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Optimizing the Lifetime of Sensor Networks with Uncontrollable
Mobile Sinks and QoS Constraints

FRANCESCO RESTUCCIA and SAJAL K. DAS, Missouri Univesity of Science and Technology

In past literature, it has been demonstrated that the use of mobile sinks (MSs) increases dramatically
the lifetime of wireless sensor networks (WSNs). In applications where the MSs are humans, animals,
or transportation systems, the mobility of the MSs is often uncontrollable and could also be random and
unpredictable. This implies the necessity of algorithms tailored to handle uncertainty on the MS mobility. In
this article, we define the lifetime optimization of a WSN in the presence of uncontrollable sink mobility and
Quality of Service (QoS) constraints. After defining an ideal scheme (called Oracle) which provably maximizes
network lifetime, we present a novel Swarm-Intelligence-based Sensor Selection Algorithm (SISSA), which
optimizes network lifetime and meets predefined QoS constraints. Then we mathematically analyze SISSA
and derive analytical bounds on energy consumption, number of messages exchanged, and convergence
time. The algorithm is experimentally evaluated on practical experimental setups, and its performances
are compared to that by the optimal Oracle scheme, as well as with the IEEE 802.15.4 MAC and TDMA
schemes. Results conclude that SISSA provides on the average the 56% of the lifetime provided by Oracle
and outperforms IEEE 802.15.4 and TDMA in terms of yielded network lifetime.
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1. INTRODUCTION

Wireless sensor networks (WSNs) have become an affordable technology, able to sup-
port a wide variety of applications such as urban sensing and target tracking [Akyildiz
and Vuran 2010]. As wireless sensors are tiny, energy-constrained devices, designing
energy-efficient algorithms for reliable data gathering becomes crucial to optimize net-
work lifetime. To this end, past literature has demonstrated that the use of mobile sinks
(MSs) dramatically reduces the energy consumption of sensors, therefore extending the
network lifetime [Di Francesco et al. 2011]. Specifically, MSs are special nodes that visit
the WSN regularly to gather sensed data, eliminating the need of energy-expensive
multihop communication [Yu et al. 2014]. Mobile sinks are also often employed when-
ever multihop transmission is not feasible, for example, due to sparse deployment of
sensors [Restuccia et al. 2014].
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The use of controllable sink mobility has been extensively studied in the literature
to optimize the lifetime of WSNs [Gao et al. 2011; Liu et al. 2012; Xu et al. 2012; He
et al. 2013; Gu et al. 2013; Tashtarian et al. 2015]. However, in a significant number of
real-world applications [Campbell et al. 2008; Zhang et al. 2004; Haas and Small 2006;
Chakrabarti et al. 2003] the MSs may present uncontrollable and random mobility.
This means that (i) the MS may not be able to arbitrarily stop its motion for data
collection and (ii) the trajectory, speed, and arrival time of the MS are unknown a
priori [Khan et al. 2014]. Such mobility applies to many relevant scenarios where
the MSs are pedestrians [Campbell et al. 2008]; animals, for example, zebras in the
ZebraNet project [Zhang et al. 2004] or whales in the SWIM project [Haas and Small
2006]; or public transportation systems, where mobility heavily depends on current
traffic conditions [Chakrabarti et al. 2003].

In the examples mentioned above, the time of the next MS visit and the actual time
available for data transmission at each MS visit are uncertain and may be hard to
predict [Yu et al. 2014]. Furthermore, in scenarios where sensors are deployed in chal-
lenging environments, for example, underneath the ground [Tooker and Vuran 2012]
or on top of streetlight poles [Cenedese et al. 2014], extending the network lifetime be-
comes fundamental, as substituting/recharging the battery of sensors is cumbersome
(or impossible). In addition, such applications may also require Quality of Service (QoS)
constraints to be satisfied, for example, on throughput and data reliability. To the best
of our knowledge, the problem of lifetime optimization in WSNs satisfying QoS con-
straints and allowing uncontrollable sink mobility is yet to be defined and solved. This
motivates our work and the following novel contributions.

—After defining the network scenario under consideration, we define the problem of
lifetime optimization of a WSN in the presence of uncontrollable sink mobility yet
guaranteeing QoS constraints on data reliability and throughput. For comparison
reasons, we formulate a scheme, called the Oracle, which is provably optimal (i.e.,
maximizes the network lifetime as defined in this article).

—To solve the lifetime optimization problem, we propose the Swarm-Intelligence-based
Sensor Selection Algorithm (SISSA), which optimizes the sensor network lifetime
and meets the desired QoS requirements without the need of any synchronization
between the sensor nodes. We also develop an analytical model of SISSA and derive
analytical bounds on the number of messages exchanged, energy consumption, and
convergence time. We also provide an approximate formula to estimate the network
lifetime as provided by SISSA.

—We validate the analytical model and evaluate the performance of SISSA on an exper-
imental testbed composed of 40 TelosB [Crossbow 2014] sensor nodes, in both indoor
and outdoor setups. To further evaluate our algorithm, we analytically compare the
network lifetime yielded by SISSA with that of Oracle. Analytical and experimental
results demonstrate that SISSA is highly scalable and energy efficient and provides
on average 56% of the network lifetime given by the optimal scheme in every param-
eter set under consideration.

—Finally, we compare the performance of SISSA with respect to the IEEE 802.15.4
carrier sense multiple access/collision avoidance (CSMA/CA) medium access con-
trol (MAC) protocol [Society 2006], as well as with respect to the time division
multiple access (TDMA) scheme, in terms of energy consumption, throughput, and
yielded network lifetime. Results conclude that SISSA outperforms 802.15.4 and
TDMA schemes, as it achieves desired QoS contraints with significantly lower energy
consumption.

The rest of the article is organized as follows. Section 2 summarizes the related
work, while Section 3 introduces the considered system model and the related

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 2, Publication date: March 2016.



Optimizing the Lifetime of Sensor Networks with Uncontrollable Mobile Sinks 2:3

assumptions. Section 4 defines the problem of lifetime optimization under uncon-
trollable sink mobility and QoS constraints and presents the ideal Oracle scheme,
which provably maximizes network lifetime. Section 5 describes in detail the SISSA
algorithm, whereas Section 6 derives its analytical model. Section 7 and 8 respectively
validate the proposed model of SISSA and present the lifetime optimization results,
including the comparison between SISSA and existing literature. Finally, Section 9
draws conclusions.

2. RELATED WORK

In this section, we summarize relevant work related to the lifetime optimization in
WSNs in the presence of MSs and QoS constraints. For excellent surveys on WSNs
with sink mobility, the readers may refer to Di Francesco et al. [2011], Khan et al.
[2014], Tunca et al. [2014], Yu et al. [2014], and Gu et al. [2015]. Hereafter, we will use
the terms “sensor node,” “sensor,” and “node” interchangeably.

