
Cloud-assisted Buffer Management for HTTP-based Mobile
Video Streaming

Stefania Colonnese
∗

DIET at University of Roma
“Sapienza”

Rome, ITALY
colonnese@infocom.uniroma1.it

Francesca Cuomo
DIET at University of Roma

“Sapienza”
Rome, ITALY

francesca.cuomo@uniroma1.it

Tommaso Melodia
Dept. of Electrical Engineering
State University of New York

Buffalo, NY, USA
tmelodia@eng.buffalo.edu

Raffaele Guida
University of Roma “Sapienza”

Rome, ITALY
raffaeleguida1984@gmail.com

ABSTRACT

This paper studies a cloud-assisted procedure to improve
the user’s Quality of Experience (QoE) in HTTP Adaptive
Streaming (HAS) services. HAS delivers video streaming
services following a client-server architecture and requires
the client to originate repeated HTTP requests to download
chunks of encoded video. In state-of-the-art systems, the
client selects the actual chunk to be downloaded from a fi-
nite set of differently encoded video versions available at the
server site, according to a client-based buffer management
procedure.

In a multimedia cloud framework, HAS can leverage knowl-
edge of the characteristics of the encoded video available at
the server side. Therefore, we propose a cloud-assisted HAS
procedure that exploits information on the encoded video
content available at the cloud side to control the client-
originated download requests.

The proposed approach balances client-related quality is-
sues, which would require intensive video chunks download
to avoid playout stalls, with cloud related system constraints,
which require the average download rate not to overcome the
average video encoding rate. Finally, this approach proce-
dure alleviates the computational load at the client, since
the downloading strategy is computed at the cloud side.

We demonstrate that significant QoE improvements are
achievable through the proposed cloud-assisted buffer man-
agement procedure.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Network Proto-
cols

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
PE-WASUN’13, November 04 - 08 2013, Barcelona, Spain.
Copyright 2013 ACM 978-1-4503-2360-4/13/11
http://dx.doi.org/10.1145/2507248.2507262 ...$15.00.

Keywords

HTTP adaptive streaming, cloud computing

1. INTRODUCTION
Video streaming services have experienced a major boost

in the last years and are expected to grow in both mo-
bile and wired networks [1]. HTTP Adaptive Streaming
(HAS) is a widely deployed client-server architecture for de-
livering streaming video services in current video network-
ing systems. HAS has become popular in commercial de-
ployments. Streaming platforms such as Apple’s HTTP
Live Streaming, Microsoft’s Smooth Streaming, and Adobe’s
HTTP Dynamic Streaming all use HTTP streaming concept
[2]. MPEG and 3GPP standardization activities have also
provided a standard framework for HAS [3].

With respect to alternative video streaming protocol ar-
chitectures, HTTP-based systems are fully compatible with
network devices and middleboxes (e.g., firewalls, NATs) cur-
rently used in the Internet. Furthermore, the client can
adaptively select among different versions of the same video
available at the server side, based on rate adaptation strate-
gies that take into account the current network conditions
(e.g., available bandwidth). Thereby, the effective video
streaming rate depends on both the encoding settings and
on the actual end-to-end channel experienced between the
server and the client terminal [4].

In HAS, the underlying reliable protocol (TCP) prevents
packet losses and recovers channel errors at the price of in-
troducing random end-to-end packet transmission delays.
Hence, underflow events may occur at the client buffer, caus-
ing playout interruptions (stalls) during which the client en-
ters a state of rebuffering until the buffer is loaded to a pre-
set threshold prior to restarting the playout. Such rebuffer-
ing events clearly affect the user perceived quality. Indeed,
TCP-based media streaming suffers significantly on wireless
IP networks due to TCP throughput variations [5]. Exper-
imental evaluations of different commercial HAS systems
[2][6] also show that client-based rate adaptation strate-
gies may result in fluctuations of the Quality of Experience
(QoE) at the client side. Even when the end-to-end band-
width is relatively stable, the encoded media may present
rate variations leading to different transmission time for

1

different video fragments. Therefore, even under constant-
bandwidth conditions, the local fluctuations of the encoding
rate can cause non-negligible QoE degradation.

