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Abstract—This paper investigates the potential of the com-
pressed sensing (CS) paradigm for video streaming in Wireless
Multimedia Sensor Networks. The objective is to co-design alow-
complexity video encoder based on compressed sensing and a
rate-adaptive streaming protocol for wireless video transmission.
The proposed rate control scheme is designed with the objectives
to maximize the received video quality at the receiver and to
prevent network congestion while maintaining fairness between
multiple video transmissions. Video distortion is represented
through analytical and empirical models and minimized based
on a new cross-layer control algorithm that jointly regulates the
video encoding rate and the channel coding rate at the physical
layer based on the estimated channel quality. The end-to-end
data rate is regulated to avoid congestion while maintaining
fairness in the domain of video quality rather than data rate.
The proposed scheme is shown to outperform TCP-Friendly Rate
Control (TFRC).

I. I NTRODUCTION

Wireless Multimedia Sensor Networks (WMSN) [1] are
self-organizing wireless systems of embedded devices de-
ployed to retrieve, distributively process in real-time, store,
correlate, and fuse multimedia streams originated from het-
erogeneous sources. WMSNs will enable new applications
including surveillance, storage and subsequent retrievalof
potentially relevant activities, and person locator services.

In recent years, there has been intense research and con-
siderable progress in solving numerous wireless sensor net-
working challenges. However, the key problem of enabling
real-time quality-aware video streaming in large-scale multi-
hop wireless networks of embedded devices is still open and
largely unexplored [1]. There are two key shortcomings in
systems based on sending predictively encoded video (e.g.,
MPEG-4 Part 2, H.264/AVC [2], [3], [4], H.264/SVC [5])
through a layered wireless communication protocol stack, i.e.,
encoder complexity and low resiliency to channel errors.

• Encoder Complexity.Predictive encoding requires com-
plex processing algorithms, which lead to high en-
ergy consumption [1], [6]. Instead, new video encoding
paradigms are needed to reverse the traditional balance
of complex encoder and simple decoder, which is un-
suited for embedded video sensors. Recently developed
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Fig. 1. Architecture of C-DMRC system.

distributed video coding [7] algorithms (aka Wyner- Ziv
coding [8]) exploit the source statistics at the decoder,
thus shifting the complexity at this end. While promising
for WMSNs [1], most practical Wyner-Ziv codecs require
end-to-end feedback from the decoder [9], [10], which
introduces additional overhead and delay. Furthermore,
gains demonstrated by practical distributed video codecs
are limited to 2-5 dBs PSNR [9], [10]. Distributed video
encoders that do not require end-to-end feedback have
been recently proposed [11], but at the expense of a
further reduction in performance.

• Limited Resiliency to Channel Errors. Ideally, when
one bit is in error, the effect on the reconstructed video
should be unperceivable, with minimal overhead. In ad-
dition, the perceived video quality should gracefully and
proportionally degrade with decreasing channel quality.

In this paper, we show how a new cross-layer optimized
communication protocol stack based on the recently proposed
compressed sensing (CS) paradigm [12], [13], [14], [15] can
offer a viable solution to the aforementioned problems. Com-
pressed sensing (aka “compressive sampling”) is a paradigm
that allows the faithful recovery of sparse signals fromM <<
N measurements whereN is the number of samples required
by the Nyquist sampling theorem. The CS paradigm can
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offer an alternative to traditional video encoders by enabling
imaging systems that sense and compress data simultaneously
and much faster,at very low computational complexity for the
encoder. Image coding and decoding based on CS has been re-
cently explored [16], [17]. So-called single-pixel cameras that
can operate efficiently across a much broader spectral range
(including infrared) than conventional silicon-based cameras
have also been proposed [18]. However, transmission of CS
images and video streaming in wireless networks, and their
statistical traffic characterization, are substantially unexplored.

