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Abstract—This paper investigates the potential of the com-
pressed sensing (CS) paradigm for video streaming in Wireks
Multimedia Sensor Networks. The objective is to co-design bw-
complexity video encoder based on compressed sensing and a
rate-adaptive streaming protocol for wireless video trangission.
The proposed rate control scheme is designed with the objeges
to maximize the received video quality at the receiver and to Physical I
prevent network congestion while maintaining fairness beween ] R
multiple video transmissions. Video distortion is represated \ N
through analytical and empirical models and minimized basd
on a new cross-layer control algorithm that jointly regulates the d;/}sdw =
video encoding rate and the channel coding rate at the physat
layer based on the estimated channel quality. The end-to-eh
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data rate is regulated to avoid congestion while maintainig [ c-omrccomponencgiook () Wreless Networking Blocks
fairness in the domain of video quality rather than data rate. . )
The proposed scheme is shown to outperform TCP-Friendly Rat Fig. 1. Architecture of C-DMRC system.

Control (TFRC).

. INTRODUCTION distributed video coding [7] algorithms (aka Wyner- Ziv

Wireless Multimedia Sensor Networks (WMSN)I [1] are  coding [8]) exploit the source statistics at the decoder,
self-organizing wireless systems of embedded devices de- thus shifting the complexity at this end. While promising
ployed to retrieve, distributively process in real-timéors, for WMSNs [1], most practical Wyner-Ziv codecs require
correlate, and fuse multimedia streams originated from het €nd-to-end feedback from the decoder [9]./[10], which
erogeneous sources. WMSNs will enable new app”cations introduces additional overhead and delay. Furthermore,
including surveillance, storage and subsequent retriefal gains demonstrated by practical distributed video codecs
potentially relevant activities, and person locator segsi are limited to 2-5 dBs PSNR [[9]. [10]. Distributed video

In recent years, there has been intense research and con- €ncoders that do not require end-to-end feedback have
siderable progress in solving numerous wireless senser net Peen recently proposed [11], but at the expense of a
working challenges. However, the key problem of enabling further reduction in performance.
real-time quality-aware video streaming in large-scaldtimu ¢ Limited Resiliency to Channel Errors. Ideally, when
hop wireless networks of embedded devices is still open and ©ne bit is in error, the effect on the reconstructed video
largely unexplored[]1]. There are two key shortcomings in should be unperceivable, with minimal overhead. In ad-
systems based on sending predictively encoded video (e.g., dition, the perceived video quality should gracefully and
MPEG-4 Part 2, H.264/AVC[]2],[13],14], H.264/SVd[5]) proportionally degrade with decreasing channel quality.
through a Iayergd wireless co_mmunication protocol staek, i | this paper, we show how a new cross-layer optimized
encoder complexity andlow resiliency to channel errors. communication protocol stack based on the recently prapose

« Encoder Complexity. Predictive encoding requires com-compressed sensing (CS) paradigm [12]/ [13]]) [14]] [15] can

plex processing algorithms, which lead to high emsffer a viable solution to the aforementioned problems. €om
ergy consumption ]1],[]6]. Instead, new video encodingressed sensing (aka “compressive sampling”) is a paradigm
paradigms are needed to reverse the traditional balartbat allows the faithful recovery of sparse signals frém< <

of complex encoder and simple decoder, which is ulV measurements wherg€ is the number of samples required
suited for embedded video sensors. Recently developgad the Nyquist sampling theorem. The CS paradigm can



offer an alternative to traditional video encoders by eimabl Sectiori1l, we discuss related work. In Secfion Il we inwod
imaging systems that sense and compress data simultapeotis C-DMRC system architecture. In Section IV, we introduce
and much fastemt very low computational complexity for the the proposed video encoder based on compressed sensing
encoder. Image coding and decoding based on CS has been(@SV). In Sectior 'V, we introduce the rate control system.
cently explored[[16],[[17]. So-called single-pixel canmethat Section[V] introduces an adaptive parity channel encoder.
can operate efficiently across a much broader spectral rarfgeally, the performance results are presented in SeCtidn V
(including infrared) than conventional silicon-based eaas while Sectiorf VII] we draw the main conclusions and discuss
have also been proposed [18]. However, transmission of @8ure work.
images and video streaming in wireless networks, and their
statistical traffic characterization, are substantiattgxplored.