Within this context, the objective of this work is to pro-
pose enhancements to state-of-the-art HTTP-based video
streaming protocols specialized for Mobile Cloud Comput-
ing systems (MCC), where mobile devices experience large
network fluctuations and processing tasks should migrate
from the client to the cloud. The HAS architecture pro-
vides an effective starting point to develop video streaming
techniques that can match these specific challenges of MCC.

In this paper, we propose a cloud-assisted HTTP stream-
ing strategy, where the cloud server providing the content
optimally controls the intervals between consecutive video
segment requests performed by the client. The proposed
strategy has several advantages:

• it reduces the computational load at the client, since
the rate adaptation strategy is computed at the cloud
side;

• it exploits information on the encoded video content
available at the cloud side and not at the client;

• it balances client-related quality issues, which would
require intensive download to avoid playout stalls, with
cloud related system constraints, which require the av-
erage download rate not to overcome the average video
encoding rate.

2. HAS SYSTEM MODEL
In HAS systems the service is provided to the client via

a Multimedia Presentation Description (MPD). The con-
tents are then fetched by the client in the form of fragments
by means of HTTP GET requests. Specifically, in HTTP
video streaming systems like DASH [3], a video content is
encoded into multiple versions, each with a different video
quality. Each encoded video is then divided into small video
“chunks”, which may encompass one or more GOPs (Group
of Pictures). Video chunks can be addressed by a URL and
are served to the client using HTTP servers. For example,
the server may store L versions of the same encoded video at
different rates Ri, i = 1, . . . L. Each sequence is encoded and
parsed in fragments beginning with a random access frame
and corresponding to a playback interval of τf s.

Let us consider the transmission of a video bitstream en-
coded at a given average rate R1. The encoded fragment size
in bits varies in a random way depending on the sequence
activity and on the encoding parameters. We denote by xn

the size in bit of the n-th sequence fragment. The streaming
session takes place when a sequence of HTTP-GET messages
are sent by the client to begin the download of consecutive
sequence fragments. After an HTTP-GET, the fragment is
downloaded in a time τn = xn/rn, being rn the net through-
put available at the application layer.

In this framework, we propose cloud-assisted HTTP stream-
ing, where the servers providing the contents in the cloud
have the possibility to drive the rate of the HTTP GETs
of the clients in order to improve their QoE. A qualitative
representation of the considered system architecture is in
Fig.1.

A Video Agent (VA) is activated at the cloud side for
the HTTP session of the client in order to provide an bet-
ter adaptive streaming service across the wired/wireless net-

Figure 1: Architectural model.

works interconnecting the mobile client. The VA is able to
virtually monitor the QoE of the client by measuring the
amount of streamed bytes and the amount of bytes that are
needed by the client to perceive a given quality. A key point
is that the VA, being at the server side, has:

1. a complete knowledge of the amount of bytes that con-
stitute a group of segments of the video at a given
quality;

2. the possibility to run optimization algorithms on be-
half of the mobile client, thus reducing the amount of
processing resources spent at the client side in accor-
dance with a cloud computing paradigm.

In the direction of achieving an optimization of the video
streaming, the point 1) assures that, once the client select
one of the available Ri, the server knows the whole set xn,
for n = 1, ...k, of bytes that constitute the video sequence
at that rate. Thereby, at the VA side, a cross-layer inter-
actions between application and TCP layer may allow the
VA to estimate the time required to transmit the n-th set of
bytes xn. Specifically, this can be computed by using the es-
timated RTT used by the TCP (that is a parameter known
at the served side) and the xn.

The point 2) instead includes two advantages, on the one
hand there is the possibility to shift processing complexity
from the client side to the server side (this may have benefits
in mobile devices) and on the other hand the server may run
optimization rules involving multiple video streams that are
simultaneously downloaded by a set of clients. This latter
aspect can allow also server resource optimizations.

