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Abstract-This paper develops the theory of vibrational control 
Of "lhJear time Systems with arbitrarily large but bounded 
delay. theory for fast Oscillating, differential delay 
equations is presented and then applied to vibrational control. 
conditions B1p given which ensure the e*ne ot parametric 
vibrations that stabilize nonlinear time lag systems. Transient 
behavior is also discussed. Illustrative examples are given which 
Show 1) the f-bfiv O f t h e  theory to hP0-t aPPfiatiOm and 
2, the differences in the presented and the eKisw known 
theory for vibrational control of ordinary differential equations. 

the vibrations depended only on time (and not on the value of 
the state), there no longer was a need to take measurements 
of concentration, thus reducing the cost of the reaction even 
more. For similar reasons, the vibrational control described by 
[61 has many benefits. 

A number of practical, important systems, however, are 
best described by including time delays in their states. In 
particular, if the exothermic reaction vibrationally controlled 
in [5] includes a recycle stream, as in [7], the model must 

I. INTRODUCTION 

IBRATIONAL control is a recently developed nonclassi- V cal control technique that, unlike feedback and feedfor- 
ward, does not require measurements of states or disturbances. 
Instead, zero mean parametric excitation is used as the tool for 
open-loop modification of the plant behavior. For example, 
oscillations in an airplane wing can be introduced by tapping 
the wing in a described manner. To apply vibrational control to 
a combustion system, it may be possible to oscillate (open and 
shut quickly) an intake valve. Because no state measurements 
are required, vibrational control is a viable alternative to 
feedback and feedforward techniques when measurements are 
costly or, for some reason, unavailable. 

Vibrational control of systems governed by linear and 
nonlinear ordinary differential equations has been thoroughly 
discussed [1]-[4]. Application of this theory has been exper- 
imentally verified for: 1) an exothermic irreversible chemical 
reaction in a continuous stirred tank reactor (CSTR) by [5], and 
2) a laser illuminated thermochemical system [6].  For example, 
[5 ]  showed that by vibrating the flow rates in a CSTR, it is pos- 
sible to operate the reactor at (average) conversion rates which 
were previously unstable. This technique eliminated significant 
cooling expenses associated with feedback. Additionally, since 
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include state delays. Population models, combustion models, 
and manufacturing systems, among many others (cf. [8]), also 
have state delays in their models. It is, therefore, of interest to 
vibrationally control such systems. 

Vibrational control of time lag systems is a more compli- 
cated task since the plant is infinite dimensional. For systems 
with small delays, finite dimensional approximations were 
made to approximate the vibrationally controlled delay system 
by an ordinary differential equation (ODE) [9]-[ll]. The 
methods of these papers, though, fail when vibrationally 
controlling general time lag systems, i.e., those systems with 
arbitrary but bounded delay. 

The main difficulty in extending the results of [9]-[ll] is 
the lack of mathematical stability theory for time-varying delay 
differential equations. In particular, the primary mathematical 
tool for analysis used in vibrational control is the method 
of averaging, which is well known for ODE's [12, p. 1861 
and for time lag systems with small delays [13, p. 2151. For 
fast oscillating systems with large bounded delay, however, 
the averaging technique, until recently, was not developed. 
Therefore, to extend vibrational control to general time lag 
systems, it is first necessary to extend averaging techniques to 
a more general class of delay differential systems. This is per- 
formed in [14] (entirely motivated to enable the development 
of vibrational control) and Section 11, which together provide 
the set of required mathematical tools needed for the extension. 

The results given in Section I1 are significant mathematical 
contributions themselves since they extend the method of 
averaging to an extremely broad class of differential delay 
equations. The averaging technique for ODE's has found 
important applications in adaptive control algorithms, basic 
stability analysis, noise control, pulse width modulation, peri- 
odic control, as well as vibrational control, just to name a few. 
The results given in Section II should allow similar extensions 
to delay differential equations. In this paper, however, the 
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applications of these new averaging results will only be used 
to extend the vibrational control technique to a general class 
of time lag systems. 

This is done in Section I11 where vibrational stabilizability 
of nonlinear differential equations is discussed, partial results 
(the linear case) of which are published in [15]. Example 
3.1, dealing with population dynamics, typifies the differences 
between the theory of vibrational control ODE'S and the theory 
of vibrational control of time lag systems by showing that 
some systems are vibrationally stabilizable only when there 
is a delay in the state, i.e., if the delay is assumed zero, 
vibrational stabilizability is not possible. 

Section IV discusses transient behavior of vibrationally 
controlled systems, and Section V proposes the vibrational 
control of an exothermic irreversible chemical reaction in 
a CSTR with delayed recycle stream; Section VI contains 
conclusions. All forms proofs are in Appendix I. 

11. AVERAGING THEORY 

In this section, the mathematical foundations of averaging 
differential delay equations are presented. These techniques 
will be used in subsequent sections to develop the theory 
of vibrational control. As the introduction suggests, however, 
the results of this chapter have broad applications to general 
control theory. 

Suppose f ( s ,  s, y) is a continuous function, f :  R x R x 
R -+ R", where R C R". Let t be a real parameter, and let 
cp(t) E R be a continuous function for t E [ -T,  01. Consider 
the system of differential delay equations for t 2 0 

i ( t )  = f -, z( t ) ,  z(t - T )  ; (: ) 
x ( t )  = cp(t), f o r t  E [ -T ,  0] (2.1) 

along with 

where 

Let x ( t .  E; cp) denote the solution to (2.1), and let y ( t ;  $) 
denote the solution to (2.2). 

Theorem 2.1 [14]: Assume that f ( s ,  ~ 1 ,  z2) has continu- 
ous FrCchet derivatives in (z1, z2) on R x R x R,  0 E R 
and that f is almost periodic in s uniformly with respect to 
(21, z2) in compact subsets of R x R. If y = ys is a hyperbolic 
equilibrium of (2.2), then there are constants p > 0 and EO > 0, 
such that for 0 < t 5 to, there is a unique almost periodic 
solution si@, t)  of (2.1) almost periodic in t uniformly with 
respect to t, where z*(t, 0) = ys and x*(t ,  E )  is the unique 
solution of (2.1) defined on R and remaining within p of 
ys. Furthermore, z*(t ,  E )  has the same hyperbolic stability 
properties as the equilibrium ys of (2.2). 

Theorem 2.1 provides insight into stability properties of 
(2.1) and (2.2). In particular, if y = ys is hyperbolic and 

uniformly asymptotically stable, then the unique, almost pe- 
riodic, solution x*(t ,  t) is also hyperbolic and uniformly 
asymptotically stable. 

To address the transient behavior of vibrationally controlled 
systems, it is also necessary to consider the closeness of the 
solutions s(t, E ;  9) and y(t; +) in neighborhoods outside ys. 
The following two theorems address this problem. 

Theorem 2.2: Assume that for every ( s ,  z1, 2 2 )  E R x R x 
0: 

1) f ( ~ ,  z l ,  2 2 )  is continuous with respect to all its argu- 
ments; 

2) the limit, limT,,&J, f ( s ,  zl, z2)  ds, exists uni- 
formly with respect to ( t ,  21, z2) in compact sets of 
R x R x R ;  

t+T 

3) there exists a constant IC such that 

Then for any L > 0 and any y > 0 there exists an 
EO = to(y, L )  such that for, 0 < E 5 EO 

Ilz(t, E; cp) - y ( t ;  $111 

5 Y+ S U P  IIcp(s) - +(s)ll ekt (2.4) ( sE[-r ,  01 ) 
for any t E [O, L ] .  

Remark 2.1: Let the assumptions of Theorem 2.2 be true. 
Suppose that s(t) and y ( t )  have identical initial functions, i.e., 
in (2.1) and (2.2) cp(t) = $(t) for t E [ -T,  01. Then for any 
y > 0 and any L > 0 there exists an to = ~ ( y ,  L )  such that, 
for 0 < E 5 EO 

(2.5) Il4ti E ;  cp> - Y ( t ,  El l1  I yekL  

for any t E [O, L ] ,  where IC is the Lipschitz constant defined in 
(2.3). Therefore, for any fixed L,  the constant y can be chosen 
to make the bound in inequality (2.5) arbitrarily small for all 
sufficiently small E .  