A significant amount of research has been devoted to improve the lifetime of WSNs by
designing energy-efficient routing protocols from the sensor nodes to the MSs in case the
mobility is controllable, constrained, or unconstrained [Khan et al. 2014; Tunca et al.
2014]. As far as unconstrained mobility is concerned, in Li et al. [2012] the authors
propose a routing scheme called ILSR, which is based on geographic routing and aims
to ensure guaranteed packet delivery to a MS. More recently, in Shi et al. [2013] an
efficient Data-Driven Routing Protocol (DDRP) for WSNs was proposed, which reduces
network control overhead in route discovery/maintenance and improves data delivery
performance. In this article, we consider WSNs in which multihop communication to the
MS is not feasible. Therefore, such solutions are not applicable to the problem defined
in this article, which is designing an algorithm for energy-efficient data transmission
with QoS constraints to the MS.

A considerable amount of the literature has also exploited controllable sink mobility
to optimize the lifetime of WSNs. For example, in Gao et al. [2011] the authors studied
the problem of limited time available for data communication when path-constrained
MSs are exploited. They proposed a data collection scheme that increases network
throughput and decreases energy consumption of sensor nodes by balancing the load
of appropriately chosen subsinks that relay the traffic of farther nodes to the MS. As
regards to maximizing network lifetime along with QoS constraints, the authors in
Xu et al. [2012] aimed at finding a trajectory for the MS, subject to constraints on the
potential sojourn locations of the MS and maximum delay on data delivery. Similarly,
in He et al. [2013], Gu et al. [2013], and Tashtarian et al. [2015] the authors study
the problem of controlling sink mobility to achieve maximum network lifetime. The
maximum throughput and lifetime of a WSN was studied in Liu et al. [2012], in which
the data collection is performed using controllable mobility of MSs.

Despite the soundness of the above approaches, they do not optimize network lifetime
when the assumption of controllable sink mobility no longer holds and, therefore, a
different strategy is needed. In contrast, the proposed SISSA algorithm optimizes the
lifetime of WSNs with QoS even though the MS mobility is uncontrollable, random,
and eventually, unpredictable.

Alongside, adaptive algorithms have also been proposed in the literature to opti-
mize network lifetime when the MS mobility is uncontrollable, yet can be predictable
[Shah et al. 2011; Kondepu et al. 2012]. For example, in Shah et al. [2011] the au-
thors proposed a learning-based technique to predict the arrival time probability and
thus adapt the duty cycle of sensors based on the next estimated arrival time. On the
other hand, other approaches exploit hierarchical schemes to improve network lifetime
in case the mobility is not predictable. In Restuccia et al. [2012], the authors ana-
lyzed a hierarchical MS discovery protocol and evaluated its performance considering
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Fig. 1. Example of a deployment scenario with three subareas.

uncontrollable and random MS mobility. The work was extended in Restuccia et al.
[2014] by considering more realistic MS mobility and packet loss models.

However, the main limitation of Shah et al. [2011] and Restuccia et al. [2014] lies
in the assumption of sparse network scenario (one sensor only). When sensors are
in the transmission range of each other, however, sensors must compete for a free
channel after the MS discovery in order to start packet transmission. In this article,
we consider such case and therefore deal with both the multiple access control (MAC)
and MS discovery. Furthermore, the study in Restuccia et al. [2014] is limited to
the constrained sink mobility, which means the MS is bound to follow a predefined
trajectory with a given speed. In contrast, we relax this assumption and consider a more
general scenario in which the MS mobility is unrestricted and may be unpredictable.
Finally, we consider data reliability as a QoS constraint, which neither Shah et al.
[2011] nor Restuccia et al. [2014] took into account.

3. SYSTEM MODEL AND ASSUMPTIONS

This section first describes the sensing scenario under consideration and the related
assumptions and then defines the lifetime optimization problem with QoS.

3.1. Application Scenario

In this article, we concentrate on applications where the sensing area can be divided
into subareas, which are monitored by one or more sensors deployed close to each other
at a location of interest called deployment point (DP). By close to each other we mean
that every node is the transmission range of each other and that the packet loss between
them is close to zero. The nodes inside the same subareas are considered equivalent
in terms of the data generated, which means that every device in the same subarea
collects the same sensor readings. In practical scenarios, DPs may be, for example,
streetlight poles, as in Cenedese et al. [2014], and/or strategic locations underneath
the ground, as in Tooker and Vuran [2012]. Figure 1 shows a deployment example
supposing the sensing area has been divided into three subareas having 3, 4, and 2
sensors in each DP, respectively. The transmission range of sensors has been depicted
as a circle, while each DP has been represented by a black dot.

We chose such deployment scenario since it applies to a significant number of appli-
cations where fine-grain sensing is not needed (e.g., air/soil pollution monitoring), yet
lifetime optimization may be critical. Specifically, when sensors are deployed in chal-
lenges environments, battery substitution/recharging may be difficult or impossible.
In such cases, concentrating sensors only at strategic locations eases maintenance and
deployment costs and helps to increase accuracy and network lifetime [Di Francesco
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et al. 2011]. We point out that this deployment scenario is very similar to the well-
known sparse sensor network deployment strategy [Di Francesco et al. 2011] and has
been recently employed in practical WSNs implementations, among others [Cenedese
et al. 2014; Tooker and Vuran 2012]. Note that this scenario may be applied to several
network configurations (ring network configuration, among others).

Other remarkable advantages of such sensing scenario are that (i) each network in
each subarea cannot become partitioned, since every node in each subarea is in the
transmission range of each other, (ii) the hidden node problem is absent, (iii) packet
loss between sensors in each subarea is decreased, if not absent, and (iv) the MS enters
in the transmission range of all sensors in the same subarea almost at the same time.
These assumptions will be verified by experimental analysis in Section 7.

Owing to the fact that each subarea is independent from each other, multihop com-
munication to a sink node becomes unfeasible. Thus, we assume one (or more) MSs are
employed to collect the data acquired by the sensors in each subarea. The overall MS
data collection process (i.e., MS visit and data collection) is called an MS tour. Hereafter,
we will refer to communication area as the area in which the communication between
the MS and the sensors can take place via receiving or sending beacons/packets.

As anticipated earlier, we assume the mobility of the MSs could be uncontrollable and
random. We chose to analyze such mobility given it applies to most sensing scenarios in
which the MSs are pedestrians, vehicles, or animals [Campbell et al. 2008; Zhang et al.
2004; Haas and Small 2006; Chakrabarti et al. 2003]. Specifically, such assumption
implies that:

—The arrival time aj of the MS during the j-th MS tour is not known a priori;
—The maximum time c j available for data transmission during the j-th MS tour is

also not known a priori.

We note here that uncontrollable and random mobility does not imply aj and c j are not
to some extent predictable. Indeed, when the MS mobility presents patterns, energy
consumption and efficiency can be further optimized (e.g., as in Shah et al. [2011]).
For the sake of generality, in this article, we do not make any assumption about the
regularity of aj and c j and assume the mobility pattern can be eventually unpredictable.
The reader is referred to Khan et al. [2014] for additional discussions on different MS
mobility models.