We hereby introduce the Compressive Distortion-
Minimizing Rate Control (C-DMRC), a new distributed
cross-layer control algorithm that jointly regulates the CS
sampling rate, the data rate injected in the network, and the
rate of a simple parity-based channel encoder to maximize
the received video quality over a multi-hop wireless network
with lossy links. The cross-layer architecture of our proposed
integrated congestion control and video transmission scheme is
shown in Fig. 1. By jointly controlling the compressive video
coding at the application layer, the rate at the transport layer,
and the adaptive parity at the physical layer, we can leverage
information at all three layers to develop an integrated optimal
congestion-avoiding and distortion-minimizing system. Our
work makes the following contributions:

• Distortion-Based Rate Control.C-DMRC leverages the
estimated received video quality as the basis of the rate
control decision. The transmitting node alters the quality
of the transmitted video directly rather than controlling
the data rate. By controlling congestion in this way,
fairness in the quality of the received videos is maintained
even over videos with very different compression ratios.

• Rate Change Aggressiveness Based on Video Quality.
Based on this CS architecture, we develop a system
where nodes adapt therate of change of their transmitted
video quality based on the impact that a change in the
transmission rate will have on the received video quality.
This means that the rate controller uses the information
about the estimated received video quality directly in the
rate control decision. If the sending node estimates that
the received video quality is very high, it will be less
likely to increase the rate dramatically, even if theRTT
values indicate that the congestion in the network would
allow the rate increase. Conversely, if a node is sending
poor-quality video, it will gracefully decrease its data
rate, even if theRTT indicates a congested network.

• Video Transmission Using Compressive Sampling.In
our previous work [19], the rate control used the quality
level of the MPEG encoded video to estimate the received
video quality. In this work, the concept is taken further
by using compressed sensed video, rather than traditional
MPEG encoded video. Also, the rate control algorithm
is refined to use the rate-distortion curve parameters
directly, rather than using a parameterized version of the
index of the MPEG encoding parameters.

The remainder of this paper is structured as follows. In

Section II, we discuss related work. In Section III we introduce
the C-DMRC system architecture. In Section IV, we introduce
the proposed video encoder based on compressed sensing
(CSV). In Section V, we introduce the rate control system.
Section VI introduces an adaptive parity channel encoder.
Finally, the performance results are presented in Section VII,
while Section VIII we draw the main conclusions and discuss
future work.

II. RELATED WORK

The most common rate control scheme is the well-known
transmission control protocol (TCP) [20][21][22]. It is well
known that because of the additive increase/multiplicative-
decrease algorithm used in TCP, the rate that it determines
varies too quickly for high-quality video transfer [23]. In
addition, TCP assumes that the main cause of packet loss is
congestion [24]. However, in wireless networks channel errors
must be taken into account if an accurate prediction of the
network congestion is needed.

These considerations have led to a number of equation-
based rate control schemes. Equation-based rate control an-
alytically regulates the transmission rate of a node based
on measured parameters such as the number of lost packets
and the round trip time (RTT ) of the data packets. Two
examples of this are the TCP-Friendly Rate Control (TFRC)
[24], which uses the throughput equation of TCP Reno [20],
and the Analytical Rate Control (ARC) [25]. Both of these
schemes attempt to determine a source rate that is fair to
any TCP streams that are concurrently being transmitted in
the network. However, in a WMSN, priority must be given to
the delay-sensitive flows at the expense of other delay-tolerant
data. Therefore, both TCP and ARC result in a transmission
rate that is more conservative than the optimal rate. For this
reason, in an effort to optimize resource utilization in resource-
constrained WMSNs, our scheme does not take TCP fairness
into account.

Recent work has investigated the effects of packet loss and
compression on video quality. In [26], the authors analyze the
video distortion over lossy channels of MPEG-encoded video
with both inter-frame coding and intra-frame coding. A factor
β is defined as the percentage of frames that are an intra-
frame, or I frame, i.e., a frame that is independently coded.The
authors then derive the valueβ that optimizes distortion at the
receiver. The authors of [26] investigates optimal strategies to
transmit video with minimal distortion. However, the authors
assume that the I frames are received correctly, and that the
only loss is caused by the inter-coded frames. In this paper,
we assume that any packet can be lost, and attempt to use
CS and adaptive parity in order to combat these losses and
increase the received video quality.