In the existing literature there have been several papers
attempting to improve the video streaming quality by intro-
ducing network devices (e.g., proxies) able to interact with
the users on one side and with the servers on the other side
to assure prompt reactions to bandwidth variations [7]. In
our scenario, a Video Agent is activated for the HTTP ses-
sion and has the advantage of being at the server side and
it is aware of the content selected by the client via access
to the MDP. Management of the video quality at the server
side has been considered in the InSite approach [8] where
video delivery from cloud data centers is controlled to as-
sure the QoE of multiple clients of a given video service
provider being aware of the bandwidth bottleneck that may
arise in the network. The InSite control relies on the TCP
advertised receiver window, and controls the rates provided
to each flow so as to reduce the number of playout stalls and
to distribute the stalls across clients fairly. Through exper-
iments with different TCP variants, the authors show the
achieved balance between QoE maintenance and bandwidth
wastage.

2

The work in [9] characterizes the bandwidth consumption
of a widely deployed DASH-based system, Netflix. The re-
sults show that different clients have a similar basic response
to network congestion, when they behave differently in case
of sustained congestion. The study suggests that the Net-
flix adaptation algorithm and the TCP congestion control
are intertwined during period of volatile network conditions,
but the latter is dominant in case of of heavy congestion.

Similarly, we propose a short-term rate adaptation scheme
based on a look-ahead mechanism operated at the VA side.
We expect that this scheme will be able to reduce playout
buffer stalls and oscillations that characterize the system in
Fig. 1.

3. CLOUD-ASSISTED HAS
We consider a server storing L versions of the same en-

coded video at different rates Ri, i = 1, . . . L. Each sequence
is encoded using a fixed Group of Pictures (GOP) structure
beginning with a random access frame. One or few consec-
utive GOPs constitutes a video fragment to be downloaded
during one HTTP-GET. Each fragment corresponds to a
playback interval of τf s. We consider an HTTP session
where the number of downloaded fragments is N .

Let us consider the transmission of a video bitstream en-
coded at a given average rate R. Let us denote by xn the
size in bits of the n-th fragment. xn randomly varies de-
pending on the sequence activity and of the encoding pa-
rameters. When the client requests the fragment using an
HTTP-GET, the fragment is downloaded in a time

τn =
xn

rn

where rn is the net bandwidth available at the application
layer, i.e., the average TCP throughput measured during
the fragment download time. In HAS, the client does not
request the n + 1-th fragment unless the download of the
n-th one is completed. Besides, in typical HTTP adaptive
streaming systems, the client waits for at least τf s before
requesting the next fragment, except when in buffering or
rebuffering state. Fig.2 presents the timing of the server
transmissions after HTTP GETs sent by the client.

However, given the information available in the cloud on
the video fragments sizes and given an estimate of the net
bandwidth, for the inter-arrival time can be set in accor-
dance to an optimal strategy. Herein, we discuss how the
interval between consecutive HTTP-GETs, denoted as δ in
the following, can be optimized at the cloud side. The op-
timal scheduling is then communicated to the client, which
then generates the actual HTTP-GET requests. We refer to
this strategy as cloud-assisted streaming.

With these premises, we look for an optimal HTTP-get
scheduling. Specifically, we aim at identifying a set of N in-
tervals δn such that the intervals between consecutive HTTP-
GETs,

tGET
n − tGET

n−1 = max(τn−1, δn), n = 0, . . . N − 1

optimizes a suitable QoE metric.
The selected QoE metric considers the number of stalls

and the rebuffering events duration. With this aim, let us
now evaluate the buffer load at the receiver size.

We denote by tW
n the time instant at which the n-th frag-

ment is fully downloaded in the receiver buffer, also known
as the playout buffer (see the lower axis of Figs.2). Besides,

Figure 2: Time evolution of the HTTP GETs sent by the
client, the transmission of requested fragments and their
writing in the playout buffer.

we denote by tR
n the time instant at which the n-th fragment

is read for playback. The initial time for fragment reception
is assumed to be tW

0 = 0; the playback begins with an initial
buffering delay of δB s, that is tR

0 = δB.
Once the playback starts, fragments are read at a regular

rate; nonetheless, due to the delay and jitter in fragment re-
ception, caused by both bandwidth and encoding rate local
fluctuations, the buffer may underflow. In this case, play-
back is stalled for a rebuffering interval δR, during which
fragments are loaded but not played out. After the rebuffer-
ing period, the playout restarts at a rate 1/τf .

