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Abstract~ Vibrational control is a method of modification of dy-
namic properties obtained by introducing zeromeanoscillations into
asystem parameters. This paper shows that by introducing oscilla-
tions into the flow rates of a continuous stirred tank reactor with
delayed recycle stream, itis possible to operatereactionsin the vicin-
ity of previously unstable steady states.

1. INTRODUCTION

Vibrational control is a recently developed open loop control tech-
nique that, unlike classical methods of feedback and feedforward,
does not require measurements. Instead, parametric oscillations are
introduced into a system in order to induce a desired dynamic re-
sponse. Because no state measurements are required, vibrational
control is an alternative to feedback and feedforward techniques
when measurements are costly or for some reason unavailable.

The theory of vibrational control for ordinary differential equations
has been developed in {2,3]. In[1-3], the authors describe a hypo-
thetical application of vibrational control to an irreversible exother-
mic chemical reaction in a continuous stirred tank reactor (CSTR)
and show that by vibrating the flow rates ina CSTR, it is possible to
theoretically operate the reactor at (average) conversionrates which
were previously unstable.

Operation of a CSTR at or near unstable steady states is an area of
importantresearch. Often, these unstable steady states offer optimal
yield giventechnical constraints, such as amaximum operating tem-
perature of areactor [5,6]. Inmany cases, afeedback cooling system
is used to stabilize previously unstable steady states [4-6]. Howev-
er, cooling systems require measurements of states which, at times,
require large delays to obtain. Additionally, for exothermic reac-
tions, feedback cooling systems have considerable energy expense.
Obstacles such as these are why new control techniques for chemical
reactors are important to develop.

Vibrational control offers a way to avoid many of these above diffi-
culties. Because itis an open loop control technique, state measure-
ments are not needed and cooling costs are not incurred. In[5] the
theoretical postulations of vibrational control of chemical reactions
[1-3] were experimentally applied to exothermic reactions in a
CSTR. It was shownthat by appropriately inserting periodic oscilla-
tions into the flow rates of a CSTR it is possible to operate at an as-
ymptotically stable periodic orbit in the vicinity of a previously un-
stable steady state. The results of [S] are significant because they
provide experimental verification of benefits of vibrational control
which had been only previously hypothesized.

The purpose of this paper is to show that vibrational control is an ef-
fective method of stabilizing chemical reactions with delayed re-
cyclestream. A conjectureto this problem is discussed in[8], where
preliminary results are given. Theresults of this paper willshow that,
for exothermic reactions in a CSTR with delayed recycle stream, it
is possible to operate in the vicinity of previously unstable steady
states of high conversion. Furthermore, it is possible to give recom-
mendations on the choice of amplitudes and frequencies of vibra-
tions which ensure desired properties of a vibrationally stabilized
system. ‘

* This work is supported by an Alcoa Science Foundation Support Grant,
30-02160787, a Mississippi State RIP Award 250210607993 and a Mississippi State
Research Development Grant 25-061449-903.
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Section 2 of this paper develops the theory of vibrational control for
differential delay equations. Section3 givesthe model of the chemi-
calreaction under consideration and discusses conditions for stabil-
ity of steady states. Section 4 describes the vibrational control of the
chemical reaction described in Section 3 and provides numerical
simulations to support the theory.

2. VIBRATIONAL CONTROL

This section further develops recent advances in vibrational control
theory for systems with time delay. Additional discussion of these
techniques can be found in [8].

Consider the general cléss of delay differential equations
1) = Py(x(@),x(t = ) + Py, x(1)
x(t) = 60 re[-r0],
where x(1) € R, P 1 R" X R* - R and P, : R4 X R" — R,
are continuously differentiable, 4 = [A;,4,, ... ,A,]7 are parame-

ters subject to vibrations, r is the constant positive delay, and 6(¢)is
the continuous initial function defined ont & [— r,0].

