Profile-Guided 1/O Partitioning

Yijian Wang and David Kaeli
Dept. of Electrical and Computer Engineering
Northeastern University
Boston, MA 02115
yiwang, kaeli@ece.neu.edu

ABSTRACT

In the field of high performance computing there is a grow-
ing need to process large, complex datasets. Many of these
applications are file-intensive workloads, performing a large
number of reads from and writes to a small number of files.
When executing these workloads on cluster-based systems,
performance cannot scale by simply increasing the number
of compute nodes. To effectively exploit parallel resources
we need to parallelize file I/O. The potential impact of ex-
ploiting parallel I/O grows as the gap between CPU and
disk speeds continues to increase.

While parallel I/O middleware systems (e.g., MPI I/0)
provide users with environments where large datasets can
be shared among multiple distributed processes, the perfor-
mance of file-intensive applications depends heavily on how
the data is accessed and where the data is physically located
on disk. I/O operations need to be parallelized both at the
application level (using middleware) and at the disk level
(using partitioning).

In this paper, we present a new profile-guided greedy par-
titioning algorithm to parallelize I/O access for file-intensive
applications run on cluster-based systems. We are using
MPI and MPI I/O to provide parallelization at the applica-
tion level. We utilize I/O profiling to capture relevant infor-
mation about the I/O stream. We then use these profiles to
guide file partitioning across multiple disks to significantly
improve I/O throughput.

Categories and Subject Descriptors

B.4.3 [Input/Output and Data Communications]|: Par-
allel I/O

General Terms

Performance

Keywords
parallel I/O, profile-guided 1/0, clusters

Permission to make digital or hard copies of all or part of this work for

1. INTRODUCTION

In the field of high-performance parallel computing
we are seeing an increased focus on applications that are
both compute-bound and I/O-bound. This trend is espe-
cially evident when analyzing massive amounts of image or
sensor data. I/O-intensive applications fall into one of two
categories:

1. out-of-core applications, and
2. file-intensive applications.

Applications that work with large data sets that cannot
fit in main memory are called out-of-core applications. Due
to the limited size of main memory, data must be paged
between main memory and swap space on disk. A number
of techniques have been proposed to improve I/O bandwidth
for this class of applications [2, 8, 13, 25], as well as to reduce
the number of disk accesses [12].

File-intensive applications access file-based data frequently.
Their performance is limited by the large number of file op-
erations (e.g., file open, file read, file seek) that are inherent
to the application. One key attribute of file-intensive appli-
cations is that we can uniquely identify logical file addresses.
Out-of-core file access patterns are dependent on the oper-
ating system and the runtime system state. 1/O reference
patterns can differ significantly between two different execu-
tions of the same program. Since file I/O addresses typically
remain constant across different runs of a program *, we can
utilize profiling to tune file access in a distributed applica-
tion. We have also found that when the number of processes
changes or the size of the input data file changes, the pat-
tern of file accesses changes very predictably, so re-profiling
can be avoided.

In this work, we are focused on improving I/O perfor-
mance for file-intensive parallel applications. Many scien-
tific and visualization applications exhibit file-intensive ac-
cess properties. Our goal is to develop efficient I/O parti-
tioning algorithms that can increase parallelism in the I/O
subsystem.

1.1 Related Work

There has been a large amount of previous work fo-

personal or classroom use is granted without fee provided that copies arecused on improving I/O access. Improvements have been

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

n scientific applications, we have found that file access pat-

republish, to post on servers or to redistribute to lists, requires prior specific terns are generally independent of the data values stored.

permission and/or a fee.
ICS’03,June 23-26, 2003, San Francisco, California, USA.
Copyright 2003 ACM 1-58113-733-8/03/000655.00.

This assumption may not hold for applications where dy-
namic decisions are made based on data values, such as
database applications.

made at the disk device level and at the application level.
Disk manufacturers have provided us with faster disks (in
terms of rotational latency), smarter disk controllers (e.g.,
caching devices), and parallel device access (RAIDed disks).
Striping data across RAID devices has been shown to be
highly beneficial in improving disk throughput [4, 21]. These
advances provide for higher disk bandwidth and lower I/O
latency. The ideas presented in this paper are orthogonal to
these approaches. We attempt to increase the spatial local-
ity in a single I/O stream, while also reducing the contention
for a shared device.