Remark2.2: As expected, if the initial time t o  # 0, then 
the conclusions of Theorem 2.2, given by (2.4), become 

Ilz(t, E; t o ,  cp) - y(t; t o ,  $111 
I (y + sup ((cp(.s) - $I(~) l ( )e ' (~- '~) .  (2.6) 

Remark 2.3: Instead of assuming that f is almost periodic, 
Theorem 2.2 assumes that the limit in condition 2) exists and 
that f is continuous and Lipschitz. Therefore, the conditions of 
Theorem 2.2 are less restrictive than those of Theorem 2.1. The 
method of [ 141 can, however, be extended to prove the results 
of Theorem 2.2 and Theorem 2.3. The approach of [I41 is to 
use the variation of constants formula in an abstract infinite 
dimensional Banach space, the Sun-Star Banach space. Then 
[14] views the problem as a perturbation of the zero solution. 
We believe, however, that the new proofs presented have many 
benefits over those of [14] because: 1) they are easier to 
understand since, in essence, the main idea of the proof is to 
apply a special form of the Fundamental Theorem of Calculus, 
2) all analysis is kept in R" and therefore, the theorems 

se[to--r, t o ]  
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permit synthesis of vibrational controllers which must be 
implemented in W", and 3) the proofs accurately describe 
transient behavior of a general class of highly oscillating 
differential delay equations and give a bound on the closeness 
of the solutions of (2.1) and (2.2). Of course, since an ODE 
is a special case of a delay differential equation, the proof 
of Theorem 2.2 provides an alternative proof to the classical 
techniques of averaging ODE'S found in references such as 
[121. 

where z(t)  E R", and P 2  are continuously differentiable, 
X = [XI, AS, - , are parameters subject to vibrations, 
and T is the constant positive delay. 

Introduce into (3.1) parametric vibrations according to the 
law X ( t )  = Xo + f ( t ) ,  where XO is a constant vector, and f ( t )  
is an almost periodic average zero (APAZ) vector. Then (3.1) 
becomes 

i ( t )  = Pi(z(t), z(t - T ) )  + &(A0 + f ( t ) ,  z(t)) .  (3.2) 
For vibrational control theory, it is also of interest to exam- 

ine the closeness of solutions z(t, E; cp) and y ( t ;  $) on infinite 
time intervals. To extend the results of Theorem 2.2 to an 
infinite time interval (which can be done if y ( t ;  $) approaches 
a hyperbolic equilibrium point) along with (2.1) consider the 
corresponding averaged delay differential equation, for t 2 0 

Assume that (3.1) has a fixed equilibrium point z, = xs(Ao) 
for a fixed XO (note that z( t )  = z( t  - T )  = zs(Xo) at steady 
state). 

Dejnition 3.1: An equilibrium point zS(Xo) of (3.1) is said 
to be vibrationally S-stabilizable (US-stabilizable) if for a given 
fixed S 2 0 there exists an APAZ vector f ( t )  such that (3.2) 
has an asymptotically stable, almost periodic, solution zS(t ) ,  
0 5 t < 00, characterized by 

Y(t> = f O ( Y ( t ) ,  Y ( t  - TI);  

y(t) = cp(t), for t E [ -T,  01 (2.7) 

where fo is defined in (2.2). That is, consider (2.2) with 
$(t) = cp(t), for t E [ -T,  01, i.e., z( t )  and y ( t )  have the same 
initial functions. The solution to (2.7) is denoted as y ( t ;  cp). 

Theorem 2.3: Assume that f satisfies conditions l), 2), and 
3) of Theorem 2.2 and that f(s, z1, 22) has continuous Frkchet 
derivatives in (21, 22) on R x R x R. Suppose that y ( t ;  cp), 
the solution of (2.7), is defined for all t 2 0 and is contained 
in R with its p neighborhood, p > 0. 

If there is a point ys E R such that limt,, y ( t ,  cp) = ys and 

has all solutions with real parts less than zero, then for any 
77 > 0, there exists an EO =  EO(^) such that, for all E, 

O < E I E o  

IIz(t, E ;  cp) - y ( t ;  cp)II < 77 for all t 2 0. (2.8) 

Remark 2.4: Suppose, in addition to the assumptions in 
Theorem 2.3, f(s, 21,  22) is almost periodic in s, uniformly 

Dejnition 3.2: An equilibrium point 2, ( XO) of (3.1) is said 
to be totally vibrationally stabilizable (t-stabilizable) if it is 
vb-stabilizable with S = 0, and moreover, zs(t )  = const. = 
z,(XO), for 0 I t < 00. 

Often, only one component of zs(Xo) requires or admits 
vibrational stabilization, such as in chemical reactors where 
only one of the two, the rate of conversion or the temperature, 
can be vibrationally stabilized. This practical situation is 
reflected in the following definition. 

Dejnition 3.3: An equilibrium point zS(Xo) = [z~~(Xo), 
... , z n s ( X o ) l T ,  of (3.1) is said to be partially vibrationally 
6-stabilizable with respect to component xis  (A,) if for a given 
fixed S 2 0 there exists an APAZ vector f ( t )  such that 
(3.2) has an asymptotically stable almost periodic solution 
z"( t )  = [z;(t),-..,z;(t)]T, 0 I t < 00 the ith component 
of which is characterized by 

11:: - &(Ao)ll I 6. 
with respect to (zl, z2) in compact subsets of R x R, 0 E R. 
Then by Theorems 2.1, 2.2, and 2.3 it is easy to see that for Throughout this paper it will be assumed that &(A0 + 

and have different initial is a vector function linear with respect to its first argument. 
0 < E 5 E O ,  limt,,z(t, E; cp) = z*(t, E ) .  f ( t ) ,  z ( t ) )  2 P(X0, z( t ) )  + P2(f(t), z(t)). where P2(., .) 

Remark 2.5: suppose 
functions such as (2.1) and (2.2). Then there exists a Then (3.2) can be rewritten as 
constant PO = 77) > 0, sufficiently small such that if 
supsE[-,, ol IIcp(s) - $(s)ll 5 Po, the conclusions of Theorem 
2.3 remain valid. This is an immediate consequence of both 
continuity and the proof of Theorem 2.3. 

111. VIBRATIONAL STABILEABILITY 

A. Problem Statement 

Consider the delay differential equation 

i ( t )  = Pl(Z(t), z(t - T ) )  + P2(X, z( t ) )  

PI: R" x R" 4 W", P 2 :  Wd x Wn 4 R" (3.1) 

i ( t )  = Pl(S(t), z( t  - .)) + P2(f(t), 4 t ) )  (3.3) 

where P ~ ( z ( t ) ,  z(t - T ) )  = Pl(z(t), z( t  - T ) )  +P(Xo, z(t)) .  
and Pl(z1, 22) and P2(-, 21) are assumed to have continuous 
Frkchet derivatives in (21, 22). 

Following the terminology introduced in Bellman et al. 
[2], [3], if Pz(f(t), z( t ) )  = L(t) ,  where L(t)  is an APAZ 
vector, the vibrations are referred to as vector additive. If 
P2(f ( t ) ,  z( t ) )  = D(t ) z ( t ) ,  the vibrations are called lin- 
ear multiplicative, and if P2(f(t), z ( t ) )  = B(t)r(z)  where 
I?: W" --t R", is a nonlinear function, the vibrations are called 
nonlinear multiplicative. In each one of these three cases, 
function P2(., .) has zero average, and it is not obvious why 
(3.3) will have different stability properties than (3.1). 
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It is interesting to compare vibrational control to other types 
of known high frequency control techniques, such as sliding 
mode control [ 161 and dithering [ 171-[ 191. A main difference 
between vibrational control and these techniques is that in 
vibrational control, parameters, A, are vibrated independent of 
~ ( t ) .  The control is, therefore, a function depending only on 
time and is implemented as an open-loop control technique. 
This is in direct contrast with sliding mode control, which is a 
closed-loop control technique that requires current knowledge 
of the state for implementation. 

