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Abstract 

This paper shows how recycling delays affect the dynamics of cer- 
tain types of exothermic reactions incontinuous stirred tank reactors. 

1. INTRODUCTION 

In the last forty years, there has been a great deal of literature pub- 
lished discussing the dynamics of continuous stirred tank reactors 
(CSTR) [l-71. The breakthrough work by &lous and Admundson 
[ 11 developed methods of calculating criteria for stability and insta- 
bility of exothermic reactions. Several of these papers also include 
the effects of a recycle stream on the reactors dynamic response. 

Inorder to implement arecyclestream for aCSTR, theoutput stream 
of the reactor is sent through a separation process (perhaps acentri- 
fuge which spins the output chemicals so quick that they segregate 
by mass). Then the unreacted reagents are returned into the CSTR 
by travelling through pipes (see Figure l).. Because recycling re- 
duces waste of reagents, and hence the cost of reaction, its use is 
widespread in industry. For example, recycling is almost always 
used in the manufacturing of nylon 66 or in the oxidation of cyclo- 
hexene to KA (a mixture of ketone and alcohol of cyclohexene), 
among many other reactions. 

A difficulty withmuchof theliteratureon recycling is that themodel 
almost always assumes no time delay in the recycle line [1,6,7], i.e. 
the separation process and theretum time is assumed instantaneous. 
While this assumption may make theoretical analysis simpler, it is 
highly unrealistic. In order to recycle, the output must be separated 
from the input, then travel through pipes after separation. This pro- 
cess requires a finite amount of time and will introduce a delay into 
the model since both the concentration of the reagents and the tem- 
perature in the reactor depend on some time in the past. 

In practice (industry), it is quitecommon to ignore therecycle delay, 
and to use the standard ordinary differential equation models [ 1,6,7]. 
Clearly, if this is being done, then the recycle delay can often have 
negligible effects on the dynamics of the reaction. However, there 
has bcennodocumentedliteraturethatexplainsanalytically why this 
is the case. In this particular problem, thc thcory lags behind the 
known applications. In some sense, the problem has already been 
solved: process control engineers understand that the delays due to 
recyclecan, at times, beneglected, buttherehasnever been atheoret- 
ical explanation as to why this is true. It is the purpose of this paper 
tobridgethegapfrompractice to theory (notfromtheory topractice, 
as is usually the case), and give a partial explanation as to why the 
delay due to recycle can at times be ignored. Scction I1 briefly de- 
scribes the model to be discussed, while Section In discusses thedy- 
namics of the system. Conclusions are given in Section IV 

II. MODEL 

Qualitatively, thematerial balanceon anyreactantspeeies in aCSTR 
can be given as 

Change of moles = Moles entering - Moles leaving - Moles 
within CSTR CSTR C.WR reacting 

Likewise, the energy balance equations are given as 
'?his work is  partially supported by an Alcoa Foundation Science Support 
Grant 

Change of heat = Heat entering +Heat generated - Heat removed 
within CSTR CSTR by reaction fiom CSTR. 
In the case of recycle, the moles (heat) entering the CSTR depends 
on thenumberofmoles (amountofheat) atsometimeinthepast,due 
to the delay in the recycle stream. 

In this paper, we will only consider a special type of recycle - that 
inwhichallchemicalspecie attheoutputarerecycledatandidentical 
rate. This is the most basic type of recycling strategy [ 1.6,7] and can 
be found in most undergraduate chemical reactorkinetic texts [7]. 
In this case, for a CSTR with instantaneous recycle flow rate of 
(1-k)F. the aboveconcepts yield the following differential equations 
[3,7] for a single chemical reaction involving n chemical specie: 

- a$( cl(9,  ... cn(t)v U t ) )  
- dT = L [ A T '  + (1 - A)T(t) - T(t)]  
dt vpc, 

U +- (- A H )  R(c,(t), ... ,c,(t),T(t)) - -(T(t) - T,) 
PCP W P  

j = 1,2, ... , t z  (1) 
where c,(t) corresponds to the concentration of the j t h  species, T(t) is 
the temperature of the reaction, and aj is the stoichiometric coeffi- 
cient of thejthspecies and is positive for reactants and negative for 
product. The coefficient h is the recirculation coefficient, 0 5 h 
1, where h= 0 corresponds to total recycle and h =- 1 corresponds to 
no recycle. Reference [l] defines the remaining constants. 