There have also been disk prefetching strategies proposed
that reduce disk read latency. Prefetching predicts the fu-
ture reference stream, typically based on past reference be-
havior. Early compiler-based approaches include work by
Trivedi that proposed prepaging. Patterson et al. proposed
the Transparent Informed Prefetching and Caching (TIP)
system [22], that utilizes explicit hints inserted by the pro-
grammer to perform cost-effective prefetching.

Prefetching can also be implemented in the compiler, as
was done in the Profet system [3]. The main benefit of work-
ing at the compiler level is that no source code modifications
are needed, though changes may be needed to the operating
system to support this mechanism. Again, prefetching can
also be used in cooperation with our techniques to further
reduce I/O latency.

In [24], Reddy and Bannerjee studied five scientific appli-
cations taken from the PERFECT benchmark suite. They
found that most applications exhibited sequential file ac-
cess patterns. In [23], Bagrodia et al. used Pablo to in-
strument and characterize out-of-core scientific applications.
In [20], Nieuwejaar et al. performed a multi-platform char-
acterization study of file access patterns for parallel scientific
workloads as part of the CHARISMA project. 1/O access
patterns were captured on both Intel iPSC/860 and CM-
5 platforms. Understanding file access patterns is essential
when attempting to partition files. These previous studies
have helped guide our selection of workloads and develop
our partitioning heuristics.

There has also been significant work to provide parallelism
at the application level. Techniques such as data sieving [27]
and collective I/O [17] have been successful in improving
performance. Many parallel applications require access to
small, potentially non-contiguous, data chunks. Collective
I/0 merges multiple I/O accesses (both contiguous and non-
contiguous), generated by multiple processes, into a single
I/O function call. MPI I/O [26, 28], which is included as
part of the MPI-2 standard release, provides for collective
communication so that multiple MPI processes can access a
single MPI 1/0 file. We utilize MPI collective I/O (we will
refer to collective I/O as MPI 1/O in this paper) in the work
presented here. But when multiple processes have to access
a single shared file, severe 1/O bottlenecks can occur with
MPI 1/0.

In this paper, we present a methodology for physically
partitioning files on local disks in an attempt to remove the
bottleneck of access to a single file. We profile I/O execu-
tion of parallel applications that utilize MPI and MPI 1/0.
We have been able to obtain significant speedups with our
methodology, cutting application runtimes by 28-82%. The
rest of this paper is organized as follows. Section 2 will
describe our I/O partitioning algorithm. Section 3 will de-
scribe our evaluation environment. Section 4 will provide

a series of performance results that illustrate the power of
our algorithms. In Section 5 we discuss the implications
of these results, as well as issues related to other classes of
workloads, and in Section 6 we summarize the contributions
of the paper.

2. PROFILE-GUIDED I/O PARTITIONING

Next we describe our profiling methodology and our
partitioning algorithm.

2.1 Access Pattern Detection

The ultimate goal for parallel I/O is to increase par-
allelism by creating multiple, independent, I/O streams. In
order to effectively exploit the potential for I/O parallelism,
data must be partitioned and distributed across multiple
disks. To effectively partition files, we will first profile access
patterns produced by an application. Based on this profile,
we will generate a file partition for each I/O process. Ide-
ally, each I/O process should only need to access its own
file partition on a local disk and then there would be no
disk contention or communication overhead. Unfortunately,
multiple processes may need to read and write the same file
space, so proper partitioning must consider file consistency
issues.

Many characterization studies have targeted 1/O access
patterns [9, 11, 15, 20]. Workload patterns can be recog-
nized both statically (at compile time) or dynamically (at
run time). Madhyastha and Reed [15] suggested using learn-
ing algorithms to classify I/O access patterns at execution
time, guiding adaptive file system policies. Memik et al. [17]
designed a compiler technique to direct collective I/O by
matching read and write access patterns statically. Our ap-
proach is to profile the dynamic execution of an application
and then apply a greedy partitioning algorithm that both
partitions files, as well as improves spatial locality within
the partition. We have used profile-guided partitioning in
previous work to guide parallelization of MPI-based imag-
ing applications [14]. We have also used memory profiling
to study the characteristics of shared memory workloads [7].

