transforms (19) into (22). 

C. Modified Averaging Technique 

The basic idea of subsection B is to introduce transformation 
(21) into (19) and then “manipulate” the transformation so that 
the new differential equation can be written in the form of (25). 
After this is successfully accomplished, QO can be chosen as 
in (26) in order to complete the proof of averaging. 

From B, it is seen that errors came from approximating 
solutions of (19) by solutions of (20) via the O ( E ~ )  terms in 
(25). In particular, error is introduced in the following two 
places: 

1) by approximating [I  + E%] -’ by I, and 
2) by approximating f ( t ,  z + E ~ O )  by f ( t ,  z ) .  

As E -+ 0, these errors become extremely small and can be 
neglected. However, since E is finite in practice, these errors 
can sometimes affect the accuracy of the approximation. 

This paper proposes a new technique, which eliminates 
error associated with 2) above. Suppose that (19) has special 
structure (as it does for PWM dc-dc converters) so that it 
is possible to determine or closely estimate a new function 
g(# go) defined as 

4 IT f ( t ,  z + E 9 ) d t  = g(z ,  E )  

where 9 is a different zero average periodic function given 
by the relation 

a9 
f ( t J  + EQ)  - - at = g(z,.) 

or equivalently 

where h is chosen so that 9 is zero average. As before, 
the periodic function 9 provides a “near identity” periodic 
transformation 

(30) 2 = z + E 9 ( t ,  z ,  &). 

Substituting 9 for Qo, system (23) becomes [where 9 E 

Q(t, 2, &))I 

a9 
at E- + O ( E 2 )  

= Eg(z, E )  + O(E2). (31) 

Therefore, the new proposed average model of (19) is 

One would expect that (32) will give a better approxima- 
tion of (19) than (20) does, since the error associated with 
approximating f ( t ,  z + E * )  by f ( t ,  z )  has been eliminated. 

For general periodic systems in the form of (19), this 
technique is extremely difficult to apply (almost impossible). 
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Notice that in (29), \Tr is defined by an integral equation 
depending on 9 itself, as well as 9. However, to determine 
9,  9 must be known, and therefore, it is only rarely possible 
to explicitly determine g or 9. 

This paper shows the following: It is possible to explicitly 
find 9 and g which approximately satisfy (27), (29) in PWM 
dc-dc converters. The more accurate the approximation of 
(27), (29), the more accurate the averaged approximation (32) 
becomes. puter Engineering. In 
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