Suppose that the total time to recycle is equal to rand time, t, is the 
instant in which the output exits the CSTR (before entering thesepa- 
rator). Then a more accurate material and energy balance equation 
should be 

@=L[ ATf + (1 - I)T(t - r) - T(t)]  + dt VpC, 

j = 1,2, ... , n  (2) 
In the special case when r = 0, (2)reduces to (1). It is understandable 
as to why most discussions on recycle [1,6,7] do not include the ef- 
fects of the delay: the nonlinear ordinary differential equation (1) 
now becomes infinite dimensional. However, as this paper shows, 
because of the special form of the system, analysis of (2) is not too 
difficult. 
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Figure 1. CSTR with recycle stream. 

E. LOCAL STABILITY AND TRANSIENT BEHAVIOR 

While there are several techniques that are used to analyze the stabil- 
ity properties of (1). the simplest and the most common technique is 
to examine the linear variational equation (the linearization) of (1) 
about asteady state. I t  tums out thatthis is also the simplestmethod 
in determining the stability properties of (2). The remaining part of 
this section willexplain threestatements which begin to giveinsights 
on the dynamics of (2). 

1. The steady states of (1) are the same as the steady states of (2) .  

This statement is the easiest to understand. Inorder to determine the 
steady states of (l), the left hand side of (1) is set equal to zero, and 
variables q ( t )  andT(t) areset equal to constants Cjs and&,respective- 
ly. Then n+l nonlinear algebraic equations are obtained with a cor- 
responding n+l unknowns. (It is permissible thiit there exist multi- 
ple solutions to these n+l equations.) 

In order to determine the steady states of (2), almost the sameproce- 
dure is used: the left hand side of (2) is set equal to zero, and n+l 
nonlinear algebraic equations are obtained by setting T(t) = T(t-r)  
= Ts as well as setting c,(t) = q(t - r )  = c,,. Since T(t - r) = T, and 
c,(t-r)= q,,thesetofequationsneeded tosolve for thesteady states 
of(2)arethesameasthoseneeded tosolvefor(1). Hence, thesteady 
states of (1) and (2) are the same. 

2. Suppose that by examining the linearization of(1) about a steady 
state x, = [ c l s , q s ,  ... ,cn,,TJT it isdetermined lhatx, is locallyas- 
ymptotically stable, i.e. the linearizarion of ( I )  aboutx,, which is in 
the form of Bx(t) = A Bx(t), hasmatrixA such that all the eigenva- 
lues ofA have negative realparts. Thenx, is also a locally asymptot- 
ically stable steady state of (2). no matter how large the delay, r, is. 

Theoretically, this is a surprising result, since delays are often 
thought of as destabilizing. However, for aCSTK with (identically) 
delayedrecycle, the sizeof the delay does not affect thelocal stability 
properties of its steady states. This begins to explain what process 
control engineers have known for quite some time - recycling de- 
lays often do not cause instability. Of course, the delay may still 
cause increased oscillation in the transient response and perhaps a 
slower response time. This issue is addressed in statement 3, below. 
In general, though, steady state operation for chemical reactors is 
more important than transient analysis. So, even though solutions 

Figure2. Intersection ofthecurves y = (T - a 
Y = -  F( l  - ’) (e-” - 1) for different values of 
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decay slower due to therecycle delay, once the system settles, opera- 
tion of the CSTR runs smoothly. 

3. Suppose thatx, is a locally asymptotically stable steady state and 
assume that solutions of ( 2 )  approach x, as t -+ -. Then, as the 
delay in ( 2 )  increases, the &cay rate of the solutions will decrease. 
In particular, as r increases, the dominant eigenvalue of the lineari- 
zation of ( 2 )  approaches the imaginary axis. 

Suppose that the linear variational equation of (1) aboutx, is given 
by dx(t) = A dx(t). Suppose further that the dominant eigenvalue 

of matrix A is given by s = a f iw, where i = f i  and 01 c 
0. Thenthedominanteigenvalueofthelinearizationof (2) aboutthe 
same steady state is given by s = U f iwwhere w is the same as 
before and Q is given by the relation 

a=a+- (e-” - 1).  AsFigure2shows,thesolutionto 
this equation is the intersection of the l i e  y = U - a and the curve 

y = -(e-“ - 1). As r becomes larger, Q approaches 
zero. Hence, the real part of the dominant eigenvalue of the linea- 
rized system approaches the imaginary axis and the rise time of the 
system will decrease. 

F(l - A )  

F(l - A )  
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