To profile I/O accesses, we capture the following informa-
tion:

e process ID

e file handle

e address of the contiguous data chunk accessed
e chunk size

e access type (read/write)

e timestamp

A library function has been developed to capture this infor-
mation on every file operation. In the applications studied,
we experience a 30% slowdown on average when profiling is
enabled. We then use this profile to guide file partitioning
across multiple disks to achieve high I/O parallelism.

2.2 Profile-Guided Optimization

The I/0 file partitioning problem is an NP-hard prob-
lem. To produce the best partitioning, all possible partitions
would need to be explored. To produce an effective parti-
tioning of all files, we have developed a greedy algorithm.

Using our algorithm, for every contiguous data chunk we
identify which process accesses each chunk most frequently.
We then assign that data chunk to the file partition asso-
ciated with the particular process-ID. For data chunks that
are heavily accessed by multiple processes, we consider the
following criteria. If the chunk is read-only by multiple pro-
cesses, we can replicate the chunk in multiple file partitions.
If the chunk is written by multiple processes, we create a
shared file partition, and allow all processes to access this
partition. In the case where a chunk is first written by a sin-
gle process and later read by multiple processes, we let the
write process broadcast the updated data to those processes
that are going to read it later.

After we complete the assignment of chunks to partitions,
we then reorder the data chunks in a partition. The or-
dering of chunks in each partition is based on the earliest
timestamp recorded for each chunk (chunks may be accessed
many times, though we only consider the time of the first
access in this ordering). Figure 1 provides pseudocode for
our greedy partitioning algorithm. The complexity of this
algorithm is O(n? * p), where n is the number of chunks
accessed by the program and p is the number of partitions.

3. EXPERIMENTAL ENVIRONMENT

We have used MPI and MPI-2 to parallelize our ap-
plications. Next, we run each application on our Beowulf
Cluster, generating profile data. Then we apply our I/O
partitioning scheme and rerun.

The Beowulf Cluster used in this work has 32 nodes; each
node has a local 8.4 GB IDE disk and there are shared SCSI
RAID devices directly attached to four of the nodes. In
the performance numbers provided, for configurations of 4
and 8 nodes, we use a single RAID device hosted on an ad-
ditional node outside the configuration. For configurations
with more than 8 nodes, the RAID device is hosted by one of
the nodes contained in the configuration (i.e., a single node
serves as both a compute node and the I/O node for the
RAIDed SCSI traffic). All I/0 is directed to a single SCSI
RAID device.

Figure 2 shows a picture of our 32-node Beowulf Cluster
where we performed this work. Table 1 provides additional
details about the hardware. In the results presented, all
runs used standard nodes and one RAID-connected node.
The SMP node is not used in this study.

Table 2 provides raw bandwidth rates for a local access
to an IDE disk, a non-local access to the SCSI disk, and a
local access to a SCSI disk. Read/write rates are provided
for different chunk sizes. Non-local SCSI access assumes
that the I/O must communicate across the 100Mb switched
ethernet network to transfer data, as well as to read or write
to the SCSI disk.

4. EXPERIMENTS

Our target applications are parallelized scientific and
multimedia applications, and parallel I/O benchmarks that
require intensive disk accesses.

4.1 Parallel /O Workloads

We report on the speedup obtained from profile-guided
partitioning for five applications/benchmarks:

e The NPB2.4/BT benchmark is part of the NAS Par-
allel Benchmark (NPB) suite version 2.4. The suite

consists of 8 programs designed to evaluate the perfor-
mance of parallel supercomputers. The code is written
in fortran. The benchmarks are taken from computa-
tional fluid dynamics problems. The application that
we are using is the Block-Tridiagonal (BT), that is file
bound. The application is provided with different in-
put problem sizes (A-D); we are using size B, that dy-
namically generates a dataset (1.5 gigabytes) and then
reads it back. Each process periodically writes sequen-
tially, and this chunk is later read. Chunk sizes are a
function of the number of processes. This parallel ap-
plication needs to run on a number of processes that is
a square (i.e., 4, 9, 16, 25). Three parallel I/O schemes
are studied with this benchmark: parallel Unix I/0,
MPI I/O (source is provided in the benchmark source
for these two implementations) and partitioned I/O
(our own implementation).