3.2. Data Collection Scenario

The states in which a sensor node can be at any time are MS-Discovery, Data-Transfer,
and Sleep; the related transitions are shown in Figure 2. While in the MS-Discovery
state, the sensor wakes up periodically (i.e., using a duty cycle1) in order to check for
possible beacons from the MS. Upon the reception of a beacon, the sensor node transits
to the Data-Transfer state. In such state, the sensor node tries to access the channel and
transmit its data depending on the particular medium access control (MAC) protocol
being used. After transferring all its data, the sensor node transits to the MS-Discovery
state again. However, if the sensor node has a (even partial) knowledge about the
mobility pattern of the MS (i.e., the next arrival time aj can be predicted with some
uncertainty), it can enter a Sleep state in which the radio is put in sleep mode to save
energy.

In this case, the sensor node will wake up and switch to the MS-Discovery state W
time units before aj , where W is defined as the waiting time. The waiting time W is a
quantity that expresses the uncertainty about the next arrival time of the MS to the

1By respectively defining TON and TSL as the active and inactive times of the radio, the duty cycle δ is
defined as the ratio between TON and TON + TSL.
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Fig. 2. State diagram of a sensor node.

sensing area. To give an example, let us assume that the MS is estimated to arrive at a
particular time t. A waiting time W = 100s means that the sensor node must switch to
the MS discovery state (i.e., wake up from sleep state and start duty-cycling) 100s before
the predicted arrival time of the MS. This is because the MS could arrive in the time
window [t − 100s, t + 100s]. In case the waiting time is equal to W = 0s, it means that
there is no uncertainty about the next arrival time of the MS, and therefore the sensor
nodes do not have to enter the discovery phase but just switch to the Data-Transfer
state when the MS will arrive to the sensing area (i.e., the MS arrives periodically to
the sensing area). In other words, the more uncertain the prediction of the next MS
arrival is, the longer the waiting time will be.

In case it is not possible to predict the next arrival time of the MS, the sensor node
enters the MS discovery state as soon as the MS exits from the sensing area and
stays in discovery phase until the next MS arrival. Given that mechanisms to estimate
the waiting time W have already been proposed (for example, Shah et al. [2011]), the
computation of W is out of the scope of this article. In Section 8, we will consider
different values of W to estimate the energy consumption of sensors and ultimately
the network lifetime.

Figure 3 provides an example of MS tour and data collection, in which we show the
relationship between W , aj , and c j . Furthermore, Figure 4 illustrates the MS discovery
process by a sensor node, where c(t) and r(t) are, respectively, the wireless channel and
the sensor node status (i.e., active/inactive). The MS is discovered as soon as the sensor
becomes active and receives a beacon packet of duration Tbd, transmitted every Tbi
time units by the MS.

4. PROBLEM DEFINITION

Before formally defining the network lifetime optimization problem, we define the QoS
constraints considered in this article. In the following, we will consider the problem
of maximizing the lifetime of a specific subarea. Since each subarea is independent
from each other, the lifetime of each subarea can be maximized by applying the same
strategy to each subarea.

Definition 1. The QoS constraints are defined as

(1) the number of sensors kdes transmitting their sensed data to the MS at each visit;
(2) the minimum time θdes available for data exchange to each of the kdes nodes during

each MS visit.

Here we discuss some important points regarding Definition 1.
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Fig. 3. Example of MS tour and data collection.

Fig. 4. The MS discovery process by a sensor node.

—We express the QoS constraints with (1) and (2) because they define, respectively,
a constraint on reliability (more than one source of data) and on efficiency (maxi-
mization of data transfer per MS tour). Other QoS constraints, such as maximum
end-to-end delay, and so on, have already been investigated in other contexts [Xu
et al. 2012] and therefore are considered out of the scope of this article. Further-
more, note that such constraints are defined for each subarea composing the WSN.
This is because each subarea may present different QoS requirements. This might
happen, for example, because of budget constraints or because more stringent QoS
requirements are needed in a subarea instead of another.

—We chose to express the reliability constraint as kdes because if more sources available
for data collection are available, fault-detection techniques (e.g., exclude outliers in
the case one or more sensors are faulty) can be implemented to verify data reliability.
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For example, let us assume five sensors have been deployed in a subarea. Let us also
suppose that after some time one sensor becomes faulty. If kdes = 1, then it will be
impossible for the application to detect the fault because no other data source will be
available. As kdes increases (maximum value of 5), detecting the fault will be easier
as more data sources will be available to help recognizing the fault. Clearly, there is a
tradeoff between the value of kdes and θdes and the energy consumption of the sensors.
Specifically, if more sensors transmit data during each MS tour, then the overall
energy consumption will be higher, which ultimately leads to decreased network
lifetime. Therefore, the kdes parameter must be carefully chosen by the application to
allow a good tradeoff between desired fault tolerance and desired lifetime. The same
consideration applies to θdes; more data transmitted at each MS tour translates to
decreased network lifetime.

—Defining θdes as the amount of time allowed for transmission is a more general defi-
nition than the minimum amount of data. This is because the amount of data trans-
ferred is dependent from factors such as packet loss rate and packet header size.
Conversely, our definition is independent from channel conditions and MAC proto-
cols and can be used as an absolute measurement of the efficiency constrained of the
sensing application. Furthermore, we point out that the goal of this paper is not to
provide a mechanism for reliable data transmission to the MS, as this has already
been explored in existing literature [Borgia et al. 2013]. To this end, we wanted the
definition of the efficiency constraint to be independent from assumptions related to
wireless transmission (e.g, packet loss rate, MAC protocol, signal modulation, and
so on).

—In order to guarantee feasibility of the solution of the optimization problem, we
assume that the MS and sensors remain in the transmission ranges of each other
for at least Cmin = θdes · kdes time units during each MS tour. In other words, Cmin is
sufficiently large to guarantee that θdes time units of channel time will be available
to kdes sensor nodes. In real-world applications, this condition might be met, for
example, by constraining somehow the MS mobility or by choosing the deployment
points of each subarea according to the MS mobility constraints (i.e., trajectory and
speed). We point out that this assumption is necessary to guarantee that the QoS
constraints imposed by the application can be satisfied and are independent from the
solution of the optimization problem. Also, we point out that this assumption does
not imply that the mobility of the MS is predictable.

—The value range of kdes is from 1 ≤ kdes ≤ S, where S is the number of sensors
deployed in the subarea. Furthermore, the range of θdes depends on the value of kdes
and the tour number j. For example, if kdes = 1, the range of θdes will be from Cmin to
c j (i.e., maximum time available for data transmission during the j-th MStour, see
Figure 3). In general, θdes may range between Cmin/kdes ≤ θdes ≤ c j/kdes.

We now define the concept of network lifetime that will be used throughout the paper.

Definition 2. The network lifetime L is the number of MS tours elapsed from the
network deployment to the tour in which the first sensor depletes its energy.

Note that Definition 2 yields a result which is, in general, lower w.r.t. the actual
network lifetime. This is because, in general, the subarea will be able to deliver sensed
data with QoS to the MS for additional MS tours. However, we point out that the
notion of network lifetime is usually conventional, and it is used to give an indication
of the long-term performance of the network in delivering its service. Indeed, different
definitions of lifetime may in general lead to different values of lifetime. In this paper,
we chose such network lifetime definition to be coherent with the relevant related
literature [Liu et al. 2012]. We also chose such definition for the sake of simplicity, as the
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mathematical analysis necessary to derive the network lifetime becomes significantly
more tractable with such definition.