We hereby introduce the Compressive Distortion- The most common rate control scheme is the well-known
Minimizing Rate Control (C-DMRC), a new distributedtransmission control protocol (TCP) [20][21][22]. It is We
cross-layer control algorithm that jointly regulates th& cknown that because of the additive increase/multiplieativ
sampling rate, the data rate injected in the network, and tflecrease algorithm used in TCP, the rate that it determines
rate of a simple parity-based channel encoder to maximi¥@ries too quickly for high-quality video transfer [23]. In
the received video quality over a multi-hop wireless networddition, TCP assumes that the main cause of packet loss is
with lossy links. The cross-layer architecture of our pregub congestion[24]. However, in wireless networks channedrsrr
integrated congestion control and video transmissionreetis Must be taken into account if an accurate prediction of the
shown in Fig[dl. By jointly controlling the compressive vide Network congestion is needed.
coding at the application layer, the rate at the transpgerla  These considerations have led to a number of equation-
and the adaptive parity at the physical layer, we can leweragased rate control schemes. Equation-based rate control an
information at all three layers to develop an integratedhogit  alytically regulates the transmission rate of a node based
congestion-avoiding and distortion-minimizing systemurO on measured parameters such as the number of lost packets
work makes the following contributions: and the round trip time RT'T) of the data packets. Two

« Distortion-Based Rate Control. C-DMRC leverages the examples of this are the TCP-Friendly Rate Control (TFRC)

. . ) ; : [24], which uses the throughput equation of TCP Rena [20],
estimated recefved video quality as the basis of the rate.and the Analytical Rate Control (ARC) _[R5]. Both of these

Yehemes attempt to determine a source rate that is fair to
%ny TCP streams that are concurrently being transmitted in
e network. However, in a WMSN, priority must be given to
e delay-sensitive flows at the expense of other delayente
ata. Therefore, both TCP and ARC result in a transmission
rate that is more conservative than the optimal rate. Far thi

Based on this CS architecture, we develop a Sysm{'@ason, in an effort to optimize resource utilization ino@se-

V\{here nodgs adapt thate of qhange of their transmntgd constrained WMSNSs, our scheme does not take TCP fairness
video quality based on the impact that a change in tri‘ﬁto account

transmission rate will have on the received video quality. Recent work has investigated the effects of packet loss and
This means that the rate controller uses the informati%

Ifﬁmpression on video quality. 1n [26], the authors analyee t

about the estimated received video quality directly in ﬂ\ﬁdeo distortion over lossy channels of MPEG-encoded video

rate con'Frol depision. I '.the.sending _nodg esj[imates "&kh both inter-frame coding and intra-frame coding. A act
the received video quality is very high, it will be less

. : ; ) [ is defined as the percentage of frames that are an intra-
likety tq Increase the rate dramguca_lly, even if (RE'T rame, or | frame, i.e., a frame that is independently codbe.
Vﬁluesﬂ:ndlc?te_ that the (é)ngestloT mfthe nztw_ork W‘;‘% thors then derive the valykthat optimizes distortion at the
atlow el_ra e_ljncrea_ltse._” onversfel?/, ' da node |s_tsec;1 t”cheiver. The authors of [26] investigates optimal strategp
poor-qualty video, 1t will gracelully decrease 1S dalq ansmit video with minimal distortion. However, the autho
rate, even if theRT'T indicates a congested network.

Video T ission Using C ve S i assume that the | frames are received correctly, and that the
» Video Transmission Using Compressive Samplingn only loss is caused by the inter-coded frames. In this paper,

our previous work[[IF], the rate control used the quali% assume that any packet can be lost, and attempt to use

level of the MPEG encoded video to estimate the recelv%(g and adaptive parity in order to combat these losses and

video quality. In this work, the concept is taken furthe{n%ease the received video quality

by using compressed sensed video, rather than tradition oS for video over the Internet has been studied_in [27]

.MPEG encoded video. Also, .the (ate control algorlthr‘gnd [28]. Both of these works deal with QoS of video over

is refined to use the rate-distortion curve parametgjg, |yiermet in a TCP or TCP-Friendly manner. In general,

_d|rectly, rather than using a parameterized version of tr(leeWMSN will not be directly connected to the Internet, so

index of the MPEG encoding parameters. following these assumptions will result in significant uneke
The remainder of this paper is structured as follows. Himation of the available video quality.