The SPECseis96.1.2 benchmark is one of three appli-
cations in the SPEChpc96 benchmark suite. The code
is written in both fortran and C. The application is
performing seismic data processing. The code consists
of four phases. We only study the first two phases of
this benchmark. During phase 1, the program dynam-
ically generates a dataset (1.6 gigabytes) and during
phase 2 it reads the dataset back. Each process writes
96KB chunks, and each process then reads back 2KB
chunks. Three parallel 1/O schemes are studied with
this benchmark: parallel Unix I/O (provided in the
benchmark source), MPI I/O (our own implementa-
tion) and partitioned I/O (our own implementation).

The MPI-Tile-I/O benchmark is a synthetic bench-
mark that is part of the Parallel I/O Benchmarking
Consortium benchmark suite. The code is written in
C. The application implements tile access on a two-
dimensional dataset, with overlapped data between se-
quential tiles. The size of the tiles and the overlap can
be user defined. Each process writes 32KB, with 2KB
of overlap between consecutive chunks. Two parallel
I/O schemes are studied with this benchmark: MPI
I/O (provided in the benchmark source) and parti-
tioned I/O (our own implementation).

The Perf benchmark is a parallel I/O test program
provided with the MPICH standard distribution [19].
The code is written in C. Every process writes a 1 MB
chunk at a location determined by its rank, and then
reads it back later. The chunk size is user-defined.
There is no file overlap between chunks. Two parallel
I/O schemes are studied with this benchmark: MPI
I/O (provided in the benchmark source) and parti-
tioned I/O (our own implementation).

Mandelbrot is an image processing application that
generates a Mandelbrot image file. In this benchmark,
a Mandelbrot image data file (256 MB) is generated by
multiple processes and then read back for visualiza-
tion. The code is written in C. The code is compu-
tationally intensive, I/O intensive, and visualization
intensive. The size of each contiguous file access de-
pends on the number of processes. Two parallel I/O
schemes are studied with this benchmark: MPI I/O
(provided in the benchmark source) and partitioned
I/O (our own implementation).

Table 2:

Foreach I/0 process
Create a Partition;
Foreach contiguous data chunk
Total up the number of read accesses on a Process-ID basis;
Total up the number of write accesses on a Process-ID basis;
If the chunk is accessed by only one Process ID
Assign the chunk to the associated partition;
If the chunk is read (but never written) by multiple processes
Replicate the chunk in all partitions where read;
If the chunk is written by one partition, but later read by multiple partitions
Assign the chunk to all partitions where read
and broadcast the updates to all partitions on writes;

Else

Assign the chunk to a shared partition;
Foreach Partition
Sort chunks based on the earliest timestamp for each chunk;

Figure 1: Pseudocode for our greedy partitioning algorithm.

Number of nodes 32 - (27 standard nodes, 4 RAID device host nodes and 1 SMP node)

Processor Type

Intel Pentium II 350 (standard nodes and RAID nodes)
Intel Pentium II Xeon 450 (SMP nodes)

Memory

256MB SDRAM, PC100, ECC, (standard nodes and RAID nodes)
2GB (SMP node)

Disk adapters
IDE
SCSI

Onboard Intel PCI (PIIX4) dual ultra DMA/33
UltraWide SCSI

RAID device

Morstor TF200 with 6-9GB Seagate SCSI disks, 7200rpm,
QLogic 64-bit PCI-Fibre Channel Adapter

RAID level 5
RAID capacity 36GB usable, one hot spare
IDE disk IBM UltraATA, 8.4GB, 5400rpm
Parallel file system NFS 3
Network 10/100 Ethernet Cisco Catalyst 2924 Switch
NIC Intel 82558 10/100Mb

Table 1: Hardware specifics of the Beowulf Cluster used in this work.