Furthermore, we point out that the number of MS tours directly indicates the number
of times the subarea will be able to deliver sensed data to the MS with desired QoS
constraints. Note that if the frequency of MS tours is known, then thte network lifetime
expressed in time units can be obtained by dividing the number of MS tours by their
frequency.

Let us now define the lifetime optimization problem. Let Ei, j
d and Ei, j

c define the
energy spent by sensor si during the j-th MS tour in the discovery and communication
phases, respectively. Then the total energy Ei, j

tot will be equal to Ei, j
d + Ei, j

c . By noting
that minimizing the energy consumption of every sensor node in every subarea of the
WSN translates in the network lifetime maximization, the lifetime L of the entire
WSN is consequently optimized. We define the network lifetime optimization problem
as follows.

Definition 3. Lifetime optimization problem.

For every sensor si,
and for every MS tour j,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Minimize Ei, j
tot

subject to

θ ≥ θdes,p
k ≥ kdes,p ≥ 1

. (1)

We want to highlight that the solution of the optimization problem is independent
from the definition of network lifetime. More specifically, the target of the lifetime op-
timization problem in Equation (1) is to minimize the energy consumption for every
sensor si and for every MS tour j. Although such minimization may lead to different
network lifetime values if different definitions are used, the result of the optimiza-
tion (i.e., the duty-cycle value to be used by the sensors in the subarea, computed in
Equation (8)) is independent from the network lifetime yielded by using the solution of
the optimization problem. Indeed, note that the definition of network lifetime does not
appear on the lifetime optimization problem.

4.1. The Oracle Scheme

We now propose an ideal scheme, hereafter referred to as the Oracle scheme, and prove
that Oracle maximizes the lifetime of WSNs according to Definition 2. Henceforth, to
simplify the mathematical notation, we will consider one subarea only and refer to θdes
and kdes as the QoS constraints for subarea. 2.

The Oracle scheme is designed as follows. Assuming a sensor si has perfect knowl-
edge of each MS arrival time aj for each MS tour j, no beacon packets are emitted
by the MS, since the discovery phase is not necessary. We also assume that for the
Oracle scheme, the sensor nodes know each other’s energy level, and, additionally, the
nodes are synchronized with each other. As a consequence, at time aj , the kdes sensors
having the highest residual energy budget will wake up from the sleep state and start
transmitting data to the MS back to back until they have used the channel for θdes time
units. The selection of the kdes nodes at each MS tour is based on the IDs, such that for
two nodes with the same energy budget, priority will be given to nodes with lower ID.

Figure 5 illustrates the Oracle scheme where kdes = 2, S = 4, and θdes = 1. In this
example, the sensors with highest residual energy budget at t = a3 are s1 and s2.
Therefore, they start transmitting their data back to back as soon as the MS enters the
communication area, and they stop transmitting as soon as they have used the channel
for one time unit.
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Fig. 5. Illustration of the Oracle scheme.

Let us now derive a simple formula to characterize the network lifetime provided
by the Oracle scheme. Let R = S/kdes define the redundancy ratio of the WSN, which
measures the reliability of the network.2 Also, let Eb define the initial energy budget
of a sensor. Therefore, the energy Ecp spent by a sensor while communicating with the
MS is given by Ecp = PT X · θdes, where PT X is the packet transmission power of the
sensor’s radio. Then the following two lemmas hold.

LEMMA 1. The network lifetime Lor provided by the Oracle scheme is given by

Lor = Eb · R/Ecp. (2)

PROOF. By definition, the S sensors in the Oracle scheme are divided into R groups
made up of kdes sensors (groups {s1, s2} and {s3, s4} in Figure 5). Each group will send
data to the MS once every R number of MS tours in a round-robin scheme. Therefore,
every sensor will spend Ecp units of energy every R tours. This implies the sensors in
the first group (i.e., sensors s1, s2 in Figure 5) will deplete their energy budget after a
number of MS tours equal to Eb · R/Ecp.

LEMMA 2. The Oracle scheme maximizes the network lifetime according to Definition 2
while guaranteeing the QoS constraints as in Definition 1.

PROOF. While using the Oracle scheme, sensors know exactly each MS’s arrival time
aj , hence, no MS discovery is needed. This implies Ei, j

d = 0 for all 1 ≤ i ≤ S, j ≥ 0.
Recall that (i) the only energy spent by the sensors is due to packet transmissions;
(ii) channel access is contentionless; (iii) only kdes nodes transmit at each MS tour j
and they use the channel for exactly θdes time units. Therefore, we conclude that Ei, j

c is
minimized for all 1 ≤ i ≤ S, j ≥ 0 and the QoS constraints are satisfied.

It is worth pointing out that Oracle is only an ideal scheme and not implementable
in reality. This is because it assumes each sensor has exact knowledge about every
MS’s arrival time aj , which is impossible under the hypothesis of uncontrollable and
random MS mobility.

5. THE SISSA ALGORITHM

This section describes the SISSA that aims to solve the lifetime optimization problem as
formulated in (1). To increase lifetime and at the same time guarantee the required QoS
constraints, SISSA schedules during each MS visit a contention-free channel access

2Henceforth, without loss of generality we will assume that R is integer.
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Fig. 6. A possible evolution of the SISSA swarm phase.

scheme such that only the kdes nodes with the highest residual energy levels among
all S nodes transmit. Thereby, SISSA allows the remaining S − kdes nodes to save
energy and the selected kdes nodes to increase their channel access time at each MS
tour. This ultimately allows each sensor to decrease dramatically its duty cycle and
thus save energy and optimize the lifetime. Details on how to find the duty cycle δ∗ to
guarantee the desired throughput θdes to the kdes sensors will be provided in Section 6.
The proposed SISSA scheme consists of two different phases, the swarm phase and
communication phase, as described below.

5.1. The Swarm Phase

The swarm phase is aimed at ensuring that each of the S nodes will be aware of the
residual energy level3 of the remaining S − 1 nodes after a certain amount of time,
hereafter referred to as the convergence time of the swarm phase. In particular, as
soon as the MS is discovered, each sensor node starts transmitting periodically what is
called a swarm agent, a packet containing information about the residual energy level
of the sensor node along with its ID.

Each swarm agent is transmitted using a time offset from the beacon derived from
the sensor’s ID, so the transmission of swarm agents is contention free, which does
not require any synchronization between the sensors. At the same time, each sensor
discovering the MS starts listening to possible swarm agents emitted by other sensors.
The sensor nodes stop listening when every node has received a swarm agent from the
remaining S − 1 sensors or a timeout occurs. This timeout depends on the duty cycle
and will be derived in Section 6.

Figure 6 illustrates a possible evolution of the swarm phase, supposing that three
sensor nodes s1, s2, and s3 are competing for highest residual energy level. In this figure,
ri(t) represents the state (i.e., ON or OFF) of the radio of sensor si, 1 ≤ i ≤ 3, while
c(t) represents the channel status in terms of beacons/packets sent (B is the beacon
packet).