Hence, accurate modeling of the buffer behavior needs to
take into account the occurrences of stalls. We then intro-
duce a binary sequence sn, defined as follows: sn = 1 when
a stall occurs corresponding to the n-th fragment and sn = 0
otherwise. Then, the buffer evolution is characterized by the
sequences tW

n , sn, tR
n defined as
8

>

>

>

>

<

>

>

>

>

:

tGET
0 = 0

tW
0 = tGET

0 + τ0

s0 = 0

tR
0 = tW

0 + δB

(1)

and
8

>

>

>

>

<

>

>

>

>

:

tGET
n = tGET

n−1 + max(τn−1, δn)

tW
n = tGET

n + τn

sn = 1/2 − 1/2 sign(tR
n−1 + τf − tW

n)

tR
n = tR

n−1 + (1 − sn)τf + sn δR

(2)

for any n 6= 0.
We can then compute the number of stalls as

S =

N−1
X

0

sn

If we assume that each rebuffering period is deterministcally
set to δR

1, the overall re-buffering time equals to

D = δR ×

N−1
X

0

sn

1As an alternative, it could be assumed that each rebuffer-
ing period may vary so as to correspond to a fixed amount
of downloaded data as well as to a fixed video playout in-
terval, leading to a random characterization of the oveall
rebuffering time D.

3

We can now express the buffer occupancy based on the
above expressions of the writing and reading instants. Specif-
ically, let us introduce the writing process w(t) as follows:

w(t) =
X

n

xnu
−1(t − tW

n)

and the reading process as

r(t) =
X

n

xnu
−1(t − tR

n)

We can then express the buffer occupancy in bits as

B(t) = w(t) − r(t)

=
X

n

xnrecttR
n
−tW

n

„

t −
tR
n + tW

n

2

«

and the buffer occupancy in seconds of video as

Q(t) =
X

n

recttR
n
−tW

n

„

t −
tR
n + tW

n

2

«

× τf

A suitable QoE metric for HTTP-GET scheduling is the
minimization of the number of stalls, which has direct im-
plications in terms of the duration of rebuffering events. On
the other hand, when operating on a set of consecutive frag-
ments, there is a finite probability that the client can unpre-
dictably end the streaming session. Therefore, we consider
the following QoE-related objective,

C (δ0, δN−1) = min
δn,n=0,...N−1

N−1
X

0

ρn
SW sn (3)

where ρSW ∈ (0, 1] is a discount factor that takes into ac-
count the fact that the user can tear down the streaming
session.

To avoid overflows at the receiver buffer and to limit the
net throughput required by a single client to the cloud, we
also require that downloading rate averaged on any window
of W fragments, does not deviate significantly from the av-
erage video encoding rate R. Therefore, we consider the
following additional rate constraint,

PW−1

k=0
xn+k

tW
n+W−1 − tW

n

≤ R (1 + α) (4)

where α is a system design parameter.

3.1 Proposed approach for cloud-assisted HAS
In its general formulation, our optimal strategy accounts

for all the stalls occurring over N fragments, requiring a
rate-matching inequality over a sliding window of length W .
This requires knowledge of the N values τn, n = 0, . . . N −1,
which in turn implies knowledge of xn and rn, n = 0, . . . N −

1. While the sequence xn, n = 0, . . . N − 1 is known at
the server, the sequence of the TCP throughputs rn, n =
0, . . . N − 1 should be predicted. The prediction accuracy
bounds the values of N of practical interest. Therefore, we
restrict our analysis to the case N = W and we design a
suboptimal procedure leading us to a solution δ0 ≤ δ1 ≤
· · · ≤ δN−1 matching the rate inequality (4) with α = 0.

The algorithm is as follows: if
PW−1

k=0
max(τk, τf) ≤ Wτf ,

δn is kept equal to τf ; otherwise, δn is set equal to 0. Besides,

if
PW−1

k=0
max(τk, 0) ≥ Wτf , i.e. consecutive downloading

the W fragments has exceeded the expected window W , the

client immediately restarts the downloading on the following
window. Otherwise, it waits for Wτf −

PW−1

k=0
τk and then

resumes downloading on the next window.