2.1)

Introduce into (2.1) parametric vibrations according to the law
Ay = Ao + E—llf(t/sl), where Ais a constant vector, &, is aposi-

tive fixed constant, and f{#) is an almost periodic average zero
(APAZ) vector so that (2.1) becomes

30) = By, 50 = 1) + Pl + 211/, 50)

x(t) = 6(t) te[-r0]. (2.2)

Assumethatforafixed A = 4y, equation(2.1)has anequilibrium
pOi]’l[ Xy = xs(}»o) = [xu(/lo)» LA} xru(x'o)]T .
DEFINITION 1. An equilibrium point x,(1,) of (2.1) is said to be

vibrationally 8-stabilizable with respect to component x;(Ao)if for
agiven fixed d = 0 there exists an APAZ vector f{¢) such that (2.2)

has  asymptotically stable almost periodic solution
X' = X[, ... ,xy(), theith component of which is character-
ized by
T
Im-xdol= o %= Jim 4| xiod.
1w 1]

In order to make analysis simpler, this paper will always assume that
Polho + 3-1(/),30) = P, X(O) + & Py(f(t/e), x(1)) (where

P,(-, +)isavector function linear with respect to its first argument).

Then, (2.2) can be rewritten as

50 = Py X — 1) + A Po(f/e). 20, @3)

where  Py(x(0),x(t ~ 1) = Pyx(®),x(t = 1) + P(Lo,x(1)), Py(z1,25)
and P,(+,z,) are continuously differentiable in (z;, z,),and the ini-
tial function, 6(f), remains unchanged.

Along with (2.3), consider the “generating equation” given by

1) = Py(f@x(®) . (2.4)



Denote the gene
h(t,c) = [h(tc), .., A
Introduce substitution x(

ay()
= Y(t/e1, Y0, ¥(

Now, consider the corre
equation

) = [Bh(t/sl, N0

() = P
where z(f) = y(¢) for ¢

Pylcy,cyr/ey)

QD

= g L[]8
_TRTL )

€,,is the positive constan

t
is given by the rela[id

ral solution of 24) as
#(t, )], where ¢ € R"isaconstantvector.
1) = h(t/g,, y(?)) into (2.3) to obtain

-1
J Py(he/e 1, YO0, HEL 360

- r,r/ey).
sponding “averaged” delay differential

2.5)

B(Z(t)v Z(l - r)v r/sl)
e [—nr0]

(2.6)

1
Py(h(t,c,), h(t — r[e,, cy))dt,

previously given, and initial function y(t)
n 6(t) = h(t/e,, @) for t € [— r,0],

where 0(#)is the initial function for x(t)defined in (2.1). Itisnottoo

difficult to show that y(t)
ont € [—r0].

THEOREM 1. Supposet
uniformly asymptotically

exists and is a unique continuous function

hat, for some fixed positive &,,(2.7) has a
stable equilibriumpoint z;, € Q C R .

Suppose, further, that h, defined in(2.4) is almost periodic int, and

that

T
%, o) = lim % j hy(t, z;)dt .
O 0

Then there exists ang,

2.7

> 0, sufficiently small, such that, if

0 < g, < &, equilibrium point x,(A) of (2.1) is vibrationally

S—stabilizable with resp
(1/e)f¢t/ey) -

ect to component x;(A,) by vibrations

Let x(t;0), y(t; ), and 2(f;v) denote the solutions to (2.3), (2.5)
and (2.6) respectively, where 8(¢) is as given in (2.1) and p(¢) is

uniquely determined by

the relationship () = h(t/e,,y(t)) on

t € [~ r,0]. By construction, x(t;0) = h(t/e,, y(t; y)) .

Introduce

1 T
%9) = Jim 1 [ Ao

which represents the ith
vibrationally controlled s

0
component of the averaged trajectory of
ystem (2.3). If y(t; 4) and z(¢; y) are close

to each other, X,(y(f; 9)) can be approximated by

1 T
%ay) = Jim [ hat o0,
0

where X,(z(¢; ) represen

s the approximate averaged transient be-

havior of the ith component of the vibrationally controlled system

(2.3). Comparison of x(

3 0) with X(y(#; 9)) and X;(2(t; ) reveals

the change of global transient behavior of (2.1) due to parametric os-

cillations.

DEFINITION 2. For any fixed ¢ > 0 and any L > 0, an
APAZ vector (1/¢&,)f(¢/€,)is said to induce a 6—global dynamic

equivalence between (2.3

| %t 9)
for all y € Q, where 2

and (2.6) with respect to component i if
= XGy) < o, € [0,L),

is an open subset of R" .