In this example, we assume that the MS is discovered by s1, s2, and s3 by means of
the first, second, and fourth beacons, respectively, and that s2 has the highest residual
energy level among those three nodes. Since s1 is the first node to discover the MS (at t =
0), it starts advertising periodically its swarm agent, while listening to possible swarm

3Note that, by knowing the initial energy budget, it is easy for each sensor node to estimate its residual
energy by simply keeping track of the radio operations (i.e., transmissions, receptions, and computations)
performed in the past.
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agents from s2 and s3. Note that after receiving the swarm agent from s2 (respectively,
s1), the node s1 (respectivley, s2) switches its radio off in correspondence with the
transmission time of the swarm agent sent by s2 (respectively, s1) to save energy.
Ultimately, the swarm phase converges at t = 3 · Tbi, where Tbi is the beacon emission
period, when all sensors have received a swarm agent from other nodes. Therefore,
according to this example, the convergence time of the swarm phase is given by Tct =
4 · Tbi (rounded to the next beacon transmission). Since s2 is the node with the highest
energy consumption, it starts transferring its data beginning at t = Tct, while the other
nodes resume their duty cycle and wait for another MS visit. The transmission phase
ends as soon as the MS leaves the sensor network, implying that the MS and sensors
are too far from each other to communicate.

Let us now point out some properties of the SISSA algorithm with the help of the
above example.

—The SISSA swarm phase cannot converge until every sensor receives a swarm agent
from all other sensors. This implies that each sensor node will terminate the swarm
phase at the same time. Therefore, without any global information, intelligence, or
synchronization, each sensor knows the swarm phase is completed only with the help
of the knowledge provided by the “swarm intelligence” [Engelbrecht 2006];

—The sensor radio remains active only during the instants of swarm transmission/
receptions. This allows the swarm phase to be energy efficient (the energy perfor-
mance will be investigated in Section 6);

—SISSA does assumes neither a homogeneous initial energy budget nor a homogeneous
sensor platform. This gives additional flexibility to the algorithm, which can indeed
be implemented by using different platforms inside the same WSN.

—The swarm phase does not flood the network with swarm agents, as the communica-
tion is not multihop, and it occurs only once every MS tour. In the following section,
we will derive strict analytical bounds on energy consumption, convergence time,
and the number of swarm agents exchanged during each swarm phase.

—Although we assumed the most general case of uncontrollable and random MS mo-
bility, SISSA is able to function also in case of controlled MS mobility.

In case one (or more) nodes fail, every sensor will reach timeout and stop emitting
swarm agents. Therefore, every node in the WSN will know if any node sf has failed by
not receiving swarm agents from sf during the swarm phase. Note that this is accom-
plished without the need of central synchronization. After every node stops emitting
swarm agents, it will update the current value of S and the list of nodes still alive.
Then the communication phase will start as described next.

5.2. The Communication Phase

At the beginning of the communication phase, each sensor is aware of the energy levels
of other sensors thanks to the swarm agents received by them. As a result, each sensor
is able to autonomously determine the kdes sensor nodes having the highest residual
energy levels and whether it is allowed to transmit its data.

Thus, on one hand, kdes sensors recognize themselves as the “winners” of the com-
petition and start transmitting their sensed data. On the other hand, the remaining
S − kdes nodes recognize themselves as the “losers” of the competition and return to
their operating duty cycle (or sleep mode), waiting for the next MS visit. If two or
more nodes have the same energy level, for tie breaking the node(s) with the highest
ID(s) will be selected. Since by assumption the S nodes monitor the same event, the
fact that the remaining S − kdes sensors do not transmit their data does not affect the
functionality of the application.
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Table I. List of Major Symbols

Symbol Meaning
Ai Automaton of sensor si

Qi Local descriptor of Ai

Q Global SaN descriptor
tj Transmission time of the j-th beacon

Tbi , Tbd Beacon period, duration
Tsa Swarm agent duration

TON , TSL, TP Active, inactive, total time of the radio
ri Radio residual time at t = 0

SR(t) Radio state at time t
SQ SaN state space

�, γ j SISSA convergence time, distribution
Di , λ

j
i MS Discovery time by si , distribution

In order to guarantee the fastest channel access, each of the kdes nodes is allowed to
transmit its data only in a specific time slot between the emission of two consecutive
beacons. The transmission order is ID-wise, in the sense that the node with the lowest
ID is the first to transmit, and so on. The data transfer phase ends as soon as the MS
leaves the WSN, that is, the kdes sensor nodes do not receive any other beacon from the
MS in a window of Wmax seconds. The duration of the time slot assigned to each node
depends on kdes and will be derived in the next section.

6. ANALYSIS OF SISSA

This section derives a comprehensive analytical model of the SISSA algorithm. In
particular, we derive the MS discovery process and the sensors’ radio models, followed
by the swarm phase convergence time, some properties of the SISSA algorithm, and the
energy consumption analysis. Finally, we derive an approximate formula to estimate
the network lifetime yielded by SISSA.

Table I enumerates the list of major symbols used in the analysis.

6.1. MS Discovery Process

Before characterizing the MS discovery process, it is worthwhile to first introduce the
concept of stochastic automata network (SaN) [Plateau and Atif 1991], representing a
mathematical abstraction that models the interactions between a number of individual
stochastic automata. Each automaton Ai is represented by a local descriptor Qi, which
is a matrix representing the possible automaton states with transition probabilities.
The entire system A is represented by a global descriptor Q, which is a matrix obtained
as a function of the local descriptors. In our analysis, we will model a sensor si through
an automaton Ai and its local descriptor Qi, while the entire WSN composed of S
sensors will be modeled by the global descriptor Q of the SaN.

In the following, we assume that the sensing rate is set in such a way that every sen-
sor node is able to store in its memory at least B·θdes bytes, where B is the transmission
rate of the sensor node’s radio in bytes per second. Also, we assume that the transmis-
sion power of swarm agents is high enough to guarantee error-free transmission. This
assumption is sound since the sensor nodes are assumed to be closely deployed to each
other.

In order to derive the local descriptor Qi associated with the automaton Ai for a
given sensor si, it is necessary to model first the MS discovery process. Let t = 0 be the
time at which the MS enters the WSN, that is, the time from which the beacons can
be received by the sensor nodes. Figure 7 depicts the finite-state machine describing
the evolution of the automaton Ai for sensor si during an MS visit. In particular, si
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Fig. 7. Finite-state automaton describing the sensor si .

is in state Bi
j if the previous j − 1 beacons sent by the MS since t = 0 were missed,

where j ∈ [1, N] and N = �Cmin
Tbi

� is the minimum number of beacons received during
an MS visit. Therefore, the automaton Ai evolves from state Bi

j to Bi
j+1 if si has not

yet discovered the MS within time tj of the j-th beacon transmission. Conversely, the
automaton transits from state Bi

j to the absorbing state Di if the MS is discovered by
means of the j-th beacon and from state Bi

N to the absorbing state Fi if the MS has not
been discovered during this visit.