| Disk/Operation [128] 512 | 1K | 2K | 4K [32K | 64K [128K | 512K [1MB |
IDE read 7.1]11.9[13.0[10.1][9.8 | 7.6 [8.5 | 8.2 [8.1 | 9.0
SCSI read non-local [0.4[1.1 [2.1 [3.9 | 5.6 | 7.0 | 7.5 [10.7| 9.9 | 8.9
SCSI read local 9.8[13.8[14.6 [16.7 | 16.4 | 19.5 | 16.1 [17.9 | 17.1 | 17.9
IDE write 26| 3.2 [37 |46] 4541]41]44]49]41
SCSI write non-local [0.2 0.6 [0.8 [1.7 [2.8 | 2.1 | 2.8 | 2.8 | 3.3 | 3.3
SCSI write local 4.6 8.2 [9.9 [12.5[11.6 [12.9 [11.2[10.0 | 11.3 | 12.1

Raw bandwidth rates in MBs per second for our Beowulf Cluster. IDE disks are locally connected;
bandwidth rates are provided for both non-locally connected SCSI disks and locally connected SCSI disks.

RAID
Node
P2-350Mhz p2 350Mhz P2-350Mhz

oooo oooo
\ oooo /

Local 10/100Mb Local
PCHDE Ethernet Switch PCHDE
Disk Disk

@ o o @ o @

P2-350Mhz P2-350Mhz P2-350Mhz

RAID
Node

Figure 2: The 32-node Joulian Beowulf Cluster. Complete information on the cluster can be found at
joulian.hpcl.neu.edu.

We evaluate a range of different implementations of these
applications. We utilize the MPICH 1.2.1-16 for MPI and
MPI I/O. We use the mpicc and mpif77 to compile the C
and fortran codes, respectively.

4.2 Experimental Results

Figures 3 and 4 present average read/write bandwidth

numbers for the NPB/BT benchmark. We measure the end- 200
to-end latency of each access and then aggregate these la- —
tencies to obtain an average bandwidth measurement. The
NPB/BT benchmark requires that the number of processes 160 I
be a square number. We compared parallel Unix I/O and 140
MPI 1/O with our partitioned I/O scheme. Unix file oper-
ations are generally slow and MPI I/O achieves significant
speedup in comparison. But MPI I/O can not scale on a
parallel system because performance is still bound by the
underlying disk subsystem. This fact is evident in all of
our results. Comparing partitioned I/O with MPI I/O for
NPB/BT, we achieve a speedup factor of up to 32.8X on 40 |
reads and 17.8X on writes, while also scaling throughput as 20 |
the size of our system increases.

Figures 5 and 6 show the read and write bandwidth for 0 - —
the SPECseis96.1.2 benchmark. Again, we measured the unix-1o MPHO Partitioned
performance of Unix I/O, MPI collective I/O, as well as our
partitioned I/O scheme. Compared with MPI I/O, the per-
formance of partitioned I/O improved by a factor as much Figure 3: NPB read bandwidth in MBs/second.
as 31.7X on reads and 3.7X on writes. This workload also
scales well when using partitioned I/O on a larger number
of nodes.

Figure 7 shows the read and write throughput for the
MPI-Tile I/O benchmark. The left two bars show the read
bandwidth and the right two bars show the write bandwidth.

The speedup of partitioned 1/O over MPI I/0O is 15.7X and

W 4 procs
E9 procs
100 ||| m16 procs
025 procs

120 —

80 —

Bandwidth MBs/second

60 —

100

80 —

70 —

40 —

2

o

S 60 || =4 procs
% @9 procs
g 50 || m16 procs
s 025 procs
3

H

=

©

[31]

30 —

20 —

10 —

o sl | L

Unix-10 MPI-IO Partitioned

Figure 4: NPB write bandwidth in MBs/second.

250

200
°
c
o W 4 procs
@ 150 p
2 I 8 procs
n§: W 16 procs
- 0 24 procs
el
2 100
©
[=
[
[a1]

50

Unix-10 MPI-IO

Partitioned

Figure 5: SPEChpc read bandwidth in MBs/second.

35

30
25 |
=]
c
S M 4 procs
Q
2 20 | @8 procs
o W 16 procs
=
- 0 24 procs
515
=
=}
3
o 10 —
51 -
0
Unix-10 MPI-IO Partitioned
Figure 6: SPEChpc write bandwidth in
MBs/second.

