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Corollary 1: Consider the system given by (2), (4), (26), and (27) 
were Y , ,  is defined by (25), A = A I  where A > 0 is a constant, and 
r is assumed to be constant, symmetric, and positive definite. 

Then the equilibrium x = 0 is stable in the sense of Lyapunov. 
Proof By combining (4), (25), and (27) the closed-loop dy- 

namic system 

H s  + (AH + C ) s  = Y,,,a (28) 

is obtained. The system given by (26), (2), and (28) is identical to the 
system (1)-(3) with Y,, ,  replacing Y and AH replacing K u .  Then 
since the inertia matrix H is uniformly positive definite and A > 0 
is a constant, Proposition I applies, and the result follows. 

Remark 2: Lyapunov stability for the system in Corollary I cannot 
be shown with the proof in [2] since A’H is not constant in general 
(see Remark I). I n  Proposition 1 less restrictive assumptions are 
made, and Lyapunov stability can be established. 
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Delay Independent Stability Conditions 
and Decay Estimates for Time-Varying 

Functional Differential Equations 

Brad Lehman and Khalil Shujaee 

Abstract-This paper presents sufficient delay independent conditions 
that guarantee stability of nonlinear time varying functional differential 
equations (FDE’s). Estimates on the rate of decay of solutions are also 
obtained. 

I. INTRODUCTION 

There has been a great amount of literature over the past 30 years 
discussing delay independent stability conditions for functional dif- 
ferential equations (FDE’s) [ 1)-[14]. Much of this literature focuses 
on linear time invariant point delay systems [ 1]-[8]. There are several 
different approaches to developing stability conditions of such types 
of systems. Two of the most common techniques are to either use 
Lyapunov functions [ 1]-[4] or to analyze the FDE from a completely 
algebraic point of view [4]-[5]. While both techniques provide a 
powerful theoretical framework for stability analysis, there are several 
associated disadvantages: 1) the results are generally valid for linear 
time invariant (LTI) point delay systems only and/or 2) the results 
are often difficult to verify. 
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Recently, [6], [7] derived delay independent stability conditions for 
LTI point delay systems in terms of a matrix measure (logarithmic 
norm). Furthermore, [8] calculated estimates on the decay rate 
of these systems, and therefore, information about both stability 
properties and transient responses of special classes of FDE’s could 
be obtained. 

The use of matrix measures in the analysis of delay equations 
has the benefits of being both an algorithmic procedure and being 
simple computationally. The work of [9] generalizes [6]-[8] by 
presenting delay independent stability conditions of point delay 
systems where the nominal plant is LTI but the perturbations are 
special classes of nonlinear, time-varying, bounded globally Lipschitz 
functions with point delay only. Presenting an algorithmic approach, 
[9] extends the work of [6]-[8] and the older works of [IO]-[I21 
(which provide highly theoretical and computationally difficult to 
apply delay independent stability conditions for FDE’s). 

One drawback with [6]-[9] is that the nominal plant is assumed 
time invariant. Some work has been performed on linear time-varying 
point delay systems [10]-[17]; however, once again, most of the 
stability conditions derived are either computationally difficult to 
verify [IO]-[ 141 or have strong restrictions on the time varying part 
of the system [ 151, [ 161. None of the conditions provide estimates on 
the transient decay rate of the system. 

The work presented in this paper is an extension of [6]-[14]. 
[17]; in particular we have been greatly influenced by [IO]-[12]. 
The results of this paper provide: 1 )  sufficient delay independent 
stability conditions for general classes of nonlinear time varying 
systems which are computationally simple to verify and 2) estimates 
on the decay rate of stable solutions of such systems. It is, in fact, 
these estimates which turn out to be the most difficult to prove. 

Section I1 discusses the mathematical preliminaries necessary to 
present the main results of this work, which are found in Section 111. 
Section 111 also provides examples which demonstrate the theory, and 
Section IV summarizes the results. 