QoS for video over the Internet has been studied in [27]
and [28]. Both of these works deal with QoS of video over
the Internet in a TCP or TCP-Friendly manner. In general,
a WMSN will not be directly connected to the Internet, so
following these assumptions will result in significant underes-
timation of the available video quality.
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Finally, several recent papers take a preliminary look at
video encoding using compressed sensing [29], [30], [31].
Our work is different in the following sense: (i) we only use
information that can be obtained from a single-pixel camera
[18] and do not use the original image in the encoding process
at the transmitter. Hence, C-DMRC is compatible with direct
detection of infrared or terahertz wavelength images, along
with the ability to compress images during the detection
process, avoiding the need to store the entire image before it
is compressed; (ii) more importantly, we look at the problem
from a networking perspective, and consider the effect of joint
rate control at the transport layer, video encoding, and channel
coding to design an integrated system that maximizes the
quality of CS video transmitted over wireless links.

III. SYSTEM ARCHITECTURE

In this section, we describe the overall architecture of the
compressive distortion-minimizing rate controller (C-DMRC).
The system takes a sequence of images at a user-defined
number of frames per second and wirelessly transmits an
encoded video, where the encoding is done using compressed
sensing. The end-to-endRTT is measured to perform conges-
tion control for the video within the network, and theBER
is measured/estimated to provide protection against channel
losses. This system combines functionalities of the application
layer, the transport layer and the physical layer to delivervideo
through a multi-hop wireless network to maximize the received
video quality while accounting for network congestion and
lossy channels. As shown in Fig. 2, there are four main
components to the system.

A. CS Camera

This is the system where the compressed sensing image
capture takes place. The details of compressed sensing are
discussed in detail in Section IV-A1. The camera assumed
for use in this system can be either a traditional CCD or
CMOS imaging system, or a single pixel camera as discussed
in [18]. In the latter case, the samples of the image are directly
obtained by measuring the intensity of a random sample
of small portions of the image, and summing the intensity

through the use of a photodiode. The samples generated are
then passed to the video encoder.

B. CSV Video Encoder

The CSV video encoder is discussed in Section IV-B. The
encoder takes the raw samples from the camera and generates
compressed video frames. The compression is based on the
temporal correlation between frames. The number of samples,
along with the sampling matrix (i.e. which pixels are combined
to create each sample) are determined at this block. The
number of samples, orsampling rate, is based on input from
the C-DMRC block, while the sampling matrix is chosen so
that the sender and receiver are both using the same sampling
matrix for a given video stream.

C. Rate Controller

The C-DMRC block takes as input the end-to-endRTT
of the previous packets and the estimated sample loss rate to
determine the optimal sampling rate for the video encoder.
This sampling rate is then fed back to the video encoder. The
rate control law, which is designed to maximize the received
video quality while preserving fairness among competing
videos, is described in detail Section V. The CS sampling
rate determined by the C-DMRC block is chosen to provide
the optimal received video quality across the entire network,
which is done by using theRTT to estimate the congestion
in the network along with the input from the adaptive parity
block to compensate for lossy channels.

D. Adaptive Parity

The Adaptive Parity block uses the measured or estimated
sample error rate of the channel in order to determine a
parity scheme for encoding the samples, which are input
directly from the video encoder. The Adaptive Parity scheme
is described in Section VI.

IV. CS VIDEO ENCODER (CSV)

In this section, we introduce the video encoder component
of the compressive distortion-minimizing rate control system.