THEOREM 2. Let Q be an open subset of R" . Assume that

(1) Y(sy@,y¢t -
all its arguments and the

r), r/e,), defined in(2.6), is continuous in
¢ exists a positive constant K > 0 such

that for (5,¥1,Y) € R X 2 X Q

1Yy yar/e) = Y55 5pr/e) | Kmax |y, = 5[

(2) Uniformly with respect to
(4, Y1, ;) in compact sets of P x 2 x L, there exists a limit

+T
o1
Py ypr/e) = lim 7 j Y(s,y1, ¥, 7/€1)ds ;
t
(3) System (2.6) has an asymptotically stable equilibrium
point, z, € ,, where Q, C Q is the domain of attraction of zs.

Then for any 0 > 0, there exists an £, = £,(0) such that, for
0 < & < gg,vibrations (1/€,)f(t/£,) induce a 6—global dynamic
equivalence withrespect to any component i between (2.3) and (2.6)
for all t = — r provided z(t;v) and its p vicinity belongs to
L fortz —r.

3. IRREVERSIBLE REACTIONSIN A CSTR WITHRECYCLE
STREAM

The material and energy balance equations for an irreversible unimo-
lecular reaction with a recycle stream in a CSTR are given as

Véut) = AFcpp + (1 — DFcy(t — d) — Feu(®)
~ VEeesexp{ s} (3.1a)
VPC,T(0) = pC,FIAT, + (1 — AT¢ — d) ~ T()] |
- (- AH)VK, exp{#(g} — UT®) — T, (.1b)

where c,(t) = 0,() and T(t) = 0,(¢t) for t € [~ d,0], ca(t) is
the concentration of chemical A, T(#) is the reactor temperature, A is
the coefficient of recirculation and varies from zero to one, with zero
corresponding to total recycle and one corresponding to no recycle.
The remaining constants are defined in [1]. Consider the standard
change of variables

Car = €A TW - T, car = 6,00
() = '}!‘E"—'- x(0) = "T—I(EET). 6, = "A‘f_c:_,
~ ! ! f
0,00 S0 - t v
= ’ thew = 7 > T =71
2 T (_1411)%/5 :’1
D¢=Kotcxp{-y},8=—-—12-—, r=17,
CrpT/R T.-T
ga ol y oL . = ____Z(L)
VCop RT, 2% T, \RT;
Then, (3.1) in dimensionless variables becomes
. 1 1
X = - I-x,(t) + (I - l)xl(t - r)
x(t)
+ Daexp {10/ (1 + )} — 1)
(3.2a)
i) = = G+ B + G — Dt = 1)
x,()
+ BDgexp 1,0/ (1 + K1 — x,(0) + fra
(3.2b)
where x(f) = 0(t) for t € [— r,0] .Thestatex;(t) corresponds
to the conversion rate of the reaction,

0 < x,() = 1, where x,(t) = 1 indicates 100% of chemical A
has been tumned into product and xy(¢} = 0 indicates that no products
have been formed. The variable xo(t) denotes dimensionless temper-
ature. Clearly, (3.3)is valid only when A 5% 0. Constants B, B, D,,
Y. and r are all positive.

3.2. Steady State Analysis

For fixed B, B, 7, x)., the steady state plotof x;; versus D,, the Dam-
kohler number, can be given by one of two curves, shown in Figure
1. The S shaped curve shows that for fixed D,, it is possible to have
three steady states. The second curve, corresponding to a low
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Figurel. Two possible plots for xi5 vs. D, for (3.2).

conversion rate, gives only one steady state for fixed D,. Often, itis
desired to have an S shaped curve because it allows for possibilities
of operating at higher steady state conversion. In order for multipie
steady states to appear, the following condition [1,9] must be satis-
fied:

A1 + B + /)l
L+ 48— @/l + B+ /vl
Due to the special structure of (3.4), the results of [7] show thatif a
steady state of (3.4) is stable for r = 0, thenitis stable forallr = 0 .

This is a useful result because it permits us to apply the well known
stability conditions-of [9], which were derived for r = 0, 10 (3.2).

B> =B'. (33)

In the special case when r = 0, the linearization of (3.2) about x; is
givenby x(t) = Ax(t). Therefore, by [7], x; of (3.2) is asymptotical-
ly stable provided that Def[A] > 0 and Tr[A] < O .Usingtheter-
minology of [1}, definetheset D = [JFI, : Det[A] = O}. Similarly,

definetheset § = {xl, ci[A] = 0]. In[9], itis shown that the det—
instability area coincides with the negative slope part of the steady
state characteristicin Figure 1. Hence, in the case of multiple steady
states, the middle steady state will always be unstable, since it lies in

the set D .