11. PRELIMINARIES AND PROBLEM FORMULATION 
This paper considers the stability properties of functional differen- 

tial equations in the form 

where x E R”, .4(f) E RnX”, A4(’) is continuous on f 2 t o ,  the 
function f :  (to - r. xj x I! x C! x . . .  x !I + R”, I2 c R”. is 
continuous in time, and ’ denotes the right-hand derivative. It will 
always be assumed that 0 5 g t ( t )  5 I‘ for f _> t o ,  i = 1. . . .  . t n  and 
some 0 5 r < x. Assume that the continuous initial condition of 
(2.1) takes the form x ( f j  = ~ , ( t )  for f o  - 1’ 5 f 5 t o .  

( f  + (T ) 
for - r  5 (T 5 0. Then it is known [I21 that (2.1) can be rewritten as 

For simplicity, we will define the function 1, = l r  (a) = 

. r ‘ ( t )  = .4(fj.r(fj + F ( t ,  r t ) :  d‘ [ ( ]  = 4 ’ , ” .  (2.2) 

Let C([-r .  01; I2j be the space of all continuous functions map- 
pings [ -r .  01 + 12, and define J = [ t o  - r ,  ’=). Then F :  J x 
C([-r ,  01: 12) + R“, and F is continuous in time. For a function 
61 E C([-r .  01; I I )  define I l t , l l r  =  up-,^^^^ I l c i ( l ~ ) I I .  

The norm of a real vector .r will be denoted by Il.rlln-, and the 
corresponding induced matrix norm is given as ~ ~ A 4 ~ ~ ~ .  The matrix 
measure, sometimes referred to as the logarithmic norm, is defined 
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(2.3) 

The matrix measure has the property that it can have both nega- 
tive and positive values. Further, it is specifically induced by the 
corresponding norm 11 . I l k .  We have 

111. STABILITY AND TRANSIENT DECAY 

It is the purpose of this section to determine conditions in which 
the trivial solution of (2.2) is uniformly asymptotically stable and, 
more importantly, give estimates on the decay rates of solutions. The 
results presented are more general than those presented in [6]-[9] 
because 1) A ( t )  is time varying, and 2 )  the restrictions on perturbation 
F ( t .  . r l )  are less restrictive. In particular, [9] considers (2.1) when 
A ( t )  = A = constant and 

111 

F ( t ,  st) = f o ( t ,  s ( t ) )  + Cft(t, s(t - T ~ N .  

In addition, the results of this section generalize and improve the 
works of [lo]-[ 121, [ 171 by giving solution decay rates and by taking 
into consideration the special property that a time varying system can 
decay faster than ke-A'fp'o) (where constants k 2 1, X > 0). 

In the course of stability analysis of (2.2), it will be necessary to 
use the following lemma, which is a generalization of [ I O ,  pp. 3891, 
[ I l l .  

Lemma: Let u ( t )  and f ( t )  be continuous real valued nonnegative 
functions on [ to  - r ,  R )  and [ t o ,  n ) ,  respectively. Assume that f ( t )  
is positive and nondecreasing for all t E [ t o ,  A ) .  Assume further that 
for all t E [ t o ,  / 3 )  

(3.1) 

where b is some positive constant satisfying 0 < b < f ( t )  on 

1 = I  

1 l ' ( t )  I - f ( f ) t l ( t )  + blll:tllr 

t E [ t o ,  P ) .  
Then 

where y ( t )  is the nondecreasing unique continuous solution to 

Furthermore, ? ( t )  satisfies the inequality 0 < ? ( t )  < f ( t )  on 

Proofi Let A(-,. t )  = ? ( t )  - f ( t )  + b r T ( t ) T .  Fix t = tl 2 t o .  
Let 51 = ? ( t l )  = constant and let n1 = f ( t l )  = constant > 0. Then 

t E [ t o  - T .  ,j). 

A(-,,,  t l )  = A(y1) = 71 - a1 + br?"'. (3.4) 

Equation (3.4) is not time varying, and therefore the techniques of 
[ IO] ,  [ I l l  can be applied: Since A ( 0 )  = -al  + b < 0, A ( n 1 )  = 
be"1r > 0 and (3A/ay)  = 1 + ybr" > 0 for all 5 2 0, it 
follows that there exists a unique 71, 0 < 71 < 0, for which 
A ( ? i )  = 0. Since f l  is arbitrary, it also follows that A(?., f )  = 0 
uniquely defines a function y ( t ) .  Further, 7 ( t )  is continuous since 
A( . )  depends continuously on -,(.) and f(.), where f(.) has been 
assumed continuous. This also implies that 0 < i ( t )  < f ( t )  on 

Define w ( t )  = IJi l tollrexp{-Sf~ ? ( s ) d s }  for t o  - r 5 t < D'. 