5.1X for reads and writes, respectively. The reduction in
read bandwidth is due to the amount of overlap between
data chunks.

Figure 8 shows the read and write throughput for the Perf
benchmark. The left two bars in each graph show the read
bandwidth and the right two bars show the write bandwidth.
The speedup of partitioned I/O over MPI I/0O is 24.6X and
7.7X for reads and writes, respectively.

Figure 9 shows the read and write throughput for the
Mandelbrot workload. The figure shows both read and write
performance for both MPI I/O and partitioned I/O. The
speedup for reads is 37.8X and for writes is 20.7X.

Figure 10 shows the overall execution time for our five
applications as run on 24 nodes (25 for NPB-BT). We cap-
ture the runtimes for MPI I/O and partitioned I/O. Parti-
tioned I/O achieved a significant reduction for all the bench-
marks. The NPB/BT and SPEChpc are both computation-
intensive and 1/O-intensive applications. The MPI-Tile I/O
and Perf benchmarks only issue parallel I/O’s. The Man-
delbrot program is I/O and compute intensive, while also
performing a significant amount of visualization. The over-
all reduction in runtime of these five workloads are 47.2%,
31.6%, 82.6%, 81.2% and 27.8% for NPB-BT, SPEChpc,
MPI-Tile, Perf, and Mandelbrot, respectively.

5. DISCUSSION

In this paper, we have presented a profile-guided ap-
proach to achieve scalable I/O speedup. We have been able
to create multiple I/O channels, improve disk seek times
and decrease I/O latency. Our results demonstrate that our
scheme yields significant performance improvements for the
parallel applications we have studied.

For our profile-guided approach to be adopted, the tech-
nique needs to be resilient to changes between the input
training set and the runtime dataset. We have evaluated the
sensitivity to various changes in terms of the stored data val-
ues, the number of processes and the dataset sizes. We have
found that changes in data values have little effect on the
profile data, and so there is no need to re-profile an applica-

140

120

100

80

60

Bandwidth MBs/second

40

20

Figure

W 4 procs

@8 procs
| 16 procs
024 procs

o | I])

MPI-10 Read Partitioned MPI-IO Write Partitioned
Read Write

7: MPI-Tile I/0 read and write bandwidth

in MBs/second.

250
200 ’7
°
c
3
@ 150 W 4 procs
a @8 procs
= | 16 procs
£ 024 procs
2 100
=
°
o
©
a
50
o | M] ||
MPI-IO Read Partitioned MPI-IO Write Partitioned
Read Write
Figure 8: Perf read and write bandwidth in
MBs/second.

250

200
g
15}
8 150 W4 procs
£ @8 procs
= 16 procs
kS 124 procs
2 100
=
°
=
<
[aa]

50
04

MPI-IO Read

Partitioned
Read

MPI-IO Write Partitioned

Write

Figure 9: Mandelbrot read and write bandwidth in
MBs/second.

3500

3000

2500

2000 -

1500 -+

1000 -

Total Execution Time (seconds)

500 -

H MPI-IO

O Partitioned

.

|-

NPB/BT

SPEChpc

MPI-Tile

Perf Mandelbrot

Figure 10: Performance of the entire applications
comparing MPI I/O and partitioned I/0.

tion when the input data set values are changed. When we
change the number of processes, the chunk size will change
predictably. For instance, in NPB2.4/BT benchmark, we
have made the following observations:

e file access patterns remain the same when data values
change; and

e data chunk sizes vary with the number of processes.

For example, when using 16 processes, each process accesses
chunks of 1040 bytes; when we move to 25 processes, the
chunk size decreases to 800 bytes. The chuck size decreases
by a factor governed by the square root of the number of pro-
cesses. While chunk sizes change with a changing number of
processes, the write and read access patterns are indepen-
dent of the number of processes.

We did experience some differences when we changed the
size of the file-based datasets. Through further analysis, we
found we could detect two different trends. When increasing
the size of the input dataset, either:

e the number of I/O increases, though the pattern of
I/0O’s remained the same, and the chunk size remains
the same (e.g., these patterns were observed in both
SPEChpc96 and Mandelbrot), or

e the size of each chunk increases, while the number of
I/O’s remains the same (e.g., in NPB2.4/BT, MPI-
Tile-10, and Perf).