Since the reception of the j-th beacon depends on the initial state of the sensor’s radio
at time t = 0, each state Bj

i is in reality a macrostate that keeps track of all possible
radio states of the i-th node just before receiving the j-th beacon. The composition of
such macro states, the transition probabilities between the states and the number of
possible radio states are provided below.

Let us now derive the values of tj , for 1 ≤ j ≤ N − 1. Assuming that time is
discretized with slots of duration �, the time t0 of the first beacon transmission into
the WSN is a random variable that can assume all possible values in the set � ≡
{0, �, . . . , n · �} , where n = � Tbi

�
�. For this reason, the time tj of the j-th beacon

transmission is given by tj � {t0 + j · Tbi, 1 ≤ j ≤ N − 1}. For the sake of simplicity, we
consider a generic t0 ∈ �. This constraint t0 will be relaxed later.

In order to derive the radio model, we first define TP � TON + TSL as the period of
the sensor node’s radio, where TSL = (1−δ)·TON

δ
and δ is the duty-cycle ratio. Henceforth,

we will assume that TON will be equal to the minimum value Tbi + Tbd such that a
sensor node will be able to receive at least one beacon packet in the active mode. To
characterize the radio state of a generic sensor at beacon reception time tj , we introduce
the function SR(t) that assumes the value ON or OFF if the sensor radio is active or
inactive at time t. Let us indicate by ri the residual time of the initial radio state
SR(0), starting from time t = 0. Since the time is discretized in slots of duration �,
the residual time ri of the radio state can assume uniformly M = 
 TP

�
� different values.

Given ri, and defining t′
j = tj mod TP , the state SR(tj) of the radio of sensor si at time

tj is given by

SR(tj)
SR(0) = ON =

⎧⎨
⎩

ON if t′
j ∈ [0, ri] ∪ [ri + TSL, TP)

OFF if t′
j ∈ [ri, ri + TSL)

,

SR(tj)
SR(0) = OFF =

⎧⎨
⎩

OFF if t′
j ∈ [0, ri) ∪ [ri + TON, TP)

ON if t′
j ∈ [ri, ri + TON)

.
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The above equations can be justified as follows. Since the time of the first beacon
transmission t0 is assumed to be known, and because the radio evolves deterministically
with a period TP , it also follows that SR(tj) always evolves in a deterministic and
periodic manner. Therefore, it is possible to derive SR(tj) by comparing t′

j against the
initial residual time ri.

Once the radio state at beacon reception times and the MS discovery process have
been fully characterized, we can derive the transition probabilities of the automaton
Ai. Equation (3) below depicts the descriptor Qi of Ai, derived from the finite-state
machine depicted in Figure 7. Let mk, j, 1 ≤ k ≤ M be the set of all possible radio states
at time tj , obtained by using the RS(t) function calculated at time tj and by considering
all possible M initial radio states. Given the initial residual time can assume M values,
blocks P i

xy in matrix Qi have size 1 × M and keep track of all possible transition
probabilities from the generic state Bi

x to the generic state Bi
y (respectively to Fi or Di

if x = N):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bi
1 Bi

2 · · · Bi
N Di Fi

Bi
1 P i

12 0 · · · 0 P i
1D 0

Bi
2 0 P i

23 0 · · · P i
2D 0

...
...

...
Bi

N 0 0 0 0 P i
ND P i

NF

Fi 0 0 0 0 1 0
Di 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

By pointing out that a sensor discovers the MS independently of others, it follows that
the transition probability at time tj depends only on that node’s radio. Therefore, the
M subblocks of the block P i

xy are derived as follows:

p(mk, j )
Bj Bj+1

=
{

1 mk, j = OFF
0 otherwise

p(mk, j )
Bj Di =

{
1 mk, j = ON
0 otherwise

p(mk,N)
BN Fi =

{
1 mk,N = OFF
0 otherwise

.

Once the description of the single automaton is completed, we can now derive the SaN
global descriptor Q. By definition, the state space of the SaN can be obtained by the
Cartesian product of the state space of each automaton corresponding to a sensor si.
Let SQ define the set containing the state space of the SaN. For example, for S = 5
sensors, a state ξ ∈ SQ can be obtained as ξ = {B1

5, B2
5, D3, B4

2, D5}. Since the overall
SaN is composed of S autonomous and independent automata, following the arguments
in Plateau and Atif [1991], Claim 1 below holds.

CLAIM 1. Given S independent stochastic automata A1, . . . ,AS, with associated de-
scriptors Q1, . . . ,QS, the global descriptor Q can be derived as Q = ⊗S

i=1Qi , where ⊗ is
the tensor product operator (see Itskov [2007] for a definition of tensor product).

Although Qi is a sparse tensor, its dimensions may become prohibitive for realistic
values of S. However, to keep the model scalable, we can derive the following corollary
from the above claim.

COROLLARY 1. By defining π
( j)
i as the state probability vector associated with time tj

of the j-th beacon transmission by the i-th automaton (for sensor si), the distribution
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π
( j)
Q associated with the tensor Q can alternatively be derived as π

( j)
Q = ⊗S

i=1π
( j)
i for 0 ≤

j ≤ N + 1.

The resulting model is now scalable, as each π
( j)
i can be calculated separately and

then combined with others with the tensor product to obtain π
( j)
Q .

6.2. Convergence Time

In this subsection we derive the SISSA swarm phase convergence time. Hereafter, the
notation P{e} will denote the probability of occurrence of event e. First, H j defines a
discrete-time random process that denotes the total number of automata discovering
the MS at time t ≤ tj , given that the first beacon transmission occurred at t = t0.
Furthermore, let us define by ht0

jk the probability mass function of H j , such that

ht0
jk � P{H j = k | t0}, for 0 ≤ k ≤ S.

Let us define Ck as the subset of tuples in SQ indicating that exactly k nodes have
discovered the MS. For example, a tuple in the set C3 is {B1

2, D2, D3, B4
2, D5}. By definition

of Ck, it follows that

ht0
jk =

∑
ξ∈Ck

π
( j)
Q (ξ ), for 0 ≤ k ≤ S, (4)

where π
( j)
Q (ξ ) is the component of the vector π

( j)
Q corresponding to the state ξ ∈ Ck.

Now let � define the random variable describing the SISSA swarm phase convergence
time. Recalling that ht0

jS is the probability that exactly S nodes have discovered the MS
at time tj , the distribution γ j,t0 of � restricted to specific t0 value can be derived as
follows:

γ j,t0 =

⎧⎪⎨
⎪⎩

ht0
jS j = 0

ht0
jS − ht0

( j−1)S 1 ≤ j ≤ N

0 otherwise

. (5)

Finally, in order to eliminate the dependency of γ j,t0 from t0, we consider all possible
values of such variables and the corresponding probabilities. Since every t0 ∈ � has
the same uniform probability �

Tbi
of occurrence, the distribution γ j of the SISSA swarm

phase convergence time, �, is given by

γ j =
∑
t0∈�

γ j,t0 · P{t0} = �

Tbi
·
∑
t0∈�

γ j,t0 . (6)

By using a similar procedure (not reported here due to lack of space), we can derive
the distribution λ

j
i of the MS discovery time Di by sensor si.

