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Abstract- Vibrational control is a method of modification of dy- 
namicproperties obtainedby introducing zeromeanoscillations into 
a system parameters. This paper shows that by introducing oscilla- 
tions into the flow rates of a continuous stirred tank reactor with 
delayedrecyclestream, itispossibleto operatereactionsinthevicin- 
ity of previously unstable steady states. 

Section 2 of this paper develops the theory of vibrational control for 
differential delayequations. Section3 gives the model of thechemi- 
cal reaction under consideration and discusses conditions for stabil- 
ity of steady states. Section4describes thevibrationalcontrol of the 
chemical reaction described in Section 3 and provides numerical 
simulations to support the theory. 

1. INTRODUCTION 2. VIBRATIONAL CONTROL 

Vibrational control is a recently developed open loop control tech- 
nique that, unlike classical methods of feedback and feedforward, 
does not require measurements. Instead, parametric oscillations are 
introduced into a system in order to induce a desired dynamic re- 
sponse. Because no state measurements are required, vibrational 
control is an alternative to feedback and feedforward techniques 
when measurements are costly or for some reason unavailable. 

This section further develops recent advances in vibrational control 
theory for systems with time delay. Additional discussion of these 
techniques can be found in [8]. 

Consider the general class of delay differential equations 

x(t) = b,(x(t),x(t - r ) )  + B,(A,x(t)) 

x(t) = e(t) E [ -  r,Ol, (2.1) 

The theory of vibrational control for ordinary differential equations 
has been developed in [2,3]. In [ 1-31, the authors describe a hypo- 
thetical application of vibrational control to an irreversible exother- 
mic chemical reaction a continuous stirred tank reactor (CSTR) 
and show that by vibrating the flow rates in a CSTR, it is possible to 
theoretically operate thereactor at (average) conversionrates which 
were previously unstable. 

Operation of a CSTR at or near unstable steady states is an area of 
important research. Often, theseunstable steady states offer optimal 
yield given technical constraints, such as amaximum operating tem- 
peratureof areactor [5,6]. Inmany cases, afeedbackcooling system 
is used to stabilizepreviously unstable steady states [4-61. Howev- 
er, cooling systems require measurements of states which, at times, 
require large delays to obtain. Additionally, for exothermic reac- 
tions, feedback cooling systems have considerable energy expense. 
Obstacles suchas these are why new control techniques for chemical 
reactors are important to develop. 

Vibrational control offers a way to avoid many of these above diffi- 
culties. Because it is anopenloop control technique, state measure- 
ments are not needed and cooling costs are not incurred. In [ 5 ]  the 
theoretical postulations of vibrational control of chemical reactions 
[l-31 were experimentally applied to exothermic reactions in a 
CSTR. It was shownthat by appropriately inserting periodic oscilla- 
tions into the flow rates of a CSTR it is possible to operate at an as- 
ymptotically stable periodic orbit in the vicinity of  a previously un- 
stable steady state. The results of [5] are significant because they 
provide experimental verification of benefits of vibrational control 
which had been only previously hypothesized. 

The purpose of this paper is to show that vibrational control is an ef- 
fective method of stabilizing chemical reactions with delayed re- 
cycle stream. A conjecture to this problem is discussed in [8], where 
preliminaryresults aregiven. Theresultsofthis paper willshow that, 
for exothermic reactions in a CSTR with delayed recycle stream, it 
is possible to operate in the vicinity of previously unstable steady 
states of high conversion. Furthermore, it is possible to giverecom- 
mendations on the choice of amplitudes and frequencies of vibra- 
tions which ensure desired properties of a vibrationally stabilized 
system. 

where x ( f )  E I", p, : W" x Wn -+ In and p, : Id x In -+ I", 
are continuously differentiable, 1 = [1,,1,, ... ,RJTare parame- 
ters subject to vibrations, r is the constant positive delay, and @(t)is 
the continuous initial function defined ont E [ - r, 01. 

Introduce into (2.1) parametric vibrations according to thelaw 

1(t) = 1, + qf(f/el), where lois a constant vector, E, is aposi- 
tive fixed constant, andfit) is an almost periodic average zero 
(APAZ) vector so that (2.1) becomes 

1 

1 
= P,(x(t),x(t - r ) )  + P,@, + qfo/E,) ,x( t ) )  

x(t) = O(t) t E [ - r, 01 . (2.2) 

Assume that for afixed 1 = A,, 
point x, = ~ ~ ( 1 , )  = [xls@o). ... ,X, , (~~)I~ . 