A. Video Model

1) Compressed Sensing Preliminaries: We consider an im-
age signal represented through a vectorx ∈ RN , whereN
is the vector length. We assume that there exists an invertible
N × N transform matrixΨ such that

x = Ψs (1)

wheres is a K-sparse vector, i.e.,||s||0 = K with K < N ,
and where|| · ||p representsp-norm. This means that the
image has a sparse representation in some transformed domain,
e.g., wavelet. The signal is measured by takingM < N
measurements from linear combinations of the element vectors
through a linear measurement operatorΦ. Hence,

y = Φx = ΦΨs = Ψ̃s. (2)

We would like to recoverx from measurements iny. However,
sinceM < N the system is underdetermined. Hence, given a
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solution s0 to (2), any vectors∗ such thats∗ = s0 + n, and
n ∈ N (Ψ̃) (whereN (Ψ̃) represents the null space ofΨ̃), is
also a solution to (3). However, it was proven in [13] that if the
measurement matrixΦ is sufficiently incoherent with respect
to the sparsifying matrixΨ, and K is smaller than a given
threshold (i.e., the sparse representations of the original signal
x is “sparse enough”), then the originals can be recovered by
finding the sparsest solution that satisfies (2), i.e., the sparsest
solution that “matches” the measurements iny. However, the
problem above is in general NP-hard [32]. For matricesΨ̃

with sufficiently incoherent columns, whenever this problem
has a sufficiently sparse solution, the solution is unique, and
it is equal to the solution of the following problem:

P1 : minimize ||s||1

subject to : ||y − Ψ̃s||22 < ǫ, (3)

whereǫ is a small tolerance. Note that problemP1 is a convex
optimization problem [33]. The reconstruction complexity
equalsO(M2N3/2) if the problem is solved using interior
point methods [34]. Although more efficient reconstruction
techniques exist [35], the framework presented in this paper
is independent of the specific reconstruction method used.

2) Frame Representation: We represent each frame of the
video by 8-bit intensity values, i.e., a grayscale bitmap. To
satisfy the sparsity requirement of CS theory, the wavelet
transform [36] is used as a sparsifying base. A conventional
imaging system or a single-pixel camera [18] can be the base
of the imaging scheme. In the latter case, the video source only
obtains random samples of the image (i.e., linear combinations
of the pixel intensities). In our model, the image can be
sampled using a scrambled block Hadamard ensemble [37]

y = H32 · x, (4)

wherey represents image samples (measurements),H32 is
the 32 × 32 Hadamard matrix andx the matrix of the image
pixels. The matrixx has been randomly reordered and shaped
into a 32 × N

32
matrix whereN is the number of pixels in

the image. ThenM samples are randomly chosen fromx
and transmitted to the receiver. The receiver then uses the
M samples along with the randomization patterns for both
randomizing the pixels intox and choosing the samples out
of x to be transmitted (both of which can be decided before
network setup) and recreates the image solvingP1 in (3)
through a suitable algorithm, e.g., GPSR1 [38], StOMP [39].

B. CS Video Encoder (CSV)

The CSV video encoder uses compressed sensing to encode
video by exploiting the spatial and temporal redundancy
within the individual frames and between adjacent frames,
respectively.

1GPSR is used for image reconstruction in the simulation results presented
in this paper.
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Fig. 3. Structural Similarity (SSIM) Index [40] for Images with a Constant
Bit Rate of 37% of the Original Image Size for Varying Quantization Levels.

1) Intra-frame (I) Encoding: As stated above, each of theI
frames are encoded individually, i.e., as asingle image that is
independent of the surrounding frames. Two variables mainly
affect the compression ofI frames; the sample quantization
rate (Q), and the ratio of samples per pixel (γ), referred to as
the sampling rate.

Sample Quantization Rate.The sample quantization rate
(Q) refers to the number of bits per sample used to quantize the
data for digital transmission. We conducted empirical studies
to test the effect of quantization of the samples generated from
linear combinations of these pixels as in (4) over a set of
reference images with a constant overall compression rate,
and reported in Fig. 3, which shows the SSIM2 index [40]
of a set of reference images for multiple quantization levels.
The reference images used are 25 grayscale images from the
USC Signal and Image Processing Institute image repository
[41]. As Q decreases and less bits are being used to encode
each sample, more samples can be obtained for the same
compression rate. There is a clear maximum value atQ = 5.