A dither is a high frequency input which, by sweeping 
back and forth across the domain of the nonlinear elements, 
produces the effect of vibrational linearization [ 171 and thereby 
modifies the performance of the closed-loop feedback system 
by making nonlinearities appear linear on average. Vibrational 
control, on the other hand, has the ability to maintain non- 
linearities in the system. Additionally in [18], [19], dithering 
is thoroughly examined from an inputloutput point of view. 
These papers further explain how nonlinearities of a closed- 
loop system are attenuated by a dither; however, these papers 
clearly show that the dithering technique fails for linear 
systems. Vibrational control (which is applied to open loop 
systems, unlike a dither) is effective in the case of linear 
systems [ 151. 

Qualitatively, vibrational control can be thought of as the in- 
troduction of zero mean parametric oscillations into a dynam- 
ical system to achieve a desired response (such as stabilizing 
effects). For example, (3.1) may have unstable equilibrium 
z,(X,), but (3.2) may have a hyperbolic uniformly asymp- 
totically stable, almost periodic, orbit zs ( t )  which vibrates in 
the vicinity of z,(Ag).  Of course, it would be preferable that 
(3.2) have the same fixed equilibrium point, z,(A,), as (3.1) 
(this is t-stabilization). This is not always the case, however, 
since the right-hand side of (3.2) is time varying and almost 
periodic. Therefore, the idea of vibrational stabilization is to 
determine vibrations f ( t )  such that unstable equilibrium point 
z,(Xo) in (3.1) bifurcates into a stable almost periodic solution 
whose average is close to zs ( t ) .  The engineering aspects of the 
problem consist of 1 )  finding the conditions for the existence 
of stabilizing vibrations, 2) determining which parameters, A, 
are physically possible to vibrate, and 3) finding the actual 
parameters of vibrations that ensure the desired response. 

B. General Case 

To formulate the conditions for v6-stabilizability of (3. l), 
consider the equation 

Assume that for each initial condition, % ( t o )  = 20, (3.4) has a 
unique almost periodic solution h(t ,  c), where each c = c(z0) 
is a constant vector in R". Then, there will always exist 
a constant m, m > 0, such that Ilh(t, c1) - h(t ,  c2)11 5 
mllcl - c2(I for any cl ,  ca. 

Introducing the substitution 

z ( t )  = h(t ,  y ( t ) ) ,  z( t  - r )  = h(t - T ,  y(t - r ) )  (3.5) 

into (3.3) for t 2 0 yields 

Introduce the equation 

(3.6) 

Let z ,  denote an equilibrium point of (3.7) and 

be the linearization of (3.7) at z ,  with 

Lemma 3.1: Let Z, E R denote an equilibrium point of 

1) there exists an APAZ vector f ( t )  such that the general 
solution, h(t ,  c ) ,  of (3.4) is almost periodic for any 
c E R; 

2) both Y ( t ,  r,  p, 71) and Po@, 71, r )  are continuously 
differentiable for all (p, 7 )  E R x 0. 

(3.7). Assume that 

i) Then for any 6 > 0 there exists €6 > 0 such that 
for any E E (0, €61, the equation 

has an almost periodic solution f ( t )  satisfying 

ii) If, in addition to assumptions 1) and 2), there 
exists a constant y > 0 such that the equation 
given by 

Det [SI  - Mo(y) - M ~ ( y ) e - ~ ~ ]  = 0 (3.10) 

has all the roots with negative real parts (assump- 
tion 3)), then there exists an €0 > 0 such that y s ( t )  
exists and is locally asymptotically stable for any 
E E (0, €01. 

Theorem 3.1: Let the assumptions 1), 2), and 3) of Lemma 

i) v6-stabilizable by vibrations f ( t )  = (1/61)g(t/e1), 
3.1 hold. Then z,(Ao) of (3.1) is 

tl = r /y  = constant if A 
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a) 0 < €1 5 min [to, €61, where EO and €6 are defined 
and are guaranteed to exist for system (3.9) by 
Lemma 3.1. 
There exists an equilibrium point z, of (3.7), 
z ,  E a, characterized by h(t ,  z,) = x,(Xo). 

b) 

ii) t-stabilizable if it is wb-stabilizable, and in addition, 
(3.9) has an equilibrium point ys E 0 characterized by 
y, = z,, and h(t, y,) = const. = x,(Xo). 

Remark3.1: The condition that h(t ,  z,) = x,(Xo) means 
that equilibria of (3.1) and (3.7) are related through the average 
value of substitution (3.5). This is clearly not always the case. 
When this condition does not hold, however, wb-stabilizability 
can still take place. 

Remark 3.2: Theorem 3.1 reduces the problem of wb- 
stabilizability of (3.1) to the following procedure. First, a 
search is made for an APAZ vector f ( t )  so that (3.4) generates 
an almost periodic general solution h(t, c) such that all roots 
of (3.10) have Re(s) < 0. (Newton-Raphson techniques 
can be used to solve for the dominant roots of (3.10).) 
Second, the existence of stabilizing vibrations is established 
if r /y 5 min [to, €61. The actual stabilizing vibrations are 
obtained by rescaling the magnitude and frequencies of 
vibrations f ( t )  as f ( t )  = ( l / t l )g( t / t l ) .  

A difficult part of this procedure is to implement the search 
for vector f ( t ) .  For special classes of time lag systems, [15] 
shows the precise manner to introduce stabilizing vibrations. 
For general time lag systems, however, such as (3.1), a 
priori knowledge of how to determine f ( t )  is not yet known. 
Additionally, in practice, the engineer is constrained by being 
able to insert vibrations only into some of the parameters of 
the system (see Example 3.1 and Section V). This makes the 
problem of solving for f ( t )  even more difficult and, therefore, 
f ( t )  is usually determined by trial and error. 

Remark 3.3: Analytical estimates of €0 and €6 are usually 
extremely conservative, Therefore, the values of EO and €6 are 

Remark 3.6: In the case of vector additive vibrations, 
& ( f ( t ) ,  x ( t ) )  = L(t)  and h(t, c) = u(t)  + c, where 
u(t) = J L(t)  dt. Therefore, substitution (3.5) becomes 
x ( t )  = u(t) + y ( t )  and x( t  - r )  = u(t - r )  + y ( t  - r ) .  Vector 
additive vibrations are incapable of t-stabilizing a system, 
since x s ( t )  = u(t)  + ys, i.e., x”(t)  is always nonconstant and 
almost periodic. 

Example 3.1 (Harvesting of a Single Natural Population): 
The problem of harvesting renewable resources (game, fish, 
plants, etc.) is to determine a harvesting strategy which max- 
imizes a sustainable yield and does not cause the population 
of resources to become extinct. 

Here, we discuss the vibrational control of the classical one 
specie population model (discussed in [SI, [13]) with a constant 
harvest (see [20, page 271) 

Here, N ( t )  E R is the population of a single specie, such as 
fish in a hatchery, a, K, r,  Y are positive constants, where 
a represents birth rate, K represents the carrying capacity of 
the environment, r is the positive constant delay taking into 
account a finite gestation period, time to reach maturity, etc. 
and Y is the yield which is to be maximized (harvesting rate). 

Obviously, if the harvesting yield, Y, is chosen too large 
when the population of the specie is low, the specie will die out 
(perhaps as the whale population in the 1970’s). As a matter 
of fact, if Y is chosen sufficiently large, N + 0 in finite time, 
even when r = 0, since N = 0 is not an equilibrium. The 
largest Y which does not cause the population to die out is 
called the maximum sustainable yield and is denoted as Ymax. 