DEFINITION 1.  An equilibrium point ~ ~ ( 1 , )  of (2.1) is said to be 
vibrationally Gstabilizable with respect to componer~ xis(d0) if for 
a given fixed 6 2 0 there exists an APAZ vectorfit) such that (2.2) 
has asymptotically stable almost periodic solution 
x'(t) = [x;(t), ... ,xE(t)], the ith component of which is character- 
ized by 

equation(2.1) has an equilibrium 

In order to make analysis simpler, this paper will always assume that 
P2(& + $ f ( t j E l ) . X ( t ) )  = m o m )  + qPZ(f(f/&l).X(f))(where 1 

Pz(. , * ) is avector function linear withrespect to its first argument). 



Denote the gen ral solution of (2.4) as 
h(t, c) = [hl(t, c), ..., i “(t. c)],where c E 9U“’saconstantvector. 
Introduce substitution x( = h(t/Elry(t)) into (2.3) to obtain 

= Y(t/E,,y(t),y(/ - r).r/E,) . (2.5) 

Now, consider the corrdsponding “averaged” delay differential 
equation 

where z(t) = q( t )  for t 1 [ - r, 01, 

w = Pb(z(t),z(t - r ) , r / q )  (2.6) 

PO(C1. c2. + I )  i 
= T-. lim m j ~ o T [ ~ ] - l P l ( h ( t , c l ) , h ( t  - r/&,,c2))dt. 

on t E [ -  r,O]. 

(2.7) 

Introduce 

cillations. 

DEFINITION 2. F r any fixed U > 0 and any L > 0, an 
APAZ vector (l /EIY(t/  ,)is said to induce a o-global dynamic 
equivalence between (2.3 P and (2.6) with respect to component i if 

xi(z(t; W ) )  11 0. f E [O, Ll, 

defined in (2.6), is continuous in 

(2) Uniformly with respect to 
(t,yl,y2) in compact sets of % x Q x Q, there exists a limit 

P O ( . Y I . Y ~ ~ ~ / E I )  = ,I, Y ( s , ~ , , y ~ , r / ~ ~ ) d s  ; 

(3)  System (2.6) has an asymptotically stable equilibrium 
point, z, E Q,. where 8, C 8 is the domain of attraction of 2,. 

Then for any U > 0. there exists an E ,  = E ~ ( U )  such that, for 
0 < el 5 &,,vibrationr (l/el)f(t/E1) induceao-global dynamic 
equivalence withrespecttoany component ibetween(23) and(2.6) 
for all t 2 - r provided z(t;ty) and its p vicinity belongs to 
Q, for t s - r .  

3. IRREVERSIBLE REACTIONS INA CSTR WITH RECYCLE 
STREAM 

Thematerialandenergy balanceequationsfor anirreversibleunimo- 
lecular reaction with a recycle stream in a CSTR are given as 

I+T 

VbA(t) = AFCAf  (1 - A)FCA(t - d )  - FCA( f )  

E 
RTW - (- d H ) V K , e x p { L J  - rr[T(t) - T,], (3.lb) 

where cA(t) = e,(t) and T(t) = e2(t) for t E [ - d,  01, C A ( ~ )  is  
the concentration of chemical A. T(t) is the reactor temperature, his 
thecoefficientofrecirculation and variesfromzero toone, withzero 
corresponding to total recycle and one corresponding to no recycle. 
The remaining constants are defined in [ 11. Consider the standard 
change of variables 

Then, (3.1) in dimensionless variables becomes 

1 1 
i 2 ( t )  = - (1 + BZr2W + (1 - 1k20 - r) 

x2(t) 
+ BDa exp rXz<t)l(l + y M 1  - Xl(t)) + Bx2c 

(3.2b) 

where xi(t)  = Oi(t) for t E [ - r, 01 .The statexl(t) corresponds 
to the conversion rate of the reaction, 
0 I xl(t) s 1, where x,(t) = 1 indicates 100% of chemical A 
has been turned into product andxl(t) = 0 indicates that no products 
have been formed. Thevariablex2(t)denotes dimensionless temper- 
ature. Clearly, (3.3) is valid only when h # 0. Constants B, p, D,, 
y, and r are all positive. 