Sampling Rate γ. The sampling rateγ is the number
of transmitted samples per original image pixel. Again, an
empirical study was performed on the images in [41] to
determine the amount of distortion in the recreated images
due to varying sampling rates, and is reported in Fig. 4.

The proposed CSV encoder is designed to: i) encode video
at low complexity for the encoder, and ii) take advantage of
the temporal correlation between frames. While the proposed
method is general, it works particularly well for security
videos, in which the camera is not moving, but only the
objects within the field of view (FOV) of the camera are
moving. Because of this, there will often be a large amount
of redundancy from one frame of the video to the next. To
exploit this redundancy within the framework of compressed
sensing, we take the algebraic difference between the CS

2The SSIM index is preferred to the more widespread PSNR, which has
been recently shown to be inconsistent with human eye perception [40].
SSIM is a more accurate measurement of error because the human visual
system perceives structural errors in the image more than others. For example,
changes in contrast or luminance, although mathematicallysignificant, are
very difficult to discern for the human eye. Structural differences such as
blurring, however, are very noticeable. SSIM is able to weight these structural
differences better to create a measurement closer to what isvisually noticeable
than traditional measures of image similarity such as mean squared error
(MSE) or PSNR.
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samples. Then, this difference isagain compressively sampled
and transmitted. If the image being encoded and the reference
image are very similar (i.e. have a very high correlation
coefficient), then this difference image will be sparser and
have less variance than either of the original images, and
can therefore be transmitted at the same quality using fewer
samples and a lowerQ than the original image.

2) Video Encoding: The video encoding process is deter-
mined by the type of encoding to be used for a given frame,
as shown in Fig. 5. The pattern of the encoded frames is
IPPP · · ·PIPPP · · · , where the distance between twoI
frames is referred to as the group of pictures (GOP ).

I frames are encoded using (4). The number of samples
to include is determined asγ · N , whereN is the number
of pixels in the unencoded frame andγ is the sampling rate.
The rate control law to determine the current value forγ is
discussed in Section V. The samples are then quantized with
Q = 5 and transmitted over the channel.

P frames are also sampled using (4) withγ equal to the
γ of the most recentI frame. The difference vector (dv) for
frame t is then calculated with

dv = S∗

I − S∗

t , (5)

whereS∗

t is a vector containing all of the samples of the
tth frame, andS∗

I is the vector containing the samples of the
most recentI frame. The dv is then compressed again using
(4), quantized withQ = 3 and transmitted over the channel.

3) Video Decoding: The decoding process, shown in Fig.
6, uses (3) to determine thedv (in the case of aP frame) and
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Store
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Samples

Decoded
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I Frame Samples

I Frame Samples

Image

Vector
P Frame SamplesDifference

dv Samples

Fig. 6. Block Diagram for CS Video Decoder.

the original frame. ForI frames, the frame can be directly
reconstructed from the received samples. ForP frames, thedv
must first be reconstructed. Once this vector is reconstructed
using (3), the samples for thetth P frame are found byS∗

P =
dv + S∗

I . The tth frame is then reconstructed using (3) from
S∗

P .

V. RATE CONTROL SUBSYSTEM

In this section, we introduce the congestion avoidance rate
control mechanism for use with the compressed sensed video
encoder (CSV) described in Section IV-B. This rate control
system both provides fairness in terms of video quality and
maximizes the overall video quality of concurrent videos
transported through the network.

To avoid network congestion, a sending node needs to take
two main factors into account. First, the sender needs to
regulate its rate in such a way as to allow any competing
transmissions at least as much bandwidth as it needs to attain
a comparable video quality as itself. Note that this is different
from current Internet practice, in which the emphasis is on
achieving fairness in terms of data rate (not video quality).
Second, the sender needs to regulate its rate to make sure that
packet losses due to buffer overflows are reduced, which can
be done by reducing the overall data rate if it increases to a
level which the network can not handle.