Denote D = {x;, € [m;,m,)}, T = {x,, € [sy, sz]] . The rela-
tive positions of m; and s; depend on the relationship between B and
B and is further discussed in [9].

4. VIBRATIONAL CONTROL OF A CSTR WITH RECYCLE

The main contribution of this section, and hence the paper, is that it
proposes the first realistic vibrational control application to a true
physical system whose model has state delay. Many such examples
have been discussed for systems of finitedimension, and in fact, have
eventually led to experimental application of the proposed tech-
niques. However, for delay systems, very few examples can be
found {12,13].

It is of interest to attempt to vibrationally control the middle steady
states of x1s. The upper steady states, whichhave the bestconversion
rate for thereaction, oftenrun at too high atemperature for the partic-
ular application. In some reactions, high temperatures cause the
products (output) to decompose further, creating undesired yield. In
other reactions, high temperatures cause reactants and products to
become viscous and cancause damage to the reactor or cancreate in-
consistent flow in pipes. More commonly, however, there could be

safety limitations on the operating temperature of the reactor. Any
of these cases may make it impossible to operate at any upper steady
state. Therefore, there is often aneed to operate the reactor at one
ofthe middle steady states, which may give the highest conversion
rate (an ultimatecontrol goal) under various temperature constraints.
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Figure 2. Typical plots of 7}, vs . D, for different values of ampli-
tude of vibration and fixed r/e.

However, as Section 3 discusses, this middle steady state is always
unstable.

By properly inserting periodic vibrations into the input and output
flow rates of a CSTR, vibrational control allows periodic operation
of the reactor in the vicinity of previously unstable steady states.
Since the technique isopen loop, noneof the cooling costs associated
with feedback occur, and likewise, the difficulties in obtaining on—
line measurements is effectively eliminated.

4.1 Vibrating Input and Output Flow Rates

Introduce vibrations into (3.1) so that the input flow rate and the out-
put flow rate oscillate identically, i.e. consider (3.1) with vibrations
as

Vet) = AFcyill + af@i)] + (1 — AYFc,(t — d)
— FI1 + daf(ot)c(t) — VKqoea() exp{'kr;.'('tE—) } (4.la)

VPC,T(0) = PCHFAIT, + af(@i)] + PCF( — WT( ~ d)

— PCFIL + akf(@dIT() + V(~ AHKexp { R‘—T(% }

- U(T(l) - Tc)' (411’))

where f{ t) is an almost periodic zero mean scalar function with fre-
quency o and “a” is the amplitude of vibration .

Vibrations, f{«¢) may assume different forms, such as sinusoidal,
square wave, etc. For simplicity of calculations, it will always be as-

sumed that the vibrations are symmetric such that u(f) = J fAdr
1

has the property that . uw'(®)u/(t — r) = 0 fori + j = odd and any
r=0.

Itisnow necessary to impose physical constraints on (4.1). In partic-
ular, we must require that minaf(wt) = — 1 . Ifthis werenottrue,

t20
then the first terms in the right-hand side of (4.1a) and (4.1b), respec-
tively, would become negative. This would correspond to the re-
moval of fresh feed from the reactor, which is not possible. This re-
striction  limits the effectiveness of predicting vibrational control;
however, the constraint should not be ignored as was originally done
in the first postulation of this problem [8].

Suppose that @ = % and a = %, where ¢ is a small positive

constant. Then, in dimensionless variables, (3.2) with vibrations as
in (4.1) becomes

5O = = [+ EE/ORE + i - 10 - 1)

2001 - xay @29

+ D, exp {x,(1)/(1 + v
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0 = = [+ B+ Ee/Ok® + B - i -

+ D, exp (%,

which 1s in the form of (2.
1 and 2 can be applied.

0/t + 20— 1) + pra.