4. SIMULATION RESULTS

Table 1: Video traces and statistics
Sequence Avg.

frame
size
[kbit]

frame
size std
dev.

Avg.
bitrate
R[Mbps]

Alice 136 19478 3.26

Monster 114 7222 1.57

SpaceStation 199 9717 4.79

Titans 158 3857 3.79

The numerical simulations of the HAS session have been
carried out using Matlab, in order to analyze different per-
formance parameters, such as the buffer occupancy vs. time,
and the relevant QoE parameters, including the number of
underflow events (which is also the number of stalls), and
their durations. More into detail, the server is equipped
with a set of video sequence traces, namely the video traces
in [10] analyzed in [11] and [12]. Specifically, we have consid-
ered four videos, at a spatial resolution of 1920x1080 pixels,
24 Hx, using an encoding GoP pattern of G16B1 (16 frames
per GoP, 1 B frame in between I/P key pictures) of dura-
tion 35.544 min each. Each video presents intrinsic frame
size fluctuations, detailed in Tab.1, resulting in xn varying
around the average size. The client requests the fragments
corresponding to τf video seconds in accordance to the se-
lected (optimized or not) HTTP-GET sheduling strategy
and it begins the play out phase after an initial delay δB .
The net bandwidth rn at the application layer, always larger
than the net video rate, is kept constant throughout the ses-
sion simulation. When a stall occurs, the client continues
downloading fragments and restarts the play out after a re-
buffering duration δR. In the following, we analyse the HAS
session performance by varying different system parameters
such as the bandwidth rn, the rebuffering duration δR, the
sliding window length W .

Firstly, we present the results of a set of simulations where
we have assumed a constant bandwidth equal to 150% of the
video average bit-rates, i.e. rn = 1.5R. Remarkably, even in
case of constant bandwidth, the intrinsic fluctuations of the
encoded video can lead the system to very low performance
as shown in Fig.3. In this case each playback can interrupt
from S = 2 up to S = 10 times, which gives a total duration
of the interruptions that goes from about D = 10 s to more
than D = 70 s (Fig.3).

Although the number of stalls S may differently affect the
client perceived QoE, depending on several characteristics,
such as the rebuffering time duration, the video clip content
and length, or even the subjective end-user expectation, the
parameter S indeed accounts for the main cause of decoded
video quality degradation in a HAS session where no video
data losses are experienced.

Increasing the available bandwidth reduces the number of
stalls during the playback, but it cannot completely avoid
them. Fig.4 considers the case when the ratio between the
average video rate and the available bandwidth decreases.

4

2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

Rebuffering duration [s]

T
o

t
s
ta

ll
d

u
ra

ti
o

n
 [

s
]

Sequence "Alice"

Sequence "Monsters"

Sequence "Titans"

Figure 3: Total stall duration for three videos at different
rebuffering duration.

−15 −10 −5 0 5 10 15 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Bandwidth de/increment respect to video rate (%)

T
o

t
#

 n
u

m
b

e
r

o
f

s
ta

lls

Sequence "Alice"

Sequence "Monsters"

Figure 4: Relationship between stalls and video
rate/bandwidth ratio reduction.

Remarkably, even when the bandwidth is twice the average
video encoding rate, uninterrupted video playback cannot
be assured.

Based on these results, we assume as an operating point
for our simulations rn = 1.48R, since this assures a reduced
number of stalls. The resulting bandwidth occupancy is
tabulated in Tab.2.

Table 2: Video rates and assigned bandwidths

Sequence Avg. bi-
trate R
[Mbps]

Bandwidth
[Mbps]

Alice 3.26 6.85

Monster 1.57 3.31

SpaceStation 4.79 9.79

Titans 3.79 7.97

2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

Rebuffering duration [s]

T
o

t
#

 o
f

s
ta

lls

Sequence "Alice"

Sequence "Monsters"

Sequence "Titans"

Figure 5: Number of stalls varying the re-buffering duration
(W = 5).