To measure congestion, the round trip timeRTT is mea-
sured for the transmitted video packets, whereRTT is defined
as the amount of time it takes for a packet to go from the
source to the destination and a small reply packet to go from
the destination back to the source. In this paper, the change
in RTT (∆RTT ) is measured as

∆R̃TTt =

N−1
∑

i=0

Ai · RTTt−i

N ·
N−1
∑

i=0

Ai

−

N
∑

i=1

Ai · RTTt−i

N ·
N

∑

i=1

Ai

, (6)

which is the difference of the weighted average over the
previousN receivedRTT measurements with and without
the most recent measurement. The weightsAi are used to
low-pass filter the round trip time measurements, i.e., to give
more importance to the most recentRTT measurements and to
make sure that the protocol reacts quickly to current network
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events, while averaging assures that nodes do not react too
quickly to a single high or low measurement.

A. Indirect Rate Control

The video encoder described in Section IV generates two
types of video frames; theI frame, which is an intra-encoded
frame, and theP frame, which is an inter-encoded frame. The
I frames areindependently encoded, i.e., they are encoded
using only the data contained within a single frame allowing
these frames to be decoded independently of the previous
frame. However, I frames do not take advantage of correlation
between frames resulting in lower rate-distortion performance.
P frames on the other hand are encoded based on previous
frames by leveraging the temporal correlation between frames.
Although this results in smaller frame sizes, it also allows
errors to propagate from one frame to the next [26].

We present a novel approach in which the rate is not
controlled directly, but instead the data rate is varied indirectly
by varying the compression rateγI , defined in Section IV-B1.
More specifically,γI is directly controlled by the rate con-
troller, based on the RTT. Since theγI is linearly proportional
to the compression of theI frames as seen in Fig. 7, this
directly controls the compression rate of the entire video.
This is important because the compression of theI frames
can be directly controlled through one variable, while the
compression of theP frames depends not only onγI , but
also on the amount of redundancy between theP frame and
the previous frame. Because of this linear relationship, we
can confidently control the compression of the entire video by
varying a single parameter.

We model the quality of the received video stream with a
three-parameter model [26]

DI = D0 +
θ

γI − R0

, (7)

whereDI represents the distortion of the video andRm
I . The

parametersD0, θ andR0 depend on the video characteristics
and Q and can be estimated from empirical rate-distortion
curves via a linear least-square curve fitting.

The rate control is based on the parameterδ, which is
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Encoder.

defined by

δ =
θ

(Rm
I − R0)2

, (8)

which is the derivative of (7).
δ is used in (9) below to promote fairness in terms of

distortion. If there are two nodes transmitting video and both
notice the same negative value for∆R̃TTt, the sending node
with the lower current video quality will take advantage of
the decreased network congestion more than the node which
is transmitting at a higher rate. The inverse is true for positive
values of ∆R̃TTt. This can be seen in Fig. 8. At lower
compression levels, a change in the rate has a larger impact on
the received image quality than an equal change will have at
a higher rate. Similarly,1 − δ results in a function with very
low values at low rates, and higher values at higher rates.
This 1− δ is used to prevent a node from decreasing the rate
significantly when the rate is already low, but encourage the
node to decrease the rate when the data rate is already high

At the source node of each video transmission, the amount
of data generated by the video source is implemented through
the equation

γI, t + 1 =











γI, t − δ · β · ∆R̃TTt if R̃TTt > α

γI, t + (1 − δ) · κ · ∆R̃TTt if R̃TTt < α

γI, t else,
(9)

whereβ > 0 andκ > 0 are both constants used to scaleδ
to the range of the sampling rate.

Channel errors are accounted for through the use of the
adaptive parity scheme, described in Section VI. The adaptive
parity scheme provides feedback to the C-DMRC rate con-
troller indicating the expected sample delivery success rate C.
Based on the value ofC, the rate controller can determine
how much to increase the data rate in order to compensate for
the expected number of lost samples.