3.2. Steady State Analysis 
For fixedB,P,y~2~,thesteady stateplotofxl,versusD,,theDam- 
kohler number, can be given by one of two curves, shown in Figure 
1. The S shaped curve shows that for fixed Da, it is possible to have 
three steady states. The second curve, corresponding to a low 
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Figurel. Two possible plots for xlS vs. D, for (3.2). 

conversion rate, gives only one steady state for fixed 0,. Often, it is 
desired to have an S shaped curve because it allows for possibilities 
of operating at higher steady state conversion. In order for multiple 
steady states to appear, the following condition [1,9] must be satis- 
fied 

Due to the special structure of (3.4). the results of [7] show that ifa 
steady stateof(3.4)isstableforr=O, thenitisstableforallr 2 0 . 
This is a useful result because it pennits us to apply the well known 
stabllity conditions of [9], which were derived for r = 0, to (3.2). 

In the special case when r = 0, the linearization of (3.2) about x, is 
given by i(t) = Ax(t). Therefore, by [7],x, of (3.2) is asymptotical- 
ly stableprovidedthat Det[A] > 0 and Tr[A] < 0 . Using theter- 
minologyof[l],defiietheset9 = [x,, : Det[A] 5 01. Similarly, 
definetheset 5 = {XIS : fr[A] 2 0). In[9],itisshownthatthedet- 
instability area coincides with the negative slope part of the steady 
statecharacteristicinFigure 1. Hence, in thecaseofmultiple steady 
states, the middle steady state will always be unstable, since it lies in 
the set ”J) . 

Denote 9 = {XI, E [m, ,mJ],  ET = (x , ,  E [sI.sz]] . The rela- 
tivepositions ofmi and4 dependontherelationship betweenB and 
p and is further discussed in 191. 

4. VIBRATIONAL CONTROL OF A CSTR WITH RECYCLE 

The main contribution of this section, and hence the paper, is that it 
proposes the first realistic vibrational control application to a true 
physical system whose model has state delay. Many such examples 
have been discussed for systems of finitedimension, and in fact, have 
eventually led to experimental application of the proposed tech- 
niques. However, for delay systems, very few examples can be 
found [12,13]. 

It is of interest to attempt to vibrationally control the middle steady 
statesofq,. Theuppersteady states, whichhave the bestconversion 
rate for thereaction,oftenrunat toohighatemperature forthepartic- 
ular application. In some reactions, high temperatures cause the 
products (output) to decompose further, creating undesired yield. In 
other reactions, high temperatures cause reactants and products to 
becomeviscous andcancausedamage to thereactor or cancreatein- 
consistent flow in pipes. More commonly, however, there could be 

safety limitations on the operating temperature of the reactor. Any 
of these cases may make it impossible to operate at any upper steady 
state. Therefore, there is often a need to operate the reactor at one 
ofthe middle steady states, which may give the highest conversion 
rate (an ultimatecontrol goal) under various temperatureconstraints. 

3540 

1 0  

0.8 

g 0.8 
I 

8 0.4 

..1 

02 

00 000 002 0 0 4  O c a  008 3 1 0  

DAMKOHLEPMlMBELLh 

Figure 2. Typical plots of T,, YS . D, for different values of ampli- 
tude of vibration and fmed TIE. 

However, as Section 3 discusses, this middle steady state is always 
unstable. 

By properly inserting periodic vibrations into the input and output 
flow rates of a CSTR, vibrational control allows periodic operation 
of the reactor in the vicinity of previously unstable steady states. 
Sincethetechniqueisopenloop,noneofthecoolingcostsassociated 
with feedback occur, and likewise, the difficulties in obtaining on- 
line measurements is effectively eliminated. 

4.1 Vibrating Input and Output Flow Rates 

Introduce vibrationsinto(3.1) sothattheinputflowrate andtheout- 
put flow rate oscillate identically, i.e. consider (3.1) withvibrations 

VC,(t) = IFc,[l + uf(or)] + (1 - l)FcA(r - d) 
as 

- E  - F[I + ~.af(ot)lc,(t) - vKOcA(r)exp{ml (4.14 

VpCpT(t) = pC/A[Tf + uf(ot)] + pCp(1 - l)T(t - d) 

- pca1 + a~j(ot) l~( t )  + v(- d w o e x p  {dl 
RTO) 

- U(T(t) - Tc). (4.1b) 

whereflat) is analmostperiodiczeromeanscalarfunctionwithfre- 
quency o and “U” is the amplitude of vibration . 
Vibrations, f ( a t )  may assume different forms, such as sinusoidal, 
square wave, etc. For simplicity of calculations, it will always be as- 

sumed that the vibrations are symmetric such that u(f) = f(1)d.I I ‘ 
has the property that u’(t)uJ(t - r )  = 0 for i + j = odd and any 
r 1 0. 