To better understand which pattern is followed, we can ei-
ther inspect the application source, or we can re-profile for a
short sample. We will quickly see which pattern is followed,
and adjust our partitioning for the larger dataset accord-
ingly.

For other classes of the file intensive applications, such
as multimedia and database, file access patterns will dif-
fer from parallel scientific applications. This difference be-
gins to become apparent in our imaging application (Man-
delbrot), where we obtained the smallest overall speedup.
Multimedia applications tend to access fixed-content files
sequentially. Database applications typically access small
data chunks and the access patterns can be dependent on
the data values in the database. One issue that arises for
database applications is that the I/O latency time, instead
of the I/O throughput, becomes the dominant factor for ap-
plication performance. Since chunk sizes are typically much
smaller (on the order of 10-100 bytes), the benefits of parti-
tioning may not be as dramatic as were found in the scientific
applications studied.

Another direction for our work is to implement file parti-
tioning as a step in compilation. Since many I/O reference
patterns can be identified statically, we can exploit this in-
formation during compilation. This approach mimics back-
end compiler optimizations that have been proposed to im-
prove the layout of static [10, 16] and dynamic data struc-
tures [5] to better utilize multi-level memory hierarchies.

While we have focused on file-intensive applications, if we
begin to process larger file inputs, we will begin to see that
these applications are also memory bound (i.e., out-of-core).
Larger files will pose new challenges for us, trying to manage
the allocation of disk bandwidth between file access traf-
fic and swap traffic. We are considering how to combine
compile-time out-of-core techniques [1, 18] with compile-
time file partitioning, all in one compiler framework. We

have already begun to study some out-of-core sorting and
permutation codes that are also file-I/O intensive [6].

6. ACKNOWLEDGEMENTS

This work was supported by CenSSIS, the Center for Sub-
surface Sensing and Imaging Systems, under the Engineer-
ing Research Centers Program of the NSF (Award Number
EEC-9986821), and by and the NSF Major Research Instru-
mentation Program (Award Number MRI-9871022).

7. SUMMARY

To achieve scalable I/O performance of parallel appli-
cations, it is important to parallelize I/O streams at both
the application and file levels. In this paper, we present a
new approach to parallelize I/O accesses by generating I/O
profiles. We then use these profiles to determine how best
to partition the data across multiple disks to achieve high
I/0 parallelism. For the applications we have studied, par-
titioned I/O reduced overall execution time by as much as
82% compared with MPI collective I/0.

In future work we are extending our set of workloads to
consider both multimedia and database file-intensive appli-
cations. We are also considering how best to estimate file
access characteristics at compile time, removing the need to
obtain profile runs of the program.

8. REFERENCES

[1] R. Bordawekar, A. Choudhary, and R. Thakur. Data
Access Reorganizations in Compiling Out-of-Core
Parallel Programs on Distributed Memory Machines.
Technical report, September 1994.

[2] P. Brezany, A. Choudhary, and M. Dang. Language
and Compiler Support for Out-of-Core Irregular
Applications on Distributed-Memory Multiprocessors.
In Languages, Compilers, and Run-Time Systems for
Scalable Computers, pages 343-350, 1998.

[3] A. D. Brown, T. Mowry, and O. Krieger.
Compiler-Based I/O Prefetching for Out-of-Core
Applications. ACM Transactions on Computer
Systems, 19(2):111-170, 2001.

[4] P. Chen and E. Lee. Striping in a RAID Level 5 Disk
Array. In Proceedings of the 1995 ACM
SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems,
pages 136-145, Ottawa, Canada, 15-19 1995.

[5] T. Chilimbi, M. Hill, and J. Larus. Cache-Conscious
Structure Layout. In SIGPLAN Conference on
Programming Language Design and Implementation,
pages 1-12, 1999.

[6] G. Cooperman and X. Ma. Overcoming the Memory
Wall in Symbolic Algebra: A Faster Permutation
Algorithm. In SIGSAM Bulletin, 2003.

[7] D. Kaeli, L. Fong, D. Renfrew, K. Imming and
R. Booth. Performance of a CC-NUMA Prototype.
IBM Journal of Research and Development,
41(3):205-214, 1997.