Fig.5 shows the number of stalls S vs the rebuffering du-
ration δR. An example of the stall duration D observed on
the sequence Alice at W = 6 is reported in Tab.3.

From this Section analysis it stems out that the user QoE,
coarsely characterized by the number of stalls S and by the
rebuffering events’ duration D depends on the pattern of
download time τn, in turn depending on the GOP sizes and
the available bandwidth. If the videos are HD encoded and
high bit-rates are involved, bandwidth of several Mbit/s are
required to avoid QoE flaws. Therefore, the performance in
terms of QoE depends not only on the ratio between the
available bandwidth and the encoding/playback rate, but
also on the fluctuations of the video that has to be trans-
ferred.

We now show how adoption of a cloud assisted HAS strat-
egy can improve the afore-described QoE metrics. Specifi-
cally, we discuss the QoE improvements achieved by adopt-
ing the algorithm in Section 3.1.

In Fig.6, we compare the number of stalls observed using
the cloud-assisted procedure in Section 3.1 on the sequence
Alice using W = 6, corresponding to TW = Wτf = 12s, and
δR = 6s, under different encoding rate vs bandwidth ratios.
We appreciate the significant reduction of the number of
stalls achieved by the cloud assisted procedure.

Now we evaluate how many times the cloud-assisted pro-
cedure in Section 3.1 effectively activates an optimal schedul-
ing. Specifically, in Fig.7 we show the percentage of windows
of duration TW over which the inter HTTP-GET period is
effectively modified with respect to the total number of en-
coded sequence windows. Clearly, the activation is required
more often when the bandwidth to encoding rate ratio is
lower, and more rarely for high ratio values. Despite be-
ing rarely used, the cloud assisted adjustment of the inter
HTTP-GET period, it completely avoids stalls (see Fig.6).

In Fig.8 we show the total number of stalls S vs the
window size W for different values of the encoding rate to
bandwidth ratio. As expected, increasing the window size
improves the QoE performance. On the other hand, Fig.9
clearly shows that the advantages of using the window of

5

−20 −10 0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

11

Bandwidth de/increment respect to video rate (%)

T
o

t
#

 o
f

s
ta

lls

Without lookahead window

With lookahead window

Figure 6: Number of stalls S with and without the cloud
assisted procedure, for different encoding rate vs bandwidth
ratios.

size W stand for different values of the rebuffering duration
δR.

Finally, Fig.10 shows the percentage of windows of dura-
tion TW over which the inter HTTP-GET period is actually
modified vs the window size W . We observe that increasing
the window size W facilitates activation of the cloud as-
sisted procedure nonetheless it requires accurate bandwidth
prediction over a longer period. This definitely limits the
feasibility of large window sizes.

Table 3: Rebuffering and stalls.

Rebuffering δR (s) # of stalls S Stalls’ duration D (s)

2 4 8

4 3 12

6 3 18

8 3 24

10 3 30

12 2 24

5. CONCLUDING REMARKS
In this paper, we have presented a cloud-assisted proce-

dure that is able to improve the Quality of Experience (QoE)
in HTTP Adaptive Streaming (HAS) services. The cloud as-
sisted HAS procedure exploits information on the encoded
video content available at the cloud side to drive the client
originated encoded video fragments download requests. The
proposed approach leverages knowledge of characteristics of
the encoded video available at the server side. Further-
more, the procedure balances client-related quality issues,
which would require intensive video chunk downloads to
avoid playout stalls, with cloud related system constraints,
which require the average download rate not to overcome the
average video encoding rate. Numerical simulation results
show the significant QoE improvement achievable by per-
forming HAS in accordance with the proposed cloud-assisted
buffer management procedure.

−20 −10 0 10 20 30 40 50
20

25

30

35

40

45

50

55

60

65

70

Bandwidth de/increment respect to video rate (%)

A
c
ti
v
e

te
d

 w
in

d
o

w
s
/t

o
ta

l
w

in
d

o
w

s
 (

%
)

Figure 7: Percentage of the windows of duration TW over
which the inter HTTP-GET period is actually modified vs
the bandwidth to encoding rate ratio.