Itisnownecessarytoimposephysicalconstraints on(4.1). Inpartic- 
ular,wemustrequirethat minaf(cot) 2 - 1 . Ifthiswerenottrue, 
then the first terms in theright-handsideof (4.la) and(4.lb),respec- 
hvely, would become negative. This would correspond to the re- 
moval of fresh feed from the reactor, which is not possible. This re- 
striction limits the effectiveness of predicting vibrational control; 
however, theconsnaint shouldnotbeignored as wasoriginally done 
in the first postulation of this problem [8]. 

Suppose that OJ = - and A = F, where E is a small positive 
constant. Then, in dimensionless variables, (3.2) with vibrations as 
in (4.1) becomes 

1 2 0  

FA a 
V& 



1 4 r  
1 

1 
X 2 0 )  = - r;i + B + 

+ Da ~ X P  

which is in the form of ( 2 3 ,  
1 and 2 can be applied. 

Equation (2.4) in this 
u(t) = - f(,l)dl. .The1 I, 

1 0  

O S  
3 

x 02 

4 -0 2 

1 
g W / E ) b l ( t )  + r;i- - Ilxi(t - r )  

x2(0 
1x240/(1 + y ) l ( 1  - x,(t)) + B X ~ C  

(4.2b) 

and hence, the techniques of Theorems 

case is x,(t) = af(t)x,{r) i = 1.2 . Let 

using the substitution 

+ 2a2uqz,(r)z:(o 

By Section 3 for sufficiently 
stable and if 11 exp(au(t/a)[z,, 
(3.l))isvibrationallyGstabilizable 
thermore, by Theorem 2, 
trajectory of conversion, 
mated by w [ z l ' l r )  

Since (4.2) is in the form 
0, for any r 2 0, the stab 
can be analyzed by verifytig 
cussed in Section 2. 

Suppose the linearization 
z(t) = A,z(t) . Using 
9, = (z,, : Det[A,I I 
Tz = ( ~ 1 ,  : Tr[A,I 2 
zls lies in 9, or Tz, z, is 
stabilize X,, not zl, . 

zi(r) = *,.(I) r 

02U'Zi;irj- 
1- z z ( o  + z 1 ( ~ ) z i ( o ) ~  + (I + YV.~~. 

(4.3b) E I- r.01, i = I ,  2 . 

small fixed E. if z, is asymptotically 
- xis !I I d, then (3.2) (and hence, 

withrespect toconversion. Fur- 
if E is sufficiently small. then the average 

denoted as X,('y(t; v)),can be approxi- 
= X,(z(t;v)) . 

of z(t) = f(z(t)) + bz(f - r). where b > 
lity properties of the steady state of (4.1) 

determinant and @ace conditions as dis- 

of (4.2). when r = 0. is given by 
the terminology of Section 3. define 
0 )  = (z,, E [n, .nJ)  and 

O }  = ( zl, E [q l ,  qd } . Obviously, if 
unstable. However, we are attempting to 

Yherefore. we must use the relationship 
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estimate of X,in Definition 1. 

Define and 

The goal of Vibrational stabilization now becomes more clear: at- 
tempt to insert vibrations of appropriate amplitude so that ir, < m2 
and perhaps q2 < s2. As E2 and q2decrease, the region of 'high 
conversion' steady states becomes larger. We are also concemed 
with the closeness of Xi (z(t. v))  toji,(y(t, @))(as given in Definition 
2). whichrequiressmall E .Thisisoftennotfeasible, sinceitisnec- 
essary that $ f ( t / ~ )  1 - I . ~n fact, smaller is usua~y needed 
in Theorem 2 than in Theorem 1. Hence, although stabilization is 
achieved, there may be no a-global dynamic equivalence, i.e., 
Xl(z(t, v))  may not accurately predict al(y(r, v)). 
4.2. Numerical Example 