6.3. Properties and Analytical Bounds

Let us now prove some important properties and analytical bounds yielded by the
SISSA algorithm. The first property is related to the maximum convergence time of
the swarm phase.

Let us define T ∗
SL as the sensor radio inactivity time associated with the use of duty-

cycle ratio δ∗. Let t∗
j be the minimum tj such that tj ≥ T ∗

SL. Then the following claim
holds.
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Fig. 8. Worst-case convergence time of SISSA.

CLAIM 2. In case of no node failure(s), the SISSA swarm phase convergence time is
at most t∗

j when using a duty-cycle ratio δ∗.

PROOF. A sensor node using a duty cycle δ∗
j will wake up at most T ∗

SL time units after
the emission of the first beacon into the WSN. This means that, in the worst case, the
sensor node will discover the MS by means of the j∗-th beacon. Therefore, the SISSA
swarm phase will converge in at most at t = t∗

j time units.

In Figure 8 is exemplified the worst-case convergence time of SISSA. In this example,
sensor node x discovers the MS by means of the first beacon (emitted at time t = 0),
while the node y will discover the MS at time t = t∗

j .
The above implies that the maximum convergence time of the swarm phase of SISSA

depends not on the number S of sensors in the WSN but on the duty-cycle ratio δ∗ only.
This gives scalability to the SISSA algorithm. Let us now derive some interesting
corollaries from this claim.

COROLLARY 2. Timeout value. The timeout has to be set to τ = t∗
j for each node, since

t∗
j is the maximum convergence time of the swarm phase.

COROLLARY 3. Maximum number of swarm agents. The number of swarm agents (i.e.,
the number of messages) a sensor node emits during the swarm phase is O(

t∗
j

Tbi
) ≡ O(1).

COROLLARY 4. Maximum energy consumption during swarm phase. Given the number
of swarm agents received by each node is S − 1, we can derive an upper bound on the
energy consumption by the sensor nodes during the swarm phase. In particular, by
defining PRX as the reception power of the sensors’ radio and Psa

T X as the transmission
power of swarm agents, the maximum energy Esp

max each node spends during the swarm
phase by each node is

Esp
max = Psa

T X · t∗
j

Tbi
· Tsa + PRX · Tsa · (S − 1).

COROLLARY 5. Minimum channel time. Recalling that Cmin is the minimum available
contact time, then SISSA guarantees that at least Cmin − t∗

j time will be available to
the kdes sensors for data communication. In particular, defining Tk = (Tbi−Tbd)

kdes
as the slot

duration of each node selected for data transfer, the minimum channel time available
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to each of the kdes nodes during an MS visit is obtained as

θmin = Tk ·
⌊Cmin − t∗

j

Tbi

⌋
. (7)

From Equation (7), we can solve the following optimization problem and derive the
optimum duty-cycle ratio δ∗

opt that allows each of the kdes nodes to attain a communica-
tion time θmin of at least θdes. Thus,

δ∗
opt = min

δ∗∈(0,1]

{
δ∗ : θmin ≥ θdes

}
. (8)

The solution can be calculated by simply discretizing the continuous interval (0, 1] of
the duty-cycle ratio δ∗ and applying an exhaustive search.

6.4. Energy Consumption Analysis

In this subsection, we derive the distribution of energy consumption by each sensor
node as a summation of the energy consumed during the MS discovery process and the
swarm and communication phases.

Let us now compute the distribution of the energy Ei
dp spent by the sensor si dur-

ing MS discovery. Assuming that sensor nodes use a duty-cycle ratio δ∗, the energy
consumption distribution Ei

dp( j), 0 ≤ j ≤ j∗, can be defined as

Ei
dp( j) = P{Ei

dp = PRX · δ∗ · (W + tj)},
where W is the estimated waiting time and PRX is the radio power in the receiving state.
The sensor si begins the discovery phase W time units in advance of the (predicted)
MS arrival into the WSN and then remains in the discovery process for additional tj

seconds (i.e., until the MS is discovered). Therefore, with a probability λ
j
i , the sensor

consumes PRX · δ∗ · (Wm + tj) units of energy, thus leading to the following probability
distribution:

Ei
dp( j) = λ

j
i , for 0 ≤ j ≤ j∗. (9)

We now derive the distribution of energy Ei
sp spent by si during the swarm phase.

Since this distribution depends on Di (discovery time of the MS by si) and �, we define
the distribution Ei

sp( j, z, t0), for 0 ≤ j ≤ z ≤ j∗, as

Ei
sp( j, z, t0) = P{Ei

sp = E | Di = tj, � = tz, t0}. (10)

Next we derive the energy E used in the above equation. The amount of energy
spent between tj and tj+1 during the swarm phase by a sensor will be the sum of the
energy spent for receiving the beacon and that spent for receiving the still missing
swarm agents and transmitting its swarm agent. By pointing out that the distribution
ψ( j, k) of the still missing swarm agents at time tj can be derived as the probability
that exactly S − k nodes have discovered the MS at time t ≤ tj−1, and by recalling the
definition of ht0

jk in Equation (4), the distribution ψ( j, k) can be recursively derived as

ψ( j, k) =

⎧⎪⎨
⎪⎩

1 j = 0, k = S − 1
ĥt0

j−1,S−k 1 ≤ j ≤ z
0 otherwise

,
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where ĥt0
jk is the distribution described in Equation (4) normalized from t0 to tz. There-

fore, E is derived as

E = Psa
T X · Tsa + PRX ·

⎛
⎝Tbd +

S−1∑
k=0

z∑
m= j

k · Tsa · ψ(m, k)

⎞
⎠,

where Psa
T X is the transmission power of swarm agents and Tsa is the duration of a

swarm agent. The joint distribution Ji( j, z) � P{Di = tj, � = tz}, 0 ≤ tj ≤ tz ≤ t∗
j and

the distribution Ei
sp( j, z, t0) can be derived as

Ji( j, z) = λ
j
i · γ z

∑
0≤ j≤z≤ j∗ λ

j
i · γ z

Ei
sp( j, z, t0) = Ji( j, z), 0 ≤ j ≤ z ≤ j∗. (11)

We can easily remove the dependency from t0 by using the same procedure as in
Equation (6).

Next we calculate the energy spent by one of the kdes nodes during the communi-
cation phase. Since each of these nodes accesses the channel in a slotted fashion, the
energy spent during this phase is only for transmitting each data packet, without any
additional energy overhead. Thus, the energy distribution Ei

cp(z), 0 ≤ z ≤ j∗ is defined
as

Ei
cp(z) = P

{
Ei

cp = Pmsg
T X · Tk ·

⌊
Cmin − tz

Tbi

⌋}
,

where Pmsg
T X is the transmission power of data packets. Similarly to Equation (9), it

follows that the distribution Ei
cp(z) is given by

Ei
cp(z) = γ z, 0 ≤ z ≤ j∗. (12)

Equation (12) derives from the fact that γ z is the distribution as a function of time tz,
where 0 ≤ z ≤ j∗.