Introduce zero mean oscillations into Y so that (3.11) 
becomes 

- (Y + $sin (t/t)) (3.12) 

best determined by the numerical simulation of system (3.9). 
which simply means that species N is being harvested at Remark 3.4: For small delays, r = E T O ,  0 < E 5 E O ,  
a periodic rate instead of at a constant rate. The goal of the stability of (3.8) is not dependent on a transcendental 
vibrationally stabilizing (3.11) is to choose p and t in such characteristic equation, and Theorem 3.1 essentially reduces 
a manner that Y,,, can be increased so that the population to Theorem I of Bentsman, et al. [I I], i.e., wb-stabilizability 
of the specie does not die out. Parameter Y was chosen to of x,(Xo) of (3.1) is guaranteed for any 6 > 0 if there 
vibrate because it is the most easily accessible parameter. exists APAZ vector f ( t )  = (l/t)g(t/e), such that polynomial 
Theoretically, the birth rate or the carrying capacity of the 

Det - - M1(rO)l is Hurwitz and h(t’t’ = environment could be vibrated, only such vibrations would be 
xS(Xo), since e--eros M 1 - for a rigorous proof Rouche’s extremely difficult to implement. Theorem would be applied. The delays r = tro still cause 

In this case, substitution (3.5) corresponding to substitution changes of the order O(1) in the location of the roots of 
(A.35) in Appendix I becomes Det [SI - Mo(r0) - MI(ro)] via the elements of matrices MO 
N ( t )  = Y ( t )  + Pcos (tit), and Mi.  

Remark 3.5: It is not yet known whether vibrational control 
is applicable to systems with time varying or distributed delay. 
While it may be possible to extend the averaging theory of 
Section I1 to such systems, a difficulty arises in determining 
a substitution, similar to (3.5), which transforms the original 
system to another system whose right-hand side has an average 
which exists uniformly for all time. Unless such a substitution 
can be found, the stability analysis techniques of this paper 
are not valid. 

N ( t  - r )  = y ( t  - T )  + pcos (“, - r ,  (3.13) 

which transforms (3.12) into 

$(t)  
a 

a[y(t)  + PCOS (tlE)] - --[y(t) + pcos (tit)] 

. [ y ( t  - r )  + @cos (F)] - Y. (3.14) 
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1 02 are capable of t-stabilizability. This is shown in the following 
section. 

1 0 0  

- C. Linear Multiplicative Vibrations: 
2 098 P2(f(a z(t)> = D(t ) z ( t )  
I Theorem 3.2: Assume that: 

1) Pl(0, 0) = 0 and p2(A,  0) = 0 in (3.1); 5 E 096 - 
x m 
a 2) there exists a sufficiently large set R c R"(0 E R) such 

that q)  and Pz(A, /3) are continuously differen- 
riable for all (0, q)  E R x 0; 

3) there exists an APAZ matrix D ( t )  such that a fundamen- 
tal solution matrix @(t)  of k ( t )  = D(t ) z ( t )  is almost 
periodic; 

4) there exists a constant, y > 0, such that (3.7), with 

0 94 

0 92 

0 90 
0 0  0 2  0 4 1 8  0 6  0 8  1 0  

Po(z(t), 4 t  - T I ,  7 )  Beta  

Fig 1 Stability-instability boundary for system (3 1 1 )  wlth vlbratlons 
(3 12), T = 1 4  and E = 0 445. @-'(.)Pl(@(~)y(t), @(T - y)y(t - r ) )  d r  

The corresponding average of (3.14) is given by 

2K 
(3.15) 

Suppose the delay, r ,  is equal to zero. Then it is easily 
seen by (3.15) that the maximum sustainable yield, Yma, 
actually decreases as /3 increases, since COS(T/E) = 1 when 
r = 0. However, if T and t are chosen in such a manner 
that C O S ( T / ~ )  < 0, then it would appear that Y,,, actually 
increases. This is verified by computer simulation. 

For the purposes of simulation, in (3.12) let Q = 1, K = 4, 
r = 1.4, t = 0.445, and N ( t )  = 4 for t E [-1.4, 01. 
Since COS(T/E) M -1, the theory suggests that increasing 
the amplitude, /3, should increase the average maximum yield, 
Y,,,. Fig. 1 plots Y,,, versus /3. For /3 = 0, simulations 
show Y,,, = 0.939, which is clearly marked by the bold 
horizontal line. Fig. 1 also shows that increasing p, increases 
maximum yield. For /3 = 0.418, Y,, is calculated to be 
0.942, an increase in yield of 0.3%. This value is important 
since at /3 = 0.418, ( / 3 / ~ )  M 0.942 = Ymax, which indicates 
the maximum /3 permitted if there is a constraint on Y 
being positive, i.e., never adding population to the specie. 
For /3 > 0.418, this simply means that species are at times 
being added to the population, instead of being removed. This 
may represent, for instance, periodically moving fish from one 
hatchery to another. 

When there are no constraints on 0, Fig. 1 shows substantial 
gains of the maximum yield for /3 > 0.418. The shaded region 
in Fig. 1 gives the simulated stability area of (3.12), i.e., 
Y 5 Y,,,. It is seen that for /3 = 1.0, Y,,, = 1.01, which is 
a far more significant gain in yield. 

Remark 3.7: For linear multiplicative vibrations, function 
P2(., .) takes the form P . ( f ( t ) ,  z ( t ) )  = D(t ) z ( t ) .  In this 
case, function h, defined in (3.1), is given by h(t, c) = @(t)c,  
where @(t)  is any fundamental matrix solution to k ( t )  = 
D(t)z ( t ) .  Therefore, substitution (3.5) is z( t )  = @ ( t ) y ( t )  and 
z( t  - r )  = @(t - ~ ) y ( t  - r ) .  Linear multiplicative vibrations 

has linearization about z, = 0 given by (3.8) with the 
property that Det [SI - M0(y) - M1(y)e-'"] = 0 has 
all solutions with Re(s) < 0. 

Then 
i) there exists an €0 > 0 such that for any t E (0, 601, the 

trivial solution of the equation 

Y(t) = @--I ( 5 )  Pl (@ ( 5 )  @ ( 5 - 7) Y ( t  - r )) 
(3.16) 

is asymptotically stable; 
ii) the trivial solution of (3.1) is t-stabilizable by linear 

multiplicative vibrations l / q D ( t / t l ) z ( t ) ,  €1 = r /y  if 
€1 5 €0.  

Remark 3.8: An example using linear multiplicative vibra- 

A 

tions will be discussed in Section V. 

IV. TRANSLENT BEHAVIOR 

A. Problem Statement 

Section I11 describes the method of stabilizing equilibria 
of delay differential equations by introducing vibrations into 
parameters. Vibrational stabilizability describes changes in 
local attractivity in the vicinity of equilibria, i.e., local behavior 
as t 4 m. For control purposes, it is also of interest to 
analyze the nonlocal system behavior at every time moment 
from t = 0, i.e., the transient behavior of the system. Analysis 
of such trajectories is a difficult task since vibrationally 
controlled systems are composed of a fast oscillatory trajectory 
superimposed on a slow trajectory. A comparison of the slow 
trajectory of the oscillatory system with the trajectory of the 
corresponding system without vibrations reveals the qualitative 
changes in the system behavior induced by vibrations. 

Consider (3.1) with continuous initial function, p( t )  = R"; 

k( t )  = R ( z ( t ) ,  x( t  - T ) )  + &(A, x ( t ) ) ;  
z ( t )  = cp(t) f o r t  E [ -T,  01. (4.1) 

1 '  ' 
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Introducing into (4.1) parametric vibrations according to the 
law X ( t )  = XO + f(t). for t 2 0 and using the notation of 
Section 111 yields 

?(t) = P1(z(t), z(t - + PZ(f(t), 4 t ) ) ;  
~ ( t )  = cp(t) f o r t  E [-r, 01 (4.2) 

i.e., (3.3) with initial function cp(t). 
Let h(t, t o ;  z(t0)) denote the unique solution to the ODE 

i ( t )  = PZ(f(t), z( t ) ) ;  (4.3) 

Assume h is almost periodic in t and define a constant m 
such that for any c1 and cz 

z(t)  = z(t0) at t = to. 