Then on t o  - r 5 t 5 t o ,  ~ ( t )  5 u i ( t )  since on this interval 

t E [ t o ,  [j). 

(-J(:) > ( , S ) d S )  > 0. 

Suppose there exists some t z  > t o  such that ~ ( t )  I w ( t )  for 
t o  - r 5 t I t z .  v ( t z )  = u ! ( t z )  and ~ ( t )  > ~ ( t )  on t E ( f z .  ~ z + T ) ,  

for some T > 0. Then it must be that 7 " ( f Z )  > uj'(t2). 

- f ( t ~ ) ~ ( t ~ ) + b l l v ~ , I I , .  Furthermore, it has been 
assumedthatv(tZ) =u t ( t z ) , and tha tv ( t )  5 w ( t ) o n f ~ ' ~ r  5 t 5 t 2 .  

Therefore 

By (3.l)o '( tz) 

t J ' ( t z )  I - f ( t z ) u l ( t 2 )  + bl171~t211r. 

~ ' ( t p )  5 - f ( t z ) w ( t g )  + b l l ' ( t 2  - r ) .  

i u ' ( t 2 )  = w ( t z ) [ - f ( t 2 )  + ~ r ' ( f ~ ) v ~ .  

(3.5) 

Since w ( t )  is monotone decreasing, we have 

(3.6) 

Taking the derivative of the definition of u ' ( t ) ,  it is easy to show that 

(3.7) 

By assumption, d ( t 2 )  > w' ( t2 ) .  Using (3.6) and (3.7), this implies 
that u : ( t 2 ) P ' ( t 2 ) r  < u l ( t 2 - r ) .  Using the definition of w ( t ) .  this gives 

,r(Lz)l  < Jtt22_? d B  (3.8) * 

Since ( a y / a f )  > 1, and f( t )  has been assumed nondecreasing, this 
implies that y( t )  is nondecreasing also. Therefore, ~ ~ - , t 2 ~ ~ , .  = y ( t 2 ) ,  
and hence (3.8) yields equivalently 

t 2  

(3.9) 

which is never true. Contradiction. Q.E.D. 
Using the lemma, it is possible to determine conditions in which 

the trivial solution of (2.2) is uniformly asymptotically stable. For a 
function $1 E C([-T,  01; [ I ) ,  let 

e ~ t * - ' ~ " D ~ T ~ 0 ~ 0 1 1 7 ( ~ z + ~ ~ 1 1 r  d s  < P  p-" [is 

where 11+(~) l lk  is as previously defined. 
Theorem: Assume in system (2.2) that A ( . )  is continuous and 

that there exists a constant ill > 0 with an open neighborhood 
12 (0 E 0)  such that IIF(t. < ) I l k  I i t f ~ ~ < ~ ~ ~ , .  for all ( f ,  <)  E 
( t o ,  (x) x C([-T,  01; 12). Suppose, further, that for all t 2 to 

and p k ( A ( t ) )  is nonincreasing. 
Then: i) the trivial solution of (2.2) is uniformly asymptotically 

stable independent of r ,  and ii) if $1 E C([ - r .  01: ( I ) ,  an estimate 
on the transient response is given by 

^ y k ( t )  = - @ k ( . 4 ( t ) )  - M r 7 1 ( ' ) 7  f 2 t o .  (3.13) 

Pro08 Since .c(t) is right differentiable for t 2 t o ,  (2.2) is 

I 

equivalent to 

s ( t  + 6) - s ( t )  
= A ( f ) s ( t )  + F ( t .  .rl)  + O ( h ) .  

h 

.TIo = w t o  (3.14) 

where 6 > 0 and O(6) --f 0 as 6 + 0'. This implies that for t 2 t o  
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Therefore, 

The left-hand side of (3.16) is the right-hand derivative of I l z ( t ) l l k .  