Il. RELATED WORK

of the transmitted video directly rather than controllin
the data rate. By controlling congestion in this wa
fairness in the quality of the received videos is maintainq
even over videos with very different compression ratio:a
« Rate Change Aggressiveness Based on Video Quality.



C-DMRC through the use of a photodiode. The samples generated are
then passed to the video encoder.

Raw Sample:

CS Camera=——] CSV Encoder B. CSV Video Encoder

Physical Input Samping
The CSV video encoder is discussed in Secfion ]V-B. The
encoder takes the raw samples from the camera and generates
compressed video frames. The compression is based on the

¢ Sampling Rate

Round Trip Time (RTT

Rate Controller

Frame Rate
Compressed

ideo hmpmm temporal correlation between frames. The number of samples
e along with the sampling matrix (i.e. which pixels are congaln
Adaptive Parity to create each sample) are determined at this block. The

Chanmat Encoded number of samples, mampling rate, is based on input from

vieo the C-DMRC block, while the sampling matrix is chosen so
that the sender and receiver are both using the same sampling
matrix for a given video stream.

Fig. 2. Architecture of the C-DMRC video rate control system

C. Rate Controller

Finally, several recent papers take a preliminary look at.l_he C-DMRC block takes as input the end-to-eRd'T

: . . . A
\(gﬂ(re?/vc?rrllcic;,d:jr;f?e?:;]rtl?n iﬁ;n?éﬁi\?v?r? Ssinnsslgg (i[)z\?\}é E;r?lll u[z’;df the previous packets and the estimated sample loss rate to
9 ’ Y USQetermine the optimal sampling rate for the video encoder.

information that can be obtained from a single-pixel camehdis sampling rate is then fed back to the video encoder. The

[18] and do not use the original image in the encoding proces C . - .
. . : = U~ fate control law, which is designed to maximize the received

at the transmitter. Hence, C-DMRC is compatible with direc . . : . X
. . . video quality while preserving fairness among competing
detection of infrared or terahertz wavelength images, alon. ) . . . . )
with the ability to compress images during the detectio\HdeOS’ 's described in detail Sectibd V. The CS sampling
Y P 9 9 rate determined by the C-DMRC block is chosen to provide

| . . . ) :
is compressed: (ii) more importantly, we look at the probleﬁ?e optimal received video quality across the entire netyor

! . . .. _which is done by using th&T'T" to estimate the congestion
from a networking perspective, and consider the effect it jo in the network along with the input from the adaptive parit
rate control at the transport layer, video encoding, anchicbia 9 P P panty

i . . o lock to compensate for lossy channels.
coding to design an integrated system that maximizes tRe P y

quality of CS video transmitted over wireless links. D. Adaptive Parity
The Adaptive Parity block uses the measured or estimated
Ill. SYSTEM ARCHITECTURE sample error rate of the channel in order to determine a

In this section, we describe the overall architecture of tfR&Mty scheme for encoding the samples, which are input
compressive distortion-minimizing rate controller (C-E@). directly from the video encoder. The Adaptive Parity scheme

The system takes a sequence of images at a user-defilfe@escribed in Section V1.

number of frames per second and wirelessly transmits an IV. CS VIDEO ENCODER(CSV)
ggggﬂzd _\I_/;?eeg’névrtlgr: D}QZ?; :;Crc:]tggdfegigepgiggmcg;%rgsseﬁw this section, we introduce the video encoder component
. ' S e of the compressive distortion-minimizing rate controltsys.

tion control for the video within the network, and thieER P g

is measured/estimated to provide protection against @anA. Video Model

losses. This system combines functionalities of the apfitio 1) Compressed Sensing Preliminaries: We consider an im-
layer, the transport layer and the physical layer to delW@eo age signal represented through a vectoe RV, where N

through a multi-hop wireless network to maximize the reediv js the vector length. We assume that there exists an inlertib
video quality while accounting for network congestion angy « N transform matrix® such that

lossy channels. As shown in Fi§l] 2, there are four main
components to the system. x = Ws (1)