Ilh(t, t1; c1) - h(t, tz; 411 5 mllc1 - czll. 

Introduce into (4.2) the substitution 

z( t )  = h(t, -r; y(t)), z(t - r )  = h(t  - r, -r;  y(t - r ) )  
(4.4) 

for t 2 0. This is a well-defined substitution since h is 
continuous for all t E [-r,  CO). Then (4.2) becomes 

y(t) = $(t) f o r t  E [-r, 01 (4.5) 

where $(t) is given by the relationship cp(t) = h(t, -r; $(t)) 
for t E [-r, 01. 

Since P 2  is continuous over all time and has continu- 
ous partial derivatives, it follows that, for any given pair 
( t o ,  z(t0)). the function h(t, t o ;  z(t0)) is uniquely defined 
for all t E (-CO, CO). Therefore, if constants to, t l  and 
function cp(tl) are known quantities, the relationship cp(t1) = 
h(t1, to; $(tl)) will uniquely define $@I). This argument 
holds true for every t l  E [-r, 01, and therefore the relationship 
cp(t) = h(t, to; $(t))  will always uniquely define the initial 
function $(t) in (4.5). The continuity of $(t)  follows since it 
is known that cp(t) is a continuous function and that h(t, .; .) 
has continuous dependence on its initial conditions. 

Starting time t o  can be chosen arbitrarily since for any 
constant m, $ ( t )  will be uniquely defined by the relation 
cp(t) = h(t, m; $(t)) for t E [-r,  01. In this work, initial 
time is chosen to be t o  = -r for intuitive reasons (this notation 
clearly indicates that (4.3) needs to have a unique solution for 
t 2 -r, although by assumption it has a unique solution for 
any t E (-CO, CO)). 

.i.(t) = Po,(z(t), z(t  - r ) ,  r ) ;  

Now consider the average of (4.5) 

z ( t )  = $(t) f o r t  E [ -T,  01, 

Let y(t; $) and z(t; $) denote the solution of (4.5) and 
(4.6), respectively. Introduce 

- l T  
z(y(t; $1) = >i%,l h(T, -r;  y(t; $1) dT (4.7) 

which represents the averaged trajectory of vibrationally con- 
trolled system (4.2). If y(t; $) and z(t; $) are close to each 
other, T(y(t; $)) can be approximated by 

- l T  
x ( z ( t ;  $)) lim - h ( ~ ,  -r; z ( t ;  $ ) ) d r  (4.8) 

where T(z ( t ;  $)) will represent the approximate averaged 
transient behavior of the vibrationally controlled system (4.2). 
Comparison of z(t; cp) of (4.1) with T(z ( t ;  $)) reveals the 
change of global transient behavior of (4.1) due to parametric 
oscillations. 

Definition 4.1: For any given fixed S > 0 and any L > 0, 
an APAZ vector f ( t )  is said to introduce a &global dynamic 
equivalence between systems (4.2) and (4.6) if 

T d l  

Ilz(y(t; $1) - +(t; $))I1 < 6, t E [O, LI, 
V$(t) E R c R" 

where R is an open subset of R". 

B. General Case 

parameter. Consider the delay differential equations 
Let y be a positive constant and let E be a positive real 

y(t) = $(t) for t E [ -T,  01 (4.9) 

i ( t )  = Po,(z(t), z ( t  - r ) ,  y); z(t) = $(t) for t E [-r,  01 
(4.10) 

where Y, and PO, are defined by (4.5) and (4.6), respectively, 
and $(t) E R, R c R", is continuous for t E [-r, 01. Denote 
the solution of (4.9) as &(t; $) and the solution of (4.10) as 

Lemma 4.1: Let R be an open subset of R", and let y be 

1) h(t, to; $ ( t o ) ) ,  as given in (4.3), is almost periodic in t ;  
2) Y,(s, y, y(t), y(t-r)), defined in (4 .3,  is continuous in 

all arguments and there exists a positive constant k > 0 
such that for (s, y1, y2) E R x R x R 

q t ;  $1. 
a fixed positive constant. Assume that 

I I Y ( S ,  7,  Y1, Y Z )  - Y ( s ,  77 Y L  YL?>11 
I kEEllYi - Y;lL v s  2 0;  

3) uniformly with respect to (t, y1, yz) in compact sets of 
R x R x R there exists a limit 

1 t+T 
A 

P O , ( Y l ,  Y Z ,  7 )  = $mTL Y ( t ,  Y, Y1, Y2)dt. 

Then for any (T > 0 and p > 0, however small, and any 
L > 0, however large, there exists an E, > 0 such that, for 
0 < E I Eo, 
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3.5 

1) I lGy( t ;  +) - Zr( t ;  +)I1 < ~7 for t E [0, L] ,  provided 
Z,(t: $J) together with its p vicinity belongs to R for 
all t E [0, L]; 

2) whenever the averaged equation (4.10) has an asymptot- 
ically stable equilibrium point z ,  E R, then l&(t; $) - 
Z,(t; +)I1 < for t 2 0, provided that Zr ( t ;  $) together 
with its p vicinity belongs to R for all t 2 0 and that 
limt-mZ,(t; $) = z,. 

Theorem 4.1: Let assumptions l), 2), and 3) of Lemma 4.1 
hold. Define €1 = r/y, where y and r are previously defined, 
and assume 0 < €1 5 E,, where E ,  is defined and guaranteed 
to exist in Lemma 4.1. Then 

i) vibrations f ( t )  = l/c1g(t/tl) induce a S-global dynamic 
equivalence between (4.2) and (4.6) for t E [0, L] ,  
L > 0, provided that z ( t ;  $J), the solution of (4.6), and 
its p vicinity belongs to R c R” for t E [-T, L];  

ii) whenever (4.10) has an asymptotically stable equilib- 
rium point, z ,  E RI, where RI c R” is the domain of 
attraction of z,, vibrations f ( t )  = l/Elg(t/tl) induce 
a 6-global dynamic equivalence between (4.2) and (4.6) 
fort 2 0, provided that ~ ( t ;  $) and its p vicinity belongs 
to RI for t 2 -T. 

Remark 4.1: Theorem 4.1 reduces the problem of 6-global 
dynamic equivalence of (4.2) and (4.6) to the search for an 
APAZ vector f ( t )  with sufficiently small period that induces 
a closeness of trajectories of (4.9) and (4.10). If r / y  < E , ,  

the search is complete; E,, is best determined by numerical 
simulation. 

Remark 4.2: Since Z ( z ( t ;  $)) is easy to compute, Theorem 
4.1 offers a constructive method for analysis of the transient 
behavior and the oscillation induced transitions of vibrationally 
controlled system (4.2). 

Remark 4.3: In the case of vector additive vibrations, 
h(t ,  - T ;  z ( - r ) )  = u(t) - U(-.) + z( t ) ,  where u(t)  is 
defined by Remark 3.6. Substitution (4.4) becomes z( t )  = 
U (  t )  -U( - r )  + y(t) and z( 1 - r )  = u(t - r )  - U (  - r )  + y ( t  - T ) .  

Defining w ( t )  = y(t)-U(-.) and w(t -r )  = y(t--T)-u(--T), 
the same transformation as described in Remark 3.6 is 
obtained. Clearly, when u(t) has zero average, for vector 
additive vibration, z(w(t;  4)) = :(z(t; +)) = z ( t ;  +). 