So we have 

where ( d + / r l t )  denotes the right-hand derivative. Letting v ( t )  = 
I l . r ( t ) l l k  f o r t  > to ,  o ( t )  = l l ~ ~ ( f ) \ l  f o r t  E [to - r ,  t o ] ,  and defining 
f ( t )  = - / f k t A 4 ( t ) ) ,  the lemma can be directly applied (as long as 
2' E C([ - r .  01: ( I ) ) ,  since it has been assumed that for t 2 t o ,  
0 < 31 < - p ~ ( . l ( t ) ) .  This proves ii) of the theorem which, in turn, 
immediately implies i). Q.E.D. 

Remark I :  The above theorem provides stability conditions which 
are similar to the results of [17]. The strength of the theorem, 
however, is that i t  provides an estimate on the exponential decay 
of solutions to (2.2) (which cannot be obtained using the techniques 
of [ 171). These estimates of decay are, however, delay dependent. The 
function -! ( t  ) actually decreases as r increases, as is shown by (3.13). 

Remark 2: In the proof of the lemma, it is shown that if j i  ( A (  f ) )  
decreases, > k  ( t )  will increase. Therefore, the transient response could 
decay extremely quick (faster than exp[-( t  - t o ) ? ( f o ) ] ,  where 
y ( t 0 )  = constant). In the special case when A ( t )  = A and 
F ( t ,  . r t )  = Cy:, f i t ,  .r(t - r ! ) ) ,  and (2 = R", then ? k ( f )  = 
-,x. = constant. and the results of [6]-[9] are obtained. 

Corollary: Assume in system (2.2) that A(.) is continuous and 
that there exists a neighborhood C2 (0 E ( 2 )  such that IIF(t, <)Ilk 5 
.l.I/I<llk,. for all ( f ,  E )  E ( t o .  x) x C([-r .  01; ( 2 ) .  Suppose that 
S U ~ , ~ , ,  [ p i . ( - 4 ( t ) ) ]  < --If < 0, but p ~ ( - 4 ( f ) )  is not nonincreasing 
(as in the theorem). 

Then i) the trivial solution of (2.2) is uniformly asymptotically 
stable independent of 1', and ii) if vi E C([-r ,  01: ( I ) ,  then an 
estimate of the transient response is given by 

where 0 < -r < I p k ( d ( t ) ) l  for all t 2 t o  and 7 is the constant 
solution to 

; = inf [ - p k ( A ( t ) ) ]  - , Z ~ P ~ " .  (3.19) 
,? to  

Pro08 Almost immediate from the proof of the theorem. Q.E.D. 
Remark 3: The above results can be applied to systems not exactly 

written in the form of (2.1) or (2.2). Consider the delay differential 
equation 

where .r, f .  and gz are previously defined in (2.1). Clearly, if 
f is continuously Frechet differentiable with respect to its second 
argument, then (3.20) can be rewritten as 

- - - - - - _ _ _  - _  - -  - -  - -  

0 1 2 3 4 

T i c .  t 

Fig. 1. 
time. 

Il.r(t)llz (solid curve) and its upper bound (dashed curve) versus 

the term in the square brackets, system (3.21) is in the form such that 
the conditions of the theorem may be applied for some sufficiently 
small neighborhood of the origin where the above linearization is 
valid. 

Example: Consider (2.1) with . r ( t )  = [ n i t ) .  . r z ( t ) ]  

Let sl(t) = ccos t  on t E [-a. 01, where r = constant, and let 
x z ( 0 )  = 0. Using the notation of the theorem, define ( 2  C R'z as 
{ T  E (2: I(.rIIk < l } , a n d l e t F ( t .  E )  = f ( t .  [ ( t ) ,  ( ( t - s i n ( t ) - l ) ) .  
Since 0 < sin ( t )  + 1 5 2, we can define the constant I' to be 2. 

Using (2.4) we have 

j L , ( - 4 ( t ) ) = ~ , , ( ; l ( f ) ) =  - t - 3 + e t  

p2( .4 ( t ) )  = --t - 3. (3.23) 

For sufficiently large t ,  j i 1  = p x  are positive functions, and 
therefore to apply the theorem, we must use j t 2 ( A ( t ) )  which is a 
nonincreasing function. Using 1 )  . 112, the condition of the theorem 
that IIF(t, <)I12 < 2 1 1 ( < 1 ( 2 , ,  for all < E II is satisfied for 31 = 1. 
Since (3.1 1) is satisfied for all t > 0, i.e., 

- t - 3 < - 1 < 0 .  t > O  (3.24) 

the trivial solution of this system is uniformly asymptotically stable 
independent of delay. 