wheres is a K-sparse vector, i.e||s|lp = K with K < N,

A. CS Camera and where|| - ||, representsp-norm. This means that the

This is the system where the compressed sensing imagege has a sparse representation in some transformedmomai
capture takes place. The details of compressed sensing &gs, wavelet. The signal is measured by takihg < N
discussed in detail in Sectidn IV-A1. The camera assum#&teasurements from linear combinations of the element k&cto
for use in this system can be either a traditional CCD dhrough a linear measurement operadarHence,
_CMOS imaging system, or a single pixel camera as disc_ussed y = ®&x = s = ¥, ?)
in [18]. In the latter case, the samples of the image are tlijrec
obtained by measuring the intensity of a random samplée would like to recovex from measurements . However,
of small portions of the image, and summing the intensigince M < N the system is underdetermined. Hence, given a



solutions® to (2), any vectos* such thats* = s® + n, and 'SSIM vs Quantization Rate
n € N (¥) (where N (¥) represents the null space ®#), is I 1

\---Compression Rate of 37%)|

' Sample buamizati(;n Rate [bi{;sample] -

also a solution td{3). However, it was proven[in[13] thahi t
measurement matri is sufficiently incoherent with respect
to the sparsifying matrix@, and K is smaller than a given
threshold (i.e., the sparse representagiofithe original signal
x is “sparse enough”), then the origiratan be recovered by
finding the sparsest solution that satisflgs (2), i.e., tlaesgst
solution that “matches” the measurements/inrHowever, the
problem above is in general NP-hafd [32]. For matriges
with sufficiently incoherent columns, whenever this proble rig 3. structural Similarity (SSIM) Index 40] for Imagesitva Constant
has a sufficiently sparse solution, the solution is uniquel, aBit Rate of 37% of the Original Image Size for Varying Quaatian Levels.
it is equal to the solution of the following problem:

Structural Similarity (SSIM) Index

Py : minimize||s||y 1) Intra-frame (1) Encoding: As stated above, each of tiie
frames are encoded individually, i.e., asiagle image that is
independent of the surrounding frames. Two variables mainly
affect the compression of frames; the sample quantization
wheree is a small tolerance. Note that problgpn is a convex rate (), and the ratio of samples per pixel)( referred to as
optimization problem [[33]. The reconstruction complexityhe sampling rate.
equalsO(M?2N?3/2) if the problem is solved using interior Sample Quantization Rate.The sample quantization rate
point methods[[34]. Although more efficient reconstructio(y) refers to the number of bits per sample used to quantize the
techniques exist [35], the framework presented in this papdata for digital transmission. We conducted empirical igsid
is independent of the specific reconstruction method used.to test the effect of quantization of the samples generated f

2) Frame Representation: We represent each frame of thdinear combinations of these pixels as [d (4) over a set of
video by 8-bit intensity values, i.e., a grayscale bitmap. Treference images with a constant overall compression rate,
satisfy the sparsity requirement of CS theory, the wavel@dd reported in Figi]3, which shows the S8iitdex [40]
transform [36] is used as a sparsifying base. A conventiorfla set of reference images for multiple quantization level
imaging system or a single-pixel cameral[18] can be the baEee reference images used are 25 grayscale images from the
of the imaging scheme. In the latter case, the video sourlye oRSC Signal and Image Processing Institute image repository
obtains random samples of the image (i.e., linear comhinati [41]. As @ decreases and less bits are being used to encode
of the pixel intensities). In our model, the image can beach sample, more samples can be obtained for the same

sampled using a scrambled block Hadamard ensernble [37§0mpression rate. There is a clear maximum valu@ at 5.
Sampling Rate . The sampling ratey is the number

y = Hss - x, (4) of trg_nsmitted samples per original imag_e pixel. _Again, an
empirical study was performed on the images lin! [41] to
wherey represents image samples (measuremeHigy,is  determine the amount of distortion in the recreated images
the 32 x 32 Hadamard matrix ane the matrix of the image due to varying sampling rates, and is reported in Eig. 4.
pixels. The matrixx has been randomly reordered and shapedThe proposed CSV encoder is designed to: i) encode video
into a 32 x 4L matrix where N is the number of pixels in at low complexity for the encoder, and ii) take advantage of
the image. Then\/ samples are randomly chosen fram the temporal correlation between frames. While the proghose
and transmitted to the receiver. The receiver then uses tethod is general, it works particularly well for security
M samples along with the randomization patterns for botfideos, in which the camera is not moving, but only the
randomizing the pixels intex and choosing the samples oubbjects within the field of view (FOV) of the camera are
of z to be transmitted (both of which can be decided beforaoving. Because of this, there will often be a large amount
network setup) and recreates the image solvingin (3) of redundancy from one frame of the video to the next. To
through a suitable algorithm, e.g., GRBIR8], StOMP [39]. exploit this redundancy within the framework of compressed
sensing, we take the algebraic difference between the CS

subject to: [y — Ws|[3 < e, 3)