Example 4.1: Suppose in Example 3.1, a = 1, K = 4, 
r = 1.4, Y = 0.92, ,L? = 0.4, and E = 0.445. Let N(t, E; 0)  
denote the solution of (3.11) where N(t) = O(t) = 4 for 
t E [-1.4. 01. Let z ( t ;  $J) denote the solution of (3.15) with 
z ( t )  = $( t )  = 4 - ,L?cos(t/t) for t E [-1.4, 01. Fig. 2 plots 
N ( t ,  E :  e), the oscillating curve, and x(z(t; $)) = z(1; +) 
versus time for t 2 0. It is seen that t = 0.445 induces a 
6-global dynamic equivalence between (3.12) and (3.15) for 
S 2 0.5. 

Remark 4.4: In the case of linear multiplicative vibrations, 
h(t ,  -r:  Z ( - T ) )  = T( t ,  - T ) ~ ( - T ) ,  where T( t ,  - T )  is the 
state transition matrix given by T( t ,  - r )  = @(t)@-l ( - -~) ,  
and @(t)  is the fundamental matrix solution described by The- 
orem 3.2. Since there will always exist a constant n x n matrix, 
C,  such that T( t ,  - ~ ) y ( t )  = @(t)Cy( t )  = @(t)w( t ) ,  where 
w(t) = Cy(t), substitution (4.4) can always be written as 
z ( t )  = @(t)w( t ) .  which is the same transformation described 

A 

7- ~ 

4 9  

~ ’\ 

Fig. 2. Population N ( t )  versus time of a single species harvesting equation 
with vibrations (3.12), T = 1.4 and t = 0.445, along with its approximate 
average z ( t )  (3.15) versus time. 

in Remark 3.7 and Theorem 3.2. For linear multiplicative 
vibrations, if substitution z ( t )  = @(t)w( t )  is used, then 

- l T  z (z ( t ;  +)) = .(t)z(t; $) where q ( t )  = @(t)  d t .  

v .  VBRATIONAL CONTROL OF A CSTR 
WITH DELAY IN THE RECYCLE STREAM 

This chapter discusses the vibrational control of a first order, 
irreversible, exothermic chemical reaction in a CSTR with 
delayed recycle stream. Vibrational control of such reactions 
when there is no recycle has been thoroughly investigated both 
theoretically [2], [21] and experimentally [5]. It is important 
to consider the effects of recycle since it often times has 
noticeable influence on the CSTR dynamics. 

Reactor recycle not only increases the overall conversion, 
but also reduces the cost of a reaction and is, therefore, 
very popular in industry. To recycle, the input specie must 
be separated from the yield, then travel through pipes after 
separation. This “total time” of recycle introduces delays in 
the states and thus complicates the dynamics. 

The benefits of vibrational control of exothermic reactions 
in a CSTR are given in [5], [21]. Frequently, feedback in a 
CSTR is expensive [5] or slow [21]. Hence, “nontraditional” 
control techniques, such as vibrational control, are often used. 

The purpose of this section is to give conditions under 
which a first order, irreversible reaction in a CSTR can be 
partially vibrationally stabilized and to show the inducement 
of a S-global dynamic equivalence between the vibrationally 
controlled system and its corresponding average. 

A. Model 

Consider the first order, irreversible, exothermic reaction 
A + B, carried out in a well mixed CSTR. Suppose, at the 
input, that the fresh feed of pure A is to be mixed with a 
recycle stream of unreacted A with recycle flow rate (1 - X)q. 
Let t be the constant of time the output exits the CSTR. Then, 

I ’  
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according to [7], the material and energy balance equations are 
d A  Vx = XqAo + q(1- X)A(t - a )  

dT 
dt VCP- = qCP[XTo + (1 - X)T(t - a )  - T( t )]  

+ V(-AH)Ko exp { - &;)}A@) 

- U ( T ( t )  - Tw) (5.2) 

where A( t )  = cpl(t) and T ( t )  = cp2(t)  for t E [-T, 01, 
A(t)  is the concentration of chemical A, T( t )  is temperature, 
and the remaining constants: a, A, q. Ao, V ,  KO, -E/R,  
C,  p, ( -AH) ,  U ,  and T, are all positive and defined in 
Appendix 11. The constant X varies from zero to one, with 
zero corresponding to total recycle and one corresponding to 
no recycle. 

Typically, (5.1) is reduced to dimensionless form using the 
notation 

ff 
T = -  

(- AH)Ao E 
CpTiR ’ r ’  

D, = KOrexp{-yo}, B = 

(5.3) 

Without loss of generality, assume that TO = T,. Then (5.1) 
and (5.2) in dimensionless variables become 

where xi( t )  = &(t) for t E [-T, 01, i = 1, 2. The state 
zl(t) corresponds to the conversion rate of the reaction, 
0 5 q ( t )  5 1, and 22(t) is the dimensionless temperature. 
Clearly, we must restrict X # 0, or the right-hand side of both 
(5.4) and (5.5) become invalid. Constants B, 0, D,, 70 ,  and 
T are all positive. 

To further simplify calculations, assume that 70 is large 
(70 + 00). Computer simulations show that this is an accurate 
approximation when ^/a is about 20 times greater than 2 2 ( t ) ,  

1.0 I 

Fig. 3. 
number. 

Steady-state conversion of an exothermic reaction versus Damkohler 

which is often the case. The case when 70 is finite poses 
no additional difficulties, but makes calculations tedious. The 
techniques are the same, as [5] shows. 

Under these assumptions, (5.4) and (5.5) become 

Frequently, it is helpful to plot the locus of reactor steady 
states, qS, versus the Damkohler number D, which is shown 
by the taller curve in Fig. 3. For fixed D,, Fig. 3 shows how 
it is possible to have three steady states. In this case, [7] has 
shown that the upper and lower values of zls correspond to the 
steady states at upper and lower temperatures and are locally 
asymptotically stable, while the middle temperature gives an 
unstable steady state. 

It is of interest to attempt to vibrationally control the middle 
steady states of qs. Often, the upper steady states, which have 
the best conversion rate for the reaction, run at a temperature 
Coo high for a CSTR to operate. If a middle steady state could 
be stabilized, it may produce the best conversion rate for the 
reaction under a temperature constraint. 

B. Vibrational Control of a CSTR 
Introduce vibrations into (5.1) and (5.2) so that the in- 

put flow rate and output flow rate oscillate identically, i.e., 
consider (5.1) and (5.2) with vibrations 

d A  
dt V- = XqAo [I + :sin ($)I + q(1 -  X)A(t - a )  

- V K ~  exp { - } ~ ( t )  -E 
RT(t) 

(5.8) 
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? j z ( t )  = (;+~)yz(t)+ (; - l)exp{ccos(?) 

- - T )  

+ BD,  exp{exp{ccos(t/€>}y2(t)) 

[ :. (31 d T  
d t  VCp- = qCpXTo 1 + -sin 

+ qCp(1-  X)T(t - a )  - q c p  

. [ 1 + :sin ($ )] T ( t )  + V (  -AH)Ko 

. exp { s } A ( t )  - U ( T ( t )  - Tw). (5.9) . (exp{-.cos(t/r)) - Yl(t)) (5.15) 
RT(t) 

with y;(t) = Gi( t )  = exp{-ccos(t/r)}O;(t), i = 1, 2 for 
t E [-r, 01. Let fo denote the average of f ( t ) ,  i.e., The vibrating of flow rates is commonly practiced in industry, 

so the oscillations are technologically feasible. Both the input 

that the volume of the CSTR remains constant, which is a 
requirement of using model (5.1) and (5.2). (As in Example 
3.1, it may be possible to insert vibrations into parameters 
other than the flow rates, such as Ao, TO, KO, A, etc.; these 

f ( t )  d t .  
flow rate and the output flow rate are identically vibrated so l T  fo = JLtFJo 

Noting that up to 0(c4):  
1) exp {ccos - ccos ( t / c ) }  = 1 + $[I -COS (T/E)I, 

2 )  exP{exP{ccos (S)}yz(t)} = exP{Yz(t)> 
methods are not examined, however, since the vibrating of 
flow rates is the most technologically feasible and since, as will 
be shown, the vibrating of flow rates successfully stabilizes 

middle steady states.) 

as in (5.8) and (5.9) are written as 

3) exp{exp {ccos (%)}yz(t)}exp{-ccos(t/t)} 

= exp{yz(t)}[l+ f ( 1  - 1Jz( t )  +Y22(t))I7 (5.16) 

the corresponding average of (5.14) and (5.15) is given as, up 

In dimensionless variables, (5.6) and (5.7) with oscillations 

+ (; - l )xz( t  - T )  

+ BD,"XP{~Z(t)I(l - Zl(t)) (5.11) 
Z Z ( t )  = - (; + P )  Z Z ( t )  + (; - 1) 

. (1 + ;[I- cos (T/t)l Z g ( t  - ~ ) + B D ,  exp{zZ(t)} 
with x;(t) = &(t)  for t E [-T, 01, i = 1, 2. 