[8] D. Kotz. Disk-directed i/o for an out-of-core
computation. Technical report, 1995.

[9] E. Smini and D.A. Reed. Lessons from Characterizing
the Input/Output Behavior of Parallel Scientific
Applications. Performance Evaluation, 3:27-44, 1998.

[10]

[11]

D. Genius and S. Lelait. Improving Data Layout
through Coloring-directed Array Merging. Technical
Report iratr-1999-3, Universitat Karlsruhe, 1999.

H. Simitci and D.A. Reed. A Comparison of Logical
and Physical Parallel I/O Patterns. International
Journal of High Performance Computing Applications,
12(3):364-380, 1998.

M. Kandemir, R. Bordawekar, A. Choudhary, and

J. Ramanujam. A Unified Titling Approach for
Out-of-Core Computation. Technical report, 1996.
M. Kandemir, A. Choudhary, J. Ramanujam, and
R. Bordawekar. Optimizing Out-of-Core
Computations in Uniprocessors. In Proceedings of the
Workshop on Interaction between Compilers and
Computer Architectures, pages 1-10, 1997.

M. Ashouei, D. Jiang, W. Meleis, D. Kaeli,

M. El-Shenawee, E. Mizan, Y. Wang, C. Rappaport
and C. DiMarzio. Profile-based characterization and
tuning for subsurface sensing and imaging
applications. International Journal of Systems,
Science and Technology, pages 40-55, Sep 2002.

T. Madhyastha and D. Reed. Learning to classify
parallel input/output access patterns. IEEE
Transactions On Parallel And Distributed Systems,
13(8), 2002.

K. S. McKinley, S. Carr, and C.-W. Tseng. Improving
Data Locality with Loop Transformations. ACM
Transactions on Programming Languages and
Systems, 18(4):424-453, July 1996.

G. Memik, M. Kandemir, and A. Choudhary. Design
and Evaluation of a Compiler-directed Collective I/O
technique. In Proceedings of 6th Annual EuroPar
Conference, pages 1263-1272, Aug-Sept 2000.

K. Moor. I/O Performance Enhancements of
Out-of-Core Applications. Notre Dame University,
Department of Computer Science and Engineering.
MPICH - A Portable Implementation of MPI. URL:
www-unix.mcs.anl.gov/mpi/mpich.

N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis,
and M. Best. File-Access Characteristics of Parallel
Scientific Workloads. IEEE Transactions on Parallel
and Distributed Systems, 7(10):1075-1089, 1996.

(21]

(22]

23]

(24]

(25]

[26]

27]

(28]

D. Patterson, G. Gibson, and R. Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In
Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, pages 109-116,
1995.

R. Patterson, G. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed Prefetching and Caching. In
Proceedings of the 15th ACM Symposium on Operating
System Principles, pages 79-95, Dec 1995.

R. Bagrodia, A. Chien, Y. Hsu and D. Reed.
Input/output: Instrumentation, characterization,
modeling and management policy. Technical report,
CalTech Concurrent Supercomputing Facilities,
CalTech, 1994.

A. N. Reddy and P. Bannerjee. A Study of I/O
Behavior of Perfect Benchmarks on a Multicomputer.
In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 312-321,
1990.

R. Thakur, R. Bordawekar, and A. Choudhary.
Compiler and Runtime Support for Out-of-Core HPF
Programs. In Proceedings of the 8th ACM
International Conference on Supercomputing, pages
382-391, Manchester, UK, 1994. ACM Press.

R. Thakur, W. Gropp, and E. Lusk. Users Guide for
ROMIO: A High-Performance, Portable MPI-10
Implementation. Mathematics and Computer Science
Division, Argonne National Laboratory, Oct. 1997.
ANL/MCS-TM-234.

R. Thakur, W. Gropp, and E. Lusk. Data Sieving and
Collective I/O in ROMIO. In Proceedings of the Tth
Sympostum on Frontiers of Massively Parallel
Computation, February 1999.

R. Thakur, W. Gropp, and E. Lusk. On Implementing
MPI-IO Portably and with High Performance. In
Proceedings of the Sizth Workshop on Input/Output in
Parallel and Distributed Systems, pages 23-32, 1999.