B. CS Video Encoder (CSV) ) ) ) )
2The SSIM index is preferr_ed to _the more widespread PSI\_IR,thas
The CSV video encoder uses compressed sensing to encergg recently shown to be inconsistent with human eye peocef4Q].

. . " IM is a more accurate measurement of error because thenhuisizal
video by exploiting the spatial and temporal redundan stem perceives structural errors in the image more tharotFor example,

within the individual frames and between adjacent frameshanges in contrast or luminance, although mathematicigpificant, are

respectively. very difficult to discern for the human eye. Structural diffleces such as

blurring, however, are very noticeable. SSIM is able to Wweifjese structural

differences better to create a measurement closer to whistially noticeable

1GPSR is used for image reconstruction in the simulationlteguesented than traditional measures of image similarity such as meprared error
in this paper. (MSE) or PSNR.
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Fig. 4. Structural Similarity (SSIM) IndexX_[40] for Imagesittv varying
levels of sampling ratey.
the original frame. Forl frames, the frame can be directly
Sampling Rate reconstructed from the received samples. Pdrames, theiv
must first be reconstructed. Once this vector is recongtduct
using [3), the samples for th&" P frame are found by} =

. dv + S¥. Thett" frame is then reconstructed usirg (3) from
1 CS % csv ﬁs g;g‘é‘:& ‘dv> CvJSmpress\ve S*
Physical Controller Vector ample P
Input Camera c av o
Parameters V. RATE CONTROL SUBSYSTEM

In this section, we introduce the congestion avoidance rate
P Frames control mechanism for use with the compressed sensed video
encoder (CSV) described in Sectibn 1V-B. This rate control
system both provides fairness in terms of video quality and
maximizes the overall video quality of concurrent videos
transported through the network.

samples. Then, this differencedgain compressively sampled To avpid network congestion, a s_ending node needs to take
and transmitted. If the image being encoded and the refereff® main factors into account. First, the sender needs to
image are very similar (i.e. have a very high correlatiofpgulate its rate in such a way as to allow any competing
coefficient), then this difference image will be sparser arfgNSmissions at least as much bandwidth as it needs ta attai
have less variance than either of the original images, afdomparable video quality as itself. Note that this is deffe
can therefore be transmitted at the same quality using feW&m current Internet practice, in which the emphasis is on
samples and a lowep than the original image. achieving fairness in terms of data rate (not video quality)
2) Video Encoding: The video encoding process is deterS€cond, the sender needs to regulate its rate to make stire tha
mined by the type of encoding to be used for a given fram@?Cket losses due_ to buffer overflows are r_ed_U(_:ed, which can
as shown in Fig[J5. The pattern of the encoded frames Re done_ by reducing the overall data rate if it increases to a
IPPP-.-PIPPP---, where the distance between two €Vl which the network can not handle. .
frames is referred to as the group of picturé(P). To measure congestion, the round trip tilR&'T" is mea-

I frames are encoded usingl (4). The number of sampl%lémd for the transmitted video packets, whBfET is defined

to include is determined as - N, where N is the number as the amount of _tim_e it takes for a packet to go from the
of pixels in the unencoded frame ands the sampling rate. source tp th_e destination and a small rep_ly packet to go from
The rate control law to determine the current value fois Fhe destination bgck to the source. In this paper, the change
discussed in Sectidi]V. The samples are then quantized with?*1 1 (ARTT) is measured as

@ = 5 and transmitted over the channel.

| frames

\

Fig. 5. Block Diagram for CS Video Encoder.