(4.2b)
3), and hence, the techniques of Theorems

Equation (2.4) in this case is X{f) = af(tx{f) i = 1,2 . Let

u(t) = - Jf(/l)dl .The

<

using the substitution

x() = exp{au(t/e) }y{t) and performing averaging, the equation

corresponding to (2.6 )

1 )
iy = - I'l(') + (3.- -l

+ Dgexp {z5(8)/(1

azuzit/c) [
+ =11

2

+ 202 B) 2y (0220 ~ 20 + 2, (030

iz(’)
1 1
= -G P+ G-
+ BDgexp (2,(8/(1

a2uX(tfc)
T {1 = %

+ mzuz(r/c)izl(t)z%(x)

+

l;(‘) = ¢;(‘) t

By Section 3 for suffici
stable and if || exp{as(t/

omes, up to O(a, #).

- Wt/ N2y - 1)

+ a%uXi/e)
+ 2O/ = 7y()
250 = 70250 + 230 - z,(z)zg(x)}

(4.3a)

DI+ a2Gife) ~ utt/ewEFDlzy(c - n
2,0/ = 2,00

) — 202,00 + 23() - zl(ozg(x)}

a2uX(t/z)

2

EHORY zl(:)zg(:)]] + (1 +
€(-rn0i=12.

X

(4.3b)

tly small fixed &, if z; is asymptotically
Y21, — x| 8, then (3.2) (and hence,

(3.1))is vibrationally 8-stabilizable with respect to conversion. Fur-

thermore, by Theorem 2,
trajectory of conversion.

mated by exp(au(l/e)[z1

Since (4.2) is in the form

if € is sufficiently small, then the average
,, denoted as X;(y(#; y)),can be approxi-

0 = X,z 9)) .
of #(t) = f(z(1)) + bz(t — r), where b >

0, for any r = 0, the stability properties of the steady state of (4.1)
canbeanalyzed by verifying determinant and trace conditions as dis-~

cussed in Section 2.

Suppose the linearization of (4.2), when r

(1) = A;2(r) . Using
D, = {z,,: DerfA,] =
7,

{z),: Tr[A) = O

z1sliesin D, or T, z,is

0, is given by
the terminology of Section 3, define
0} = {2z, € [n,n,1]} and
} = {2z, € [q1.92]} . Obviously, if
unstable. However, we are attempting to

stabilize X, not z;, . Therefore, we must use the relationship
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a%u¥tfe
7,, = explau(t/e)z;, = (1 + '——2(—-—2)zh.which represents an

estimate of ¥,in Definition 1.

Define mo=(l+ 3 n; and
2u%(t]

7=+ e =12, Denote the seis

D=y, €mml} T = [Z,, € (7,751} . As expected,

whena=0,wehave D = D, =D and T = 9, = 7.

The goal of vibrational stabilization now becomes more clear; at-
tempt to insert vibrations of appropriate amplitude so that I, < m,
and perhaps §, < s,. As 7, and 7,decrease, the region of ‘high
conversion’ steady states becomes larger. We are also concerned
with the closeness of X,(z(t, y)) to X, (y(2, ¥)) (as given in Definition
2), whichrequires small £ . This is often not feasible, since it is nec-
essary that % f(t/e) = — 1. Infact, smaller g, is usually needed
in Theorem 2 than in Theorem 1. Hence, although stabilization is
achieved, there may be no o—global dynamic equivalence, i.e.,
X,(z(, y)) may not accurately predict X,(y(t, ¥)).

4.2. Numerical Exampie

Fix the following parameters:
p = lg/cc, Cp = lcal/g%%k, F = 13 . Fcc/sec, JTp =300 °K,
V = 2000cc, ~ A4H = 10 Kcal/mole, Cap =- 005moles/liter,

kg =7.86 x 1012, U = 1.356cal/°K -sec, A =0.75, ER =
11,320.8 °K, T, = 305°K. For these values, we have B =6.29, 1=200
sec, B=0.1356,y=37.73, and xp; = 0.629. For this example, condi-
tion (3.3)is true, which implies that there exist three steady states for
some fixed D,

For the purposes of illustration, suppose that the vibrations are sinu-
soidal. Thatis, introduce vibrations into (3.1) so that (3.1) becomes

@.1)with af(@n) = £ sin (). In dimensionless variables, (4.1)
is given by (42) with 27 =2 sin®) and with
x(f) = [0.65, 4.8]fort € [~ r,0].