Fix the following parameters: 
p = Ig/cc. C, = Icae/g'K, F = 13 . ncc/sec. ,Tf = 300 
V = 2000cc. - A H  = 10 Kcaljmole, cAf = . 005moles/liler, 
k, = 7 .  86 x 1012,U = 1 . 356cal/'K .sec, 1 = 0 .75 ,  E%R = 
11,320.8 "K, =30S°K. Forthesevalues, wehaveB=6.29.z=200 
sec, P=O.1356,~=37.73, andxk=O.629. Forthisexample,condi- 
tion(3.3)istrue, whichimpliesthatthereexistthreesteady states for 
some fixed Da. 
For the purposes of illustration. suppose that the vibrations are sinu- 
soidal. That is, introduce vibrations into (3.1) so that (3.1) becomes 
(4.1) with af(wt) = sin (A). In dimensionless variables. (4.1) 

is given by (4.2) with 2 = 7 sin $) and with 
x(t) = [0 . 65, 4 . 81 for t E [ - r, 01. 
An analytic estimate of the average of (4.2) is given as (4.3) with 

u2(t/&) = = 1/2 and u(t/&)u(+$ = 0 . 5 cos @/E) .  Finally, 

Figure 3 illustrates the regions of vibrational stabilization with re- 
spect to conversion more clearly by plotting the Det(4) and Tr(4) 
versus Z,, for fixed values of r/E. (When a = 0, Def(4) = Det(A) 
and T r ( 4 )  = Tr(A). ) For the given values simulated, Tr(4) e 0 for 
all non-negative a, and therefore, predicted instability only occurs 
when z,, E 9, i.e., when Der(&) e 0 in Figure 3. As expected, 
the steady states lying in TI, E 3 correspond to unstable 'middle' 
steady states in Figure 3. Increasing the amplitude of vibration has 
the effect of decreasing the size of 3, and hence, increasing the pos- 
sible region of stabilization It is interesting to note that, for this ex- 
ample, computer simulations show that varying the ratio of r/E has 
virtually no effect on Figure 2 or 3. 
for sinusoidal vibrations, we have 

Z,, = exp(ucos ( t / E ) )  z,, = (1 + e)zi ,  which for sufficiently 
small E, represents an estimare of xi in Definition 1. 
For the parameters given, when a = 0 (no vibrations), 
9 = [ml .  m2] = [0 . 267. 0 . 6761. Asaincreases, ii2 willde- 
crease ( e 0.676) and it will be possible to operate the reaction in a 
regime of a previously unstable steady state provided that 
$fG) = 4 sin (i) 5 - 1 (which implies thar a 5 E). The de- 
sign trade-off between a and & is as follows. The minimum & al- 
lowed under the physical constraints is given by E = a. Therefore, 
using this minimum value, if a is large, E (=a) will also be large . 

"K, 

4 

For large&(=a). the predicted averaged transient behavior of the con- 
version in system (4.2). given by P,(z(t, I+)), does not accurately 
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0.62 0.63 

approximate the actual moving average, js,(y(t, q)). However, for 
large a, E, decreases and the locus of stabilizable states, X,, in- 
creases. On the other hand, when E is small, a must be small, and the 
region of vibrational stabilization becomes negligible. 

Table 1 shows the effect of vibrational stabilization when r = 1. Col- 
umn 2 of the table gives the theoretical prediction of if2 Column 3 
ofTable 1 providestheactualminimumvalueof XI thatcorresponds 
to a 'high conversion' (high temperature) region of operation, de- 
noted as Biz. This value was found by direct numerical simulation 
of (4.2) when a = E. All XI 2 E2 represent a stable (averaged) re- 
gion of operation of (4.2). For example, when a = E = 0.56, if 
2, 2 0 . 55, then the reaction is operating at a 'high conversion' 
stable almost periodic orbit. This represents a stabilization of aver- 
age conversion of the region .?, € [O . 5 5 ,  0 . 6761 - 

Table 1. Theoretical (E2 ) and actual (E2) minimum value 
of stable averaged high conversion for system (4.2). 

Figure4showsthatforlargervaluesofa(=~)theaccuracyinapprox- 
hating X , ( y ( t ,  v) )  (an average of the actual transient response) by 
X,(z(t ,  v ) )  becomes poorer. Figure 4a shows the stabilization of X, 

=0.61,whichoccurswhenu=~=0.4,D,=0.0685,r=1,andwith 
x(t) = [0.65,4.5] for t E [ - r, 01. As can be seen from the simula- 
tion, Xl(~(t.~))(thedashedcurve)accuratelypredictsXl(y(t, +))(the 
actual response, x,(y(t, q)), is given by the solid m e )  within 3% 
error. Fora=E=0.8 andD, =0.0705, Figure4bshowsthestabiliza- 
tion of X, = 0.50 (for r = 1 and the same initial function). For these 
values, there is approximately a 25% error between X,(z(t, +)) and 
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