P frames are also sampled usifig (4) withequal to the Nl N
~ of the most recenf frame. The difference vectori¢) for o Z Ai- RTT,—i ZAi RTTi—i
framet is then calculated with ARTT, = =2 — - =l - . (8
dv = St — S, (5) N-;Ai N-;Ai

where Sy is a vector containing all of the samples of the which is the difference of the weighted average over the
t'h frame, andS7 is the vector containing the samples of th@revious N received RT'T measurements with and without
most recent/ frame. The dv is then compressed again usirntpe most recent measurement. The weightsare used to
(@), quantized with) = 3 and transmitted over the channel. low-pass filter the round trip time measurements, i.e., W@ gi

3) Video Decoding: The decoding process, shown in Figmore importance to the most rece®il’l” measurements and to
[, uses[(B) to determine thi (in the case of & frame) and make sure that the protocol reacts quickly to current nekwor
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events, while averaging assures that nodes do not react {efined by

quickly to a single high or low measurement.

0
v e ®

which is the derivative of({7).

The video encoder described in Sectiofl IV generates two? 18 used in [(9) below to promote faimess in terms of
types of video frames; thé frame, which is an intra-encodedd'St_O”'on' If there are .tWO nodes transmitting wdep anthbo
frame, and the® frame, which is an inter-encoded frame. Th&0tice the same negative value fafT'T:, the sending node
I frames areindependently encoded, i.e., they are encodedWith the lower current video qu_allty will take advantage of_
using only the data contained within a single frame allowingj€ decreased network congestion more than the node which
these frames to be decoded independently of the previdgdransmitting at a higher rate. The inverse is true for pasi
frame. However, | frames do not take advantage of correlatigalues of ARTT,. This can be seen in Figl] 8. At lower
between frames resulting in lower rate-distortion perfance. compression levels, a change in the rate has a larger impact o
P frames on the other hand are encoded based on previfis received image quality than an equal change will have at
frames by leveraging the temporal correlation betweendésama higher rate. Similarly] — ¢ results in a function with very
Although this results in smaller frame sizes, it also alloww values at low rates, and higher values at higher rates.
errors to propagate from one frame to the néxi [26]. This 1 — ¢ is used to prevent a node from decreasing the rate

We present a novel approach in which the rate is netgnificantly when the rate is already low, but encourage the
controlled directly, but instead the data rate is variedraly "0de to decrease the rate when the data rate is already high
by varying the compression rate, defined in SectioR TV-B1. At the source node of et_;lch video transmission, the amount
More specifically,y; is directly controlled by the rate con-Of data generated by the video source is implemented through
troller, based on the RTT. Since thg is linearly proportional the equation
to the compression of thé frames as seen in Fifl 7, this
directly controls the compression rate of the entire video. N t—6-3- ARTT, it RTT, > a
This is important because the compression of thiFames _ —
can be directly controlled through one variable, while theﬂ’tJrl = Lt (A —0) s ARTT, if RIT; <o
compression of theP frames depends not only ofy, but V1t else
also on the amount of redundancy between th&ame and )
the previous frame. Because of this linear relationship, weWhere >0 andx > 0 are both constants used to scale

can confidently control the compression of the entire vidgo B° the range of the sampling rate.
varying a single parameter. Channel errors are accounted for through the use of the

We model the quality of the received video stream with %dqptlve parity sche_me, described in Secfioh V!. The adapti
parity scheme provides feedback to the C-DMRC rate con-
three-parameter model [26] o .
troller indicating the expected sample delivery success@a
Based on the value of’, the rate controller can determine
(") how much to increase the data rate in order to compensate for

the expected number of lost samples.

A. Indirect Rate Control

Dy=Do+ —2
! 0 v1 — Ro

whereD; represents the distortion of the video aRf}. The
parametersDy, # and Ry, depend on the video characteristics VI. ADAPTIVE PARITY-BASED TRANSMISSION

and @ and can be estimated from empirical rate-distortion For a fixed number of bits per frame, the perceptual quality
curves via a linear least-square curve fitting. of video streams can be further improved by dropping errored
The rate control is based on the paramefemwhich is samples that would contribute to image reconstruction with
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Fig. 9. SSIM for images with and without errored samples. Fig. 10. Adaptive Parity vs RCPC Encoding for Variable BirdErrates.