VI. A DAPTIVE PARITY-BASED TRANSMISSION

For a fixed number of bits per frame, the perceptual quality
of video streams can be further improved by dropping errored
samples that would contribute to image reconstruction with
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incorrect information. This is demonstrated in Fig. 9 which
shows the image quality both with and without including
samples containing errors. Though the plots in Fig. 9 assume
that the receiver knows which samples have errors, it does
demonstrate that there is a very large possible gain in received
image quality is those samples containing errors can be found
without adding too much overhead.

We studied this for images in [42]. It was shown that in
CS, the transmitted samples constitute a random, incoherent
combination of the original image pixels. This means that,
unlike traditional wireless imaging systems, no individual sam-
ple is more important for image reconstruction than any other
sample. Instead, the number of correctly received samples is
the only main factor in determining the quality of the received
image. Because of this, a sample containing an error can
simply be discarded and the impact on the video quality,
as shown in Fig. 9, is negligible as long as the amount or
errors is small. This can be realized by using even parity
on a predefined number of samples, which are all dropped
at the receiver or at an intermediate node if the parity check
fails. This is particularly beneficial in situations when the BER
is still low, but too high to just ignore errors. To determine
the amount of samples to be jointly encoded, the amount of
correctly received samples is modeled as

C =

(

Q · b

Q · b + 1

)

(1 − BER)Q·b, (10)

where C is the estimated amount of correctly received
samples,b is the number of jointly encoded samples, andQ
is the quantization rate per sample. To determine the optimal
value ofb for a given BER, (10) can be differentiated, set equal

to zero and solved forb, resulting inb =
−1+

√

1− 4
log(1−BER)

2Q .
The optimal channel encoding rate can then be found from

the measured/estimated value for the end-to-end BER and used
to encode the samples based on (10). The received video
quality using the parity scheme described was compared to
different levels of channel protection using rate compatible
punctured codes (RCPC). Specifically, we use the1

4
mother

codes discussed in [43]. As these codes are punctured to
reduce the redundancy, the effectiveness of the codes decreases
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Fig. 10. Adaptive Parity vs RCPC Encoding for Variable Bit Error rates.

as far as the ability to correct bit errors. Therefore, we are
trading BER for transmission rate.

Figure 10 shows the adaptive parity scheme compared to
RCPC codes. For all reasonable bit error rates, the adaptive
parity scheme outperforms all levels of RCPC codes. The
parity scheme is also much simpler to implement than more
powerful forward error correction (FEC) schemes. This is
because, even though the FEC schemes show stronger error
correction capabilities, the additional overhead does notmake
up for the video quality increase compared to just dropping
the samples which have errors.

VII. PERFORMANCEEVALUATION

We perform two sets of experiments3 to verify the perfor-
mance of the C-DMRC system. First, the rate controller is
simulated using ns-2 version 2.33. In addition, to evaluatethe
effect of a real wireless channel, CS video streaming with the
adaptive parity-based channel encoder is tested on a multi-hop
testbed based on USRP2 software defined radios.

A. Evaluation of Rate Controller

The rate control algorithm of C-DMRC is compared directly
to TFRC to assess: (i) the received video quality for a single
video transmission; (ii) the overall fairness (as measured
with Jain’s Fairness Index); (iii) the overall received video
quality over multiple video transmissions. The topology ofthe
network is a Manhattan Grid consisting of 49 nodes (7x7). The
senders and sink are chosen randomly for 10 random number
seeds. All senders transmit video to a single sink node. Routing
is based on AODV [44], and MAC on 802.11.

We use real video traces recorded at the University at
Buffalo to simulate video traffic within the ns-2 simulator.
Initially, trace files are obtained from the CSV video encoder
for multiple values ofγI . These trace files are input into ns-
2, where the rate control decisions are made at simulation
time. The network simulator determines the sampling rateγI ,
and derives the video size based on this value. After network
simulation, a trace of the received samples is fed back into the
CSV video decoder and the resulting received video frames

3All simulation code and videos used in these simulations is available at
http://www.eng.buffalo.edu/wnesl/Scott.htm

http://www.eng.buffalo.edu/wnesl/Scott.htm
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Fig. 12. SSIM of a multiple video transmissions using C-DMRCand TFRC.

are recreated. These video frames are then compared to the
original uncompressed (and untransmitted) video.