An analytic estimate of the average of (4.2) is given as (4.3) with
#X(tfe) == 1/2 and ut/eu(—55) = 0.5 cos (r/e). Finally,

Figure 3 illustrates the regions of vibrational stabilization with re-
spect to conversion more clearly by plotting the Det(A;) and Tr(A;)
versus 7, for fixed values of r/e. (Whena =0, Det(A;) = Det(A)
and Tr(A,)=Tr(A).) For the given values simulated, Tr(A,;) < 0 for
all non-negative o, and therefore, predicted instability only occurs
when 7,, € D, i.e., when Det(A,) < 0in Figure 3. As expected,

the steady states lying in 2,, € D correspond to unstable ‘middle’
steady states in Figure 3. Increasing the amplitude of vibration has
the effect of decreasing the size of D, and hence, increasing the pos-
sible region of stabilization. It is interesting to note that, for this ex-
ample, computer simulations show that varying the ratio of r/€ has
virtually no effect on Figure 2 or 3.

vibrations, have

— 2
Z, = expfacos (t/e)} z;, = (1 + %—)z,-, which for sufficiently

small g, represents an estimate of ¥; in Definition 1.

for sinusoidal we

For the parameters given, when « 0 (no vibrations),
D = [m, m,} = [0.267, 0.676]. Aswincreases, 7, willde-
crease ( < 0.676) and it will be possible to operate the reaction in a
regime of a previously unstable steady state provided that
2fdy =2 sin &) = — 1 (whichimplies that a = ¢). The de-
sign trade—off between & and € is as follows. The minimum ¢ al-
lowed under the physical constraints is given by € = &. Therefore,
using this minimum value, if « is large, € (=0t) will also be large .

Forlargee(=wt), the predicted averaged transientbehaviorof the con-
version in system (4.2), given by X,(z(t, ¥)), does not accurately
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Figure 4a. %,(y(t, ¥)), given by the solid curve and X,(z(t, 1)) given by the dashed curve, when e =€ =04, D, = 0.0685,r =1, and x(¢) =
[0.65, 4.5]for t € [— 1,0]: Figure4b. wheno.=¢=0.8, D, = 0.0705,, r = 1, and x(t) = [0.65, 4 5]for t € [~ 1,0].

approximate the actual moving average, X;(y(t, ¥)).  However, for
large o, 7, decreases and the locus of stabilizable states, X,, in-
creases. On the other hand, when € is small, & must be small, and the
region of vibrational stabilization becomes negligible.

Table 1 shows the effect of vibrational stabilization when r=1. Col-
umn 2 of the table gives the theoretical prediction of #,. Column 3
of Table 1 provides the actual minimum value of X, that corresponds
to a ‘high conversion’ (high temperature) region of operation, de-
noted as 77, This value was found by direct numerical simulation
of (42)whena=¢. All ¥, = %, represent a stable (averaged)re-
gion of operation of (4.2). For example, when a = ¢ = 0.56,'if
x, = 0. 55, then the reaction is operating at a ‘high conversion’
stable almost periodic orbit. This represents a stabilization of aver-
age conversion of the region X; € [0.55, 0.676].

a=¢ iy i,
0.24 0.62 0.63
0.32 0.59 0.62
0.40 0.56 0.61
0.48 0.54 0.57
0.56 0.53 0.55
0.64 0.51 0.53
0.72 0.50 0.51
0.80 0.50 0.50
0.88 0.50 0.49
0.96 0.50 0.46

Table 1. Theoretical (77, ) and actual (771 minimum value
of stable averaged high conversion for system (4.2).

Figure 4 showsthatforlarger valuesof o (=€) the accuracy in ap'prox“
imating X,(y(t, %)) (an average of the actual transient response) by
%,(2(t,y)) becomes poorer. Figure 4a shows the stabilization of ¥,
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=0.61, which occurs when a =€ =04, D, = 0.0685, r = 1, and with
x(t)=[0.65,4.5]for t € [— r,0]. Ascan be seen from the simula-
tion, X, (z(t, ¥)) (the dashed curve) accurately predicts X, (y(f, ¥))(the
actual response, x;(y(t, %)) is given by the solid curve) within 3%
error. Fora=g=0.8 and D, =0.0705, Figure 4b shows the stabiliza-
tion of X, = 0.50 (forr =1 and the same initial function). For these
values, there is approximately a 25% error between X, (z(, %)) and
X 1 (y(tv '/’))
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