0 2 3 4 5 6 7 8 9 10
0

5

10

15

T
o

t
#

 o
f

s
ta

lls

W

Bandwidth = 3.6 Mbps

Bandwidth = 4.2 Mbps

Bandwidth = 5.9 Mbps

Figure 8: Total number of stalls S vs window size W .

The proposed approach can be generalized to take into
account joint management of multiple users requiring HAS
at the same cloud server or servers’ cluster. The download
request rate of different users as well as the user’s selected
video quality level can be optimally selected at the cloud side
to assure suitable QoE constraints at each user’s side. This
generalization of the herein presented approach is currently
under investigation.

6. REFERENCES
[1] Cisco, “Cisco Visual Networking Index: Forecast and

Methodology, 2012-17.” [Online]. Available:
http://www.cisco.com

[2] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An
experimental evaluation of rate-adaptation algorithms
in adaptive streaming over HTTP,” in Proceedings of
the second annual ACM conference on Multimedia
systems, ser. MMSys ’11, 2011, pp. 157–168.

6

2 4 10 12
0

2

4

6

8

10

12

14

Rebuffering [s]

T
o

t.
 #

 o
f

s
ta

lls

No lookahead

Alice

Monsters

Space station

Titans

Figure 9: Total number of stalls S vs rebuffering duration
δR.

[3] I. Sodagar, “The MPEG-DASH Standard for
Multimedia Streaming Over the Internet,”
MultiMedia, IEEE, vol. 18, no. 4, pp. 62–67, 2011.

[4] S. Colonnese, P. Frossard, S. Rinauro, L. Rossi, and
G. Scarano, “Joint source and sending rate modeling in
adaptive video streaming,” Signal Processing: Image
Communication, vol. 28, no. 5, pp. 403 – 416, 2013.

[5] M. Gorius, Y. Shuai, and T. Herfet, “Dynamic media
streaming over wireless and mobile ip networks,” in
Consumer Electronics - Berlin (ICCE-Berlin), 2012
IEEE International Conference on, 2012, pp. 158–162.

[6] L. De Cicco and S. Mascolo, “An experimental
investigation of the akamai adaptive video streaming,”
in Proceedings of the 6th international conference on
HCI in work and learning, life and leisure: workgroup
human-computer interaction and usability
engineering, ser. USAB’10, 2010, pp. 447–464.

[7] J.-S. Leu and C.-W. Tsai, “Practical design of a proxy
agent to facilitate adaptive video streaming service
across wired/wireless networks,” Journal of Systems
and Software, vol. 82, no. 11, pp. 1916 – 1925, 2009.

[8] V. Gabale, P. Dutta, R. Kokku, and S. Kalyanaraman,
“Insite: Qoe-aware video delivery from cloud data
centers,” in Quality of Service (IWQoS), 2012 IEEE
20th International Workshop on, 2012, pp. 1–9.

[9] J. Martin, Y. Fu, N. Wourms, and T. Shaw,
“Characterizing Netflix bandwidth consumption,” in
Consumer Communications and Networking
Conference (CCNC), 2013 IEEE, 2013, pp. 230–235.

[10] “Video traces.” [Online]. Available:
http://trace.eas.asu.edu/videotraces2/3d/MultiviewJMVC/

[11] A. Pulipaka, P. Seeling, M. Reisslein, and L. Karam,
“Traffic and statistical multiplexing characterization of
3-d video representation formats,” Broadcasting, IEEE
Transactions on, vol. 59, no. 2, pp. 382–389, 2013.

[12] P. Seeling and M. Reisslein, “Video transport
evaluation with h.264 video traces,” Communications
Surveys Tutorials, IEEE, vol. 14, no. 4, pp. 1142–1165,
2012.

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

A
c
ti
v
e

te
d

 w
in

d
o

w
s
/t

o
ta

l
w

in
d

o
w

s
 (

%
)

W

Bandwidth = 3.6 Mbps

Bandwidth = 4.2 Mbps

Bandwidth = 5.9 Mbps

Figure 10: Percentage of the windows of duration TW over
which the inter HTTP-GET period is actually modified vs
the window size W .

7