Equation (3.4) corresponding to this case is 

C 2  

4 . (1 - Z l ( t )  + -[I - Z Z ( t )  - Z l ( t ) Z Z ( t )  &( t )  = -csin ( t )z;( t )  (5.12) 

and, therefore, the substitution given in Appendix I by (A.42) 
is 

+ d ( t )  - Z l ( t ) 4 t ) l )  (5.18) 

zi(t) = exp{ccos(t/t)}exp {-ccos(T/~)}w;(~) .  (5.13) 

As Remark 4.4 suggests, define y;(t) = exp{-ccos(T/c)} 
w;(t) and substitute (5.13) into (5.10) and (5.11) to obtain 

?jl ( t )= $yl(t)+ ( + - l ) e x p { c c o s ( G )  

- .cos( : )Jy l ( t  - T )  

where z i ( t )  = G;( t )  for t E [ -T,  01. 
By the procedures of Section 111, it is seen that for fixed 

t = €1, sufficiently small, (5.10) and (5.11) are partially w6- 
stabilizable since steady state xlS is only being stabilized. 
Steady-state characteristics of zlS are shown in Fig. 3 for 
B = 7, p = 0.5, r = 0.9425, and c = 0.55. Fig. 3 shows 
the partial vS-stabilization of an unstable equilibrium point 
z,(D,o = 0.0908) with respect to its component xls(Dao = 
0.0908) = 0.63. Since a conversion of 0.63 corresponds to 
an upper - steady state zlS for the averaged equation (where 
zlS xi), as shown in Fig. 3, the conversion rate of 0.63 is 
an asymptotically stable steady state for zls(Dal  = 0.10372). 
Fig. 4 verifies partial wb-stabilization by plotting x l ( t )  and 
z l ( t )  versus time for €1 = 0.3 and X = 0.8. 

I '  
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1 Proof of Lemma A.l :  Immediate from Lemma 1, page 461 
0.9 of [22], upon noting that f is assumed continuous in its first 

argument. Q.E.D. 
Lemma A.2: Suppose conditions 2) and 3) of Theorem 2.2 

are true. Then for every (t ,  21, 22) E W x R x R 

Ilfo(z1, z2) - f o ( 4 ,  4)II I ICmaxllzi - 411 

0.8 

0.7 

5 0.6 

(0 
64.3) 

where fo(z1, 2 2 )  is defined in (2.2) and IC is the same Lipschitz 
constant as defined in (2.3). 

Proof of Lemma A.2: Using (2.2), (2.3), and basic inequal- 

i= l ,  2 
0.5 

z 
0 0.4 

0.3 

0.2 ities 

0.1 

0 

IlfO(Z1, z2) - f O ( &  4)ll 
0 5 10 TIME 15 20 25 = 1lJLim;L [ f ( &  z1, 22) - f(A, 4 ,  4 ,  dX1 I/ T 

Fig. 4. 
input flow rate and its approximate average for T = 0.9425 and E = 0.3. 

Conversion versus time for an exothermic reaction with vibrating 

VI. CONCLUSION 

This paper shows that vibrational control of nonlinear 
time lag systems is a feasible alternative to classical con- 
trol techniques when measurements are either unavailable or 
expensive. Averaging theory is developed and then applied 
to vibrational control. Conditions for v6-stabilizability and t- 
stabilizability are discussed. In addition, it is shown that for 
a fixed, sufficiently small period of oscillation there exists a 
6-global dynamic equivalence between the vibrating system 
and its corresponding average. 

Two important applications of the theory are discussed. The 
example of harvesting a single natural population shows that 
vibrational control improves yield. It is also noted that if 
the delay in the state is assumed to be zero, vector additive 
vibrations have the effect of reducing the maximum yield. A 
second example is presented which shows that vibrating the 
input flow rate of the exothermic reaction, described in Section 
V, stabilizes a previously unstable steady state. This steady 

l T  5 lim - ~ ~ m a x l l z ;  - z:(ldX = kmaxllz;  ill. T - m T L  2=1,2 z=1,2 

Q.E.D. 

We are now ready to prove Theorem 2.2: 
The solutions to (2.1) and (2.2) are given respectively as 

Z ( t ,  6; cp) = cp(0) 

y(t; $) = $(O) + JLfo(a(7;  $L Y(. - r ;  $1) d r .  (A.5) 

Construct a piecewise constant function in R, Z ( t ) ,  so that 

(A.@ Y 
3k L llx(t, 6 ;  cp) - ?(t)II i -; t E [-r, LI. 

Consider now the following equality which is always true 
state is often the preferable point of operation. 

- fo(z(.r, E ;  cp), 4 7  - r ,  E ;  cp))l d r  APPENDIX I 

Proof of Theorem 2.2: To prove Theorem 2.2, we must use 

Lemma A.1: Assume y1 and 7 2  are constants. If 
the following two lemmas. = b'[f(:, 47,  6; cp),47 - r ,  6 ;  cp) 

11 d7- 
- f (S,  Z(T) ,  Z(7 - r )  

l T  JLETL f(X, Y1,72) 2 fO(Yl,Y2) (A.1) + 1' [f(:, 2 ( ~ ) ,  Z(T - r ) )  - f o ( Z ( ~ ) ,  Z(T - r ) ) ]  d r  

-k L [ f O ( Z ( T ) ,  Z(7 - r ) )  - f O ( z ( 7 ,  6 ;  91, .(. - r ,  6 ;  p))1 d7. then for any piecewise constant function Z(t ) ,  any constant 
L1 > 0, and any constant /3 > 0, there exists an €1 = 
c1(/3, L1) such that for 0 < E 5 (A.7) 
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Likewise, by (A.3) of Lemma A.2 and by (A.6), for any t 2 0 

IlfO(z(t), S ( t  - .)) 

Proof of Theorem 2.3: For a fixed R > 0, let B R ( ~ ~ )  = 
{y : ~ ~ y - ~ s ~ ~  < R}. Under the assumptions of Theorem 2.3, ys 
is a locally uniformly asymptotically stable equilibrium point. 

(A.9) By definition of uniform asymptotic stability, there exists 
an 7 0  > 0 such that if 

Lemma A.1 guarantees that for any t E [O, L ] ,  there exists an 
t o  = t 0 ( y / 3 ,  L )  such that for 0 < t I to 

( ~ ( t ;  cpl), y ( t ;  c p 2 ) )  E Bvo(ys)Bvo(ys) 
for t E [tl - T ,  t l ] ,  tl > 0 

then, for any 0 < 77 I 770 I p, there is a 6, 0 < S < 77, and 
a Tog such that whenever 

Hence, for 0 < 6 I €0 and t E [0, L] where tl 2 0 and (cpl, cp2) E R x R are initial functions, 
possibly different, then 

By Lemma A.2, for any t E [0, L] and any (2 ,  y) E R x R 
Choose a time, t = L1, large enough so that y(L; cp) E 

where in (A.14) we used the fact that IIcp(0) - $(O)II 5 
supsE[-,, Olllcp(s) -$(s)[l. By Gronwall's inequality (see [13]) 

SUP I M S ,  E; cp) - +)I1 
s E [ - r ,  L] 

which clearly implies (2.4). Q.E.D. 