The first experiment simulates a single-video transmission
within the 49 node network. This is done to compare C-
DMRC and TFRC in a best-case scenario (i.e., no inter-flow
interference and sufficient available capacity). Figure 11shows
the instantaneous SSIM at each frame of a 1300 frame video.
Clearly, C-DMRC results in a higher SSIM value for almost
the entire video. The portions of the graph where both SSIM
values drop represent portions of the video where the traffic
originating from the video increased, resulting in an increase
of RTT and a decrease in the sampling rate. Both C-DMRC
and TFRC responded to this traffic increase quickly, but C-
DMRC recovered much more quickly than TFRC.

The second simulations compare C-DMRC and TFRC with
multiple videos simultaneously transmitted in the network. The
number of video transmissions varied from 1 to 5, with each
video starting 10 seconds (120 frames) after the previous. The
varying starting rates assure that videos starting at different
times are treated fairly.

Figure 12 shows the results from this simulation. For each
of the simulations, C-DMRC results in a higher average SSIM
than TFRC. The fairness is evaluated in Fig. 13, where Jain’s
Fairness Index [45] measures the fairness between multiple
senders. Again, C-DMRC clearly performs better than TFRC.

B. Adaptive Parity Testbed Evaluation

The considered testbed setup uses USRP2 [46] and GNU
radio [47]. A two-hop network is considered. The MAC
protocol is IEEE 802.11 and the modulation scheme employed
is differential quadrature phase shift keying (DQPSK), with a
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Fig. 13. Jain’s Fairness Index of a multiple video transmissions using C-
DMRC and TFRC.

physical layer data rate of2 Mbit/s. The radios are placed
6 m apart, and the frequency selected for transmission is
2.433 GHz. A 100-byte pilot sequence precedes 2150 bytes
of data in the IEEE 802.11 packet. The additional transport
header consists of a sequence number (1 byte), source and
destination addresses (2 bytes) and an I/P frame indicator (1
byte). A burst of packets corresponding to the samples of a
video frame are transmitted through the two hop network. The
BER is estimated by averaging the received pilot sequences
of packets specific to a burst. On average, there are 6 pack-
ets/burst. Using this data, the number of samples per parity
bit (b as introduced in 10) is calculated as a function of the
quantization level of samples (Q) and the estimated BER. The
parity bits are appended to each set ofb samples for the
subsequent packets.

Over the course of a 300 frame video, this system was
able to correctly detect 92,719 out of 93,269 sample errors
correctly, for a 99.41% error detection rate. The maximum
sample error rate for any single frame was 0.0021, which
results in a BER of2.5 × 10−4 which, as shown in Fig.
9, results in a decrease in SSIM of less than 10%. This
performance could be further improved by using better BER
estimation, thus increasing the accuracy of the adaptive parity
encoder.

VIII. C ONCLUSIONS ANDFUTURE WORK

This paper introduced a new wireless video transmission
system based on compressed sensing. The system consists of
a video encoder, distributed rate controller, and an adaptive
parity channel encoding scheme that take advantage of the
properties of compressed sensed video to provide high-quality
video to the receiver using a low-complexity video sensor
node. Simulation results show that the C-DMRC system results
in better received video quality in both a network with a
higher load and a small load. Simulation results also show
that fairness is not sacrificed, and is in fact increased, with
the proposed system. Finally, the system was implemented
on a USRP-2 software defined ratio, and it was shown that
the adaptive parity scheme effectively combats errors in a
real channel. We intend to implement the entire system using
USRP-2 radios, including the video encoder. We will also mea-
sure the performance and complexity of this system compared
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to state-of-the-art video encoders (H.264, JPEG-XR, MJPEG,
MPEG), transport (TCP, TFRC) and channel coding (RCPC,
Turbo codes).
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