incorrect information. This is demonstrated in Fig. 9 whicRs far as the ability to correct bit errors. Therefore, we are
shows the image quality both with and without includingrading BER for transmission rate.
samples containing errors. Though the plots in Fig. 9 assumd-igure[10 shows the adaptive parity scheme compared to
that the receiver knows which samples have errors, it do8&PC codes. For all reasonable bit error rates, the adaptive
demonstrate that there is a very large possible gain invedei parity scheme outperforms all levels of RCPC codes. The
image quality is those samples containing errors can bedfouparity scheme is also much simpler to implement than more
without adding too much overhead. powerful forward error correction (FEC) schemes. This is
We studied this for images in [42]. It was shown that ipecause, even though the FEC schemes show stronger error
CS, the transmitted samples constitute a random, incoherg@rection capabilities, the additional overhead doesmale
combination of the original image pixels. This means thaP for the video quality increase compared to just dropping
unlike traditional wireless imaging systems, no indivitsem-  the samples which have errors.
ple is more important for image reconstruction than any rothe VI

sample. Instead, the number of correctly received samples iW ; ¢ imeR ifv th f
the only main factor in determining the quality of the reeelv e perform two sets of experimentto verify the perfor-

image. Because of this, a sample containing an error cainee of th_e C-DMRC s_ystem. First, th_e_ rate controller is
simply be discarded and the impact on the video qualiig/mUIated using T‘S'Z version 2.33. In z?\ddmon, to ?Valm
as shown in Fig[l9, is negligible as long as the amount rfect_ofa re_aI wireless channel, CS V|d_eo streaming wnh_th
errors is small. This can be realized by using even parig;apt've parity-based channel encoderlls tested. on a fragti-
on a predefined number of samples, which are all dropp thed based on USRP2 software defined radios.

at the receiver or at an intermediate node if the parity chepk Evaluation of Rate Controller

.fails.. This is particularly bengficiql in situations whemalBER_ The rate control algorithm of C-DMRC is compared directly
is still low, but too high to JUSF 'ghore errors. To determln?o TFRC to assess: (i) the received video quality for a single
the amount OT samples to t.)e jointly encoded, the amount\%Ieo transmission; (ii) the overall fairness (as measured
correctly received samples is modeled as with Jain’s Fairness Index); (iii) the overall received el
Qb , quality over multiple video transmissions. The topologythad
C= (m) (1- BER)??, (10) network is a Manhattan Grid consisting of 49 nodes (7x7). The
senders and sink are chosen randomly for 10 random number
where C' is the estimated amount of correctly receivedeeds. All senders transmit video to a single sink node.iRgut
samplesp is the number of jointly encoded samples, a@d is based on AODV([44], and MAC on 802.11.
is the quantization rate per sample. To determine the optimawe use real video traces recorded at the University at
value oft for a given BER,[(ID) can be differentiated, set equ@uffalo to simulate video traffic within the ns-2 simulator.
to zero and solved fob, resulting inb — —1/1- e Initially, trace files are obtained from the CSV video enaode

20 ' i i i - .
The optimal channel encoding rate can then be found fro]c [ multiple values ofy;. These_trace files are input ".T[O ns:
where the rate control decisions are made at simulation

the measured/estimated value for the end-to-end BER amd use

to encode the samples based (10). The received vid%e‘ The network simulator determines the sampling fate

quality using the parity scheme described was comparedat'ad cli(etr|ves t?e wdefoths 1€ ba.seiij on th||s vglufe. dAE)fterknr:a;W(t)rk
different levels of channel protection using rate compatibs'mua'on’ a trace ot the received samples IS fed bac 0

punctured codes (RCPC). Specifically, we use ihenother CSV video decoder and the resulting received video frames

codes discussed in [‘43]' As thgse codes are punCtured tg\ll simulation code and videos used in these simulationsvislable at
reduce the redundancy, the effectiveness of the codesadem ehttp://www.eng.buffalo.edu/wnesl/Scott.htm

. PERFORMANCEEVALUATION
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SSIM for Single Video Transmission Jain’s Fairness Index of C-DMRC and TFRC

TR

| [—c-DMRC
TFRC

lcomre |
[ JtFre
‘

Structural Similarity (SSIM)
Jain’s Fairness Index

Frame Index Number of Transmitted Videos

Fig. 11. SSIM of a single video transmission using C-DMRC @fdRC. Fig. 13. Jain's Fairness Index of a multiple video transioiss using C-
DMRC and TFRC.