I l4"j ,  E ;  cp) - Y(aj; V)ll = 6. (A.22) 

Choose t 3  = min{aj} and t 4  = max{aj}Vj ( t3  may equal 
t4). 

Since t3 is the first instant in time when (A.22) is true, by 
(A.19) and (A.22) 

t E [L1 + T ,  t 3 ) .  ('4.23) 

Likewise, since t 2  is the first instant of time when (A.21) is 
true and t 4  is the previous value of time closest to t 2  such that 
(A.22) holds, the following inequality will always be true: 

Ilz(t, E;  'p) - y(t; P)II < 8, 

0 < 6 5 Il.(t, Z; 9) - y(t; V)ll I rl t E [ t 4 ,  t21. ('4.24) 

Let t5 = L1 + T ,  and redefine in (2.7) initial time t 5  = to. 
Let c(t; t5 ,  x) denote the solution of (2.7) for initial function 
C ( t ;  t 5 ,  x) = x ( t ,  Z; cp) for t E [ t 5  - T ,  t 5 ] .  Using (A.19) and 
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the fact that y ( t ;  cp) E B6p(ys) for t E [ t 5  - T,  t 5 ] .  it is seen 
that for all E, 0 < E 5 €1 

are the same. Since assumption 3) guarantees local stability of 
(3.7), local stability of (3.9) is also guaranteed. Thus, setting 

s s  
2 2  

f ( t )  = (l/t)g(t/c), where E is a positive constant < - + - = S t E [ t 5  - T,  t5]. (A.25) 

Therefore, g( t ;  t 5 ,  z) E Bh(ys). Since by (A.19), 
IlY(t; t 5 ,  z) - y(t; P)ll 5 s /2  < 6 for t E [ t 5  - r1 ts], 
(A.17) guarantees that 

= Pi(.@>, z(t - .I) + P2 (til( :), z ( t ) ) .  (A.33) 

Since I?.(., .) has been assumed to be linear in its first 
argument, (A.33) may be rewritten as 

(A.26) 

and by (A.18), there exists a constant To(S /2 )  > 0 such that '@) = P1(z(t), z( t  - + tP2(g( :) 7 
(A-34) 

s 
I lY( t ;  t 5 ,  z) - y ( t ;  cp)ll < 2, t 2 t 5  -+ TO( i). (A.27) Introduce into (A.34) substitutions 

Let t6  = t4 + T0(6/2). Then by Theorem 2.2 and Remarks z( t )  = h 7 z(t-.) = 
2.1 and 2.2, there exists an €2 = ~2(6/2 ,  t6 - t5) such that, 
for all E, 0 < E 5 

(A.35) 
where h(t, c) is the general solution of (3.4), to obtain 

Replacing . / E  by y yields system (3.9). Therefore, if vibrations 
f ( t )  and a constant 7 can be found such that all the assump- 
tions of Theorem 3.1 hold, then by Lemma 3.1, system (3.6) 
has a solution ys (t) with the properties satisfying assertions i) 
and ii) of Lemma 3.1. Further, if r /y = cl 5 EO and 5 €6 

also, then replacing in (3.6) y by ./cl and setting E = €1, 
yields system (A.36) with E = €1 which by Theorem 2.1 has 
asymptotically stable almost periodic solution y " ( t )  E R with 

s 
(A.31) Ilv"(t) - ~ , l l  < E, t 0, Z, E R. (A.37) s s  

k+61 E; cp) - Y(t6; (P)II < 5 + 5 = 6- 

Choosing €0 = min[tl, €21, (A.31) contradicts (A.24) since 
t4  < t 6  < t 2 ,  i.e., 2 will never exist if EO = min [cl, €4. 

Since h(t/E, c) is an almost periodic function defined for 
all t 2 0, there exists a constant m > o such that 

Q.E.D. 

given by 
Proof of Lemma 3.1: Noting that the average of (3.9) is 

for y " ( t ) ,  z ,  E R. By taking the time average of (A.38), we 
obtain 

i ( t )  = PO(Z(t), Z ( t  - .), 7); 
PO(Y(t), Y ( t  - TI1 7 )  

satisfies for 0 I t < 00, which proves i). 
Suppose now that y"(t) = y, = z ,  = constant and 

h(t/E, y,) = h(t/t, 2,) = z,(Xo). Then m = 0 in (A.38) and 
the conditions of Definition 3.2 hold and (3.1) is t-stabilizable. 

Q.E.D. 

I lY"(t) - Zsl l  < 6, if€ E (0, E h ] ,  Vt L 0 

and b) for sufficiently small E, 0 < E 5 E O ,  hyperbolic stability 
properties of y ( t )  = y " ( t )  of (A.32) and z ( t )  = z, of (3.7) 
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Proof of Theorem 3.2: The proof follows almost directly 
from Lemma 3.1 and Theorem 3.1. Substitution (A.35) in the 
proof of Theorem 3.1 which transforms (A.34) into (A.36) is 
given by 

and 

Ilh(t, t o ;  y(t, €1; $)) - h(t ,  t o ;  z ( t ;  $))I[ 
< mlly(t, € 1 ;  $) - z ( t ;  $)I1 (-4.46) 

for (y(t), ~ ( t ) )  E R x R, where m is the positive constant 
guaranteed to exist since h(t ,  t o ;   to)) is almost periodic. 
Now choose y, €1, and E, such that c = 6/m, then by (A.45) 
and (A.46) 

.(t) = a( .!)y(t), .(t - r )  = - - - Y(t - 

(A’41) 
Now, Lemma 3.1 and TheoLem 3.1 can be applied and, noting 
that Po(0, 0, y) = 0 since Pl(0, 0) = 0, the proof is complete. 

(: T) 
Q.E.D. 

Proof o f k m m a  4.1: The proof of i) is immediate from 
Theorem 2.2, and the proof of ii) follows immediately from 
Theorem 2.3. Q.E.D. 

Proof of Theorem 4.1: The proof follows the proof of The- 
orem 3.1, up to and including (A.34). Introduce into (A.34) 
substitutions 

which proves statement i). 
When the condition of ii) holds, equilibrium z ,  must have 

a domain of attraction so that $ E 01 implies z ( t ;  $) E 
D ,  V t  2 0, where D 3 01 is some bounded region in R”, 
and limt-w ~ ( t ;  $) = z,. 

Under these conditions, Lemma 4.1 implies (A.44) is valid 
for L = m, and the proof of ii) follows. Q.E.D. 

where h(t, t o ;  .(to)) is defined in (4.3), to obtain 

) .PI h -, -; y(t) h - - -, -; y ( t -  ( (: ,r ) (: : ,r 
y ( t )  = $(t)  for t E [-r, 01 (A.43) 

where $( t )  is assumed to be uniquely defined by the relation 
cp(t) = h ( t / ~ ,  - r / q  $( t ) )  for t E [-r, 01. 

is defined 
and guaranteed by Lemma 4.1, then the solution of (A.43) with 
E = €1, denoted as y ( t ,  €1;  $) satisfies (by i) of Lemma 4.1) 

Assuming y = r/c1 and 0 < €1 < E,, where 

where (T is the arbitrarily small fixed positive constant defined 
in Lemma 4.1, L is an arbitrarily large constant, and z ( t ;  $) 

APPENDIX I1 

xhemical concentration of chemical specie A. 
-reactor temperature. 
-recycle delay time. 
-reactor volume. 
-coefficient of recirculation. 
-feed flow rate. 
-feed concentration. 
-reaction velocity constant. 
-ratio of Arrhenius activation energy to the gas 
constant. 
4ensity. 
-specific heat. 
-heat of reaction (positive). 
-heat transfer coefficient times the surface area of 
reactor. 
-feed temperature. 
-average coolant temperature in reactor cooling coil. 
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