Furthermore, in (3.12), ~~L~~~~~ =  SUP^^<,<^, 1 )  [ccoso.  0IT112 = c. 
Hence, if c < 1, then an estimate of the transient decay is given by 

where 0 < ? 2 ( t )  < t + 3 and ? 2 ( t )  is the solution to 

Fig. 1 plots both the left-hand side of (3.25), (solid curve) and the 
right-hand side of (3.25), (dashed curve) versus time for c = 0.99. where .4( t )  = (af( t .  0. O : . . . O ) / a . r ( t ) ) .  By defining F(t, r t )  as 



1676 IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 39, NO. 8, AUGUST 1994 

From this figure, i t  is verified that the right-hand side of (3.25) is an 
upper bound on I l . r ( f ) l l a  for all t 2 0. 

IV. CONCLUSION 

This paper presents sufficient, easily calculable, delay independent 
stability conditions for time varying functional differential equations. 
An estimate on the bound of transient decay is also presented. It is 
shown that this bound depends exponentially on the area underneath 
the curve of the time varying function S k ( t ) .  This function is found 
by solving a time varying nonlinear algebraic equation. 
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Iterative Matrix Bounds and Computational 
Solutions to the Discrete Algebraic Riccati Equation 

N. Komaroff 

Abstract- Bilateral matrix bounds for the solution of the discrete 
algebraic Riccati equation (DARE) are presented. They are new or tighter 
than the existing bound. Computational algorithms to solve the DARE 
follow. 

I. INTRODUCTION 

Consider the discrete algebraic Riccati equation (DARE) 

P = -4’PA - <4’PB(l+ D‘PB)-’B‘Pd + Q. Q = Q’ 2 0 
(1) 

where .A, P ,  4 E R””‘, B E R”‘x‘ ,  [’), I and (2 0) denote the 
transpose, the unit matrix, and positive semidefiniteness, respectively. 
This equation plays a central role in various branches of engineering, 
including signal processing and control theory [ 11. 

It is well known that for (1) a bounded positive definite solution 
P exists with ( . A .  B )  stabilizable, ( . A .  Q) detectable. 

Application of the matrix identity 

( A - ’  + I Y - ’  = s - s I - ( I  + z s L 7 ) - ’ Z x  

allows (1 )  to be written as 

where R = DL?’. This note deals with the version (2) of ( I ) .  
The computation of the positive definite solution P to (2) is of 

some difficulty especially when the dimension tl  of the matrices is 
high. The closer the initial estimate is to the actual solution, the 
less computer time is expected to be used in the solution algorithm. 
Therefore, i t  is important to obtain an accurate estimate of the 
solution. Only one matrix estimate of P ,  a lower bound [8], has been 
presented. The usual estimate is given by bounds on functions of the 
eigenvalues of P,  such as summations that include tr (Pj, the trace 
of P,  and products that include IPI, the determinant of P [5]-[Ill. 

In this note we exploit Loewner’s ordering for matrix-monotone 
and matrix-convex functions [2], [3]  to 

i) derive upper and lower matrix bounds for P of (2) which are 
new or are tighter than the one in the literature 181, and 

ii) develop from these results convergent computational algo- 
rithms to obtain the positive definite solution matrix P to 
(2). 

11. PREL[MINARIES 

The following notation and theorems shall be used, 
Let X , ( X )  denote the ith eigenvalue of a matrix S, i = 

1, 2 , .  . . , n.  All A, (S j are ordered such that their real parts are 
nonincreasing 

R e X , ( S )  2 R e A 2 ( S )  2 . . .  2 ReX,,(.X-). 

We shall use the following results from the Loewner ordering for 
matrix valued functions of symmetric matrices S, I- E R n X 7 ‘  12, 
pp. 462466,  4744751, [3, pp. 4694711. 
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