SSIM vs Number of Video Transmissions

—C-DMRC||
7 physical layer data rate of Mbit/s. The radios are placed
— 6 m apart, and the frequency selected for transmission is

2.433 GHz. A 100-byte pilot sequence precedes 2150 bytes
of data in the IEEE 802.11 packet. The additional transport
header consists of a sequence number (1 byte), source and
destination addresses (2 bytes) and an I/P frame indicator (
‘ ‘ ‘ ‘ byte). A burst of packets corresponding to the samples of a
Number of Videos in Network ) video frame are transmitted through the two hop network. The
BER is estimated by averaging the received pilot sequences
Fig. 12. SSIM of a multiple video transmissions using C-DMR@ TFRC. f packets specific to a burst. On average, there are 6 pack-
ets/burst. Using this data, the number of samples per parity

are recreated. These video frames are then compared to tﬂ%e(b as introduced i_J0) is calculated as a function of the

original uncompressed (and untransmitted) video. guantization level of samples (Q) and the estimated BER. The

The first experiment simulates a single-video transmissigﬁnty bits are appended to each setlobamples for the
ubsequent packets.

within the 49 node network. This is done to compare c . .

. o . Over the course of a 300 frame video, this system was
DMRC and TFRC in a best-case scenario (i.e., no inter-flo
: . . . . able to correctly detect 92,719 out of 93,269 sample errors
interference and sufficient available capacity). Figuishidws

o ) .
the instantaneous SSIM at each frame of a 1300 frame Vidgg'rrectly, for a 99.41% error detection rate. The maximum

Clearly, C-DMRC results in a higher SSIM value for almos?asrzﬁlse iﬁrr;rBrgtRe é(;zr 5ar:<y 1%'9?'3\/;:2:1 ealvish(?W?IOiZ:’F\;VhICh
the entire video. The portions of the graph where both SS@ results in a decreése in SSIM of’ less than 10% g'll'his
values drop represent portions of the video where the traffic . . '

L . . I . pérformance could be further improved by using better BER
originating from the video increased, resulting in an iase L . ) e
of RTT and a decrease in the sampling rate. Both C-DMR%St'mat'on’ thus increasing the accuracy of the adaptiviypa
and TFRC responded to this traffic increase quickly, but é_ncoder.

DMRC recovered much more quickly than TFRC.

The second simulations compare C-DMRC and TFRC with ] ) . o
multiple videos simultaneously transmitted in the netwditke ~ TNis paper introduced a new wireless video transmission
number of video transmissions varied from 1 to 5, with eacdfyStem based on compressed sensing. The system consists of
video starting 10 seconds (120 frames) after the previons. T& Video encoder, distributed rate controller, and an adgepti
varying starting rates assure that videos starting at reiffie Parity channel encoding scheme that take advantage of the
times are treated fairly. properties of compressed sensed video to provide highitgual

Figure[I2 shows the results from this simulation. For eadtifiéo to the receiver using a low-complexity video sensor
of the simulations, C-DMRC resullts in a higher average SSIRPde. Simulation results show that the C-DMRC system result
than TFRC. The fairmess is evaluated in Figl 13, where Jaitfs better received video quality in both a network with a
Fairness Index[45] measures the fairmess between multifigher load and a small load. Simulation results also show

senders. Again, C-DMRC clearly performs better than TFR@at fairness is not sacrificed, and is in fact increasedh wit
the proposed system. Finally, the system was implemented

B. Adaptive Parity Testbed Evaluation on a USRP-2 software defined ratio, and it was shown that
The considered testbed setup uses USRP2 [46] and Gii¢ adaptive parity scheme effectively combats errors in a
radio [47]. A two-hop network is considered. The MAGCreal channel. We intend to implement the entire system using
protocol is IEEE 802.11 and the modulation scheme employ&$RP-2 radios, including the video encoder. We will also mea
is differential quadrature phase shift keying (DQPSK),hwat sure the performance and complexity of this system compared

Structural Similarity

VIII. CONCLUSIONS ANDFUTURE WORK



to state-of-the-art video encoders (H.264, JPEG-XR, MJPE[22] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “ModgliTCP
MPEG), transport (TCP, TFRC) and channel coding (RCPC,
Turbo codes).
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