6.5. Lifetime Analysis

In the following, we derive a simple yet effective formula to approximate the total
network lifetime Lsis provided by the SISSA algorithm. First, as in the ideal Oracle
scheme, let us define redundancy ratio as the quantity R = S/kdes, where S is the
number of sensors and kdes is the QoS parameter defined by the application. In addition,
let us define Edp, Esp, and Ecp, respectively, as the average energy spent during the MS
discovery, swarm, and communication phases obtained by using Equations (9), (11),
and (12).

To estimate the lifetime provided by SISSA, we assume that the set of kdes sensors
will be selected during each MS tour following a round-robin fashion (similarly to the
Oracle scheme). This assumption is sound due to the fact that sensors with the highest
energy consumption will transmit at each MS tour, and approximately every sensor
will spend the same amount of energy. Indeed, we also assume that each of the kdes

nodes will spend the same amount of energy during each tour, which is Edp + Esp + Ecp.
Conversely, each of the S − kdes nodes will spend Edp + Esp units of energy, since they
will not send their data to the MS. Therefore, the following lemma holds.
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LEMMA 3. By defining Eb as the initial energy budget of each sensor node as in the
Oracle scheme, the network lifetime Lsis provided by SISSA is approximated by

Lsis ≈ Eb

R · (Esp + Edp) + Ecp
· R. (13)

PROOF. Assuming that each sensor will be selected once every R tours, the energy
consumption of a single sensor during a period of R different MS tours will be obtained
as Esp + Edp + Ecp during one tour and Esp + Edp for the remaining R − 1 tours. By
dividing each sensor’s energy budget Eb by the total energy spent for all R tours, we
can estimate the number of times a sensor will be able to conclude a period of R tours.
By multiplying this quantity by R, we can approximate the number of tours one sensor
will be active before dying, which is the network lifetime by definition.

We now compare the lifetime provided by SISSA against that provided by the ideal
Oracle scheme. Let us define the lifetime approximation ratio (LAR) as the lifetime
provided by SISSA divided by the lifetime provided by Oracle, that is, LAR = Lsis/Lora.
Applying expression (13), we derive

LAR = Eb · R

R · (Esp + Edp) + Ecp
· Ecp

Eb · R

= Ecp

R · (Esp + Edp) + Ecp
.

(14)

By definition of LAR, we conclude that SISSA approximates better the Oracle scheme
as the energy spent in the discovery ratio decreases. This is because the SISSA algo-
rithm includes in its execution the MS discovery, which is not considered in the Oracle
scheme but necessary in real WSNs implementations. The performance of SISSA as a
function of R and the duration of MS discovery process will be evaluated in details in
Section 8.

7. EXPERIMENTAL MODEL VALIDATION

In this section, we first validate the analytical model of SISSA through experimental
evaluation. Then we evaluate the impact of the transmission power level of swarm
agents and the distance between sensors on the performance of SISSA.

7.1. Indoor Experiments

In the experiments, we set up an indoor experimental setup composed by 40 TelosB
[Crossbow 2014] sensors deployed over a 4 × 10 grid (see Figure 9). This indoor setup
was used to validate the assumptions of both the system model and the mathematical
analysis. The data collection phase was carried out by a volunteer graduate student
walking at a speed of about 2 m/s and holding in his hands another sensor acting
as the MS. The remaining experimental parameters are summarized in Table II. All
confidence intervals has been set to 95%. In each experiment we performed 50 tours of
the MS.

Tables III and IV summarize the analytical and experimental results, respectively,
of the average energy spent by sensor nodes during the swarm phase and the average
swarm phase convergence time, as a function of both the number of nodes in the
WSN and the duty-cycle parameter, δ. Results conclude that our analytical model
accurately captures the performance of the SISSA algorithm in real implementations.
As expected, Tables III and IV conclude that the energy spent during the swarm phase
increases with the number of nodes in the WSN. This is because the number of swarm
agents to be received by each sensor increases with the number of nodes. Furthermore,
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Fig. 9. Indoor experimental setup.

Table II. Parameters Used for Evaluating SISSA

Parameter Value

Reception (RX) power of radio 56.4mW
Transm. (TX) power, beacon and messages 49.5mW

TX power, swarm agents 31.32mW
Beacon interval 200ms
Beacon duration 2ms

Swarm agent duration 2ms
TON 202ms
W 1s

Time slot (�) 10ms
Bitrate 250Kbps

Message size (Bm) 133bytes
Message duration (Tm) 4.256ms

Battery type AA, 2500mAh

Table III. Swarm Phase Energy Consumption (S = Number of Sensors, δ = Duty-Cycle Ratio,
CI = Confidence Interval)

δ = 3% δ = 5% δ = 7% δ = 9%
S Mod. Exp. CI Mod. Exp. CI Mod. Exp. CI Mod. Exp. CI
5 2.26 2.36 ±0.52 1.45 1.74 ±0.18 1.07 1.17 ±0.23 0.89 0.98 ±0.44
10 3.58 3.77 ±1.06 2.29 2.94 ±0.32 1.71 1.95 ±0.30 1.42 1.76 ±0.60
20 6.21 5.47 ±1.62 3.98 4.67 ±0.60 2.97 3.29 ±0.41 2.46 2.86 ±0.95
30 8.85 9.28 ±2.56 5.66 5.87 ±0.68 4.23 4.43 ±0.50 3.50 3.50 ±1.15
40 11.50 11.00 ±2.47 7.34 7.70 ±0.90 5.49 5.81 ±0.60 4.54 4.94 ±1.84

Table IV. Swarm Phase Convergence Time (S = Number of Sensors, δ = Duty-Cycle Ratio,
CI = Confidence Interval)

δ = 3% δ = 5% δ = 7% δ = 9%
S Mod. Exp. CI Mod. Exp. CI Mod. Exp. CI Mod. Exp. CI
5 5.80 5.67 ±0.20 3.60 3.78 ±0.17 2.60 2.56 ±0.34 2.2 2.60 ±0.51
10 6.20 6.06 ±0.30 3.60 3.64 ±0.21 2.80 2.88 ±0.40 2.2 2.40 ±0.36
20 6.20 6.53 ±0.35 4.00 4.12 ±0.24 3.00 3.14 ±0.55 2.4 2.46 ±0.25
30 6.60 6.61 ±0.15 4.00 3.95 ±0.20 3.00 2.75 ±0.50 2.4 2.57 ±0.42
40 6.80 6.54 ±0.28 4.00 4.06 ±0.30 3.00 3.44 ±0.50 2.4 2.85 ±0.58
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Fig. 10. Energy spent (mJ) during communication phase.

Fig. 11. Energy (nJ) per byte.

Table III suggests that the energy spent during the swarm phase increases as the
duty-cycle decreases. This is because the maximum swarm phase convergence time
increases as the duty-cycle decreases (as shown in Table IV) and so does the energy
consumption. As expected, the convergence time of SISSA does not increase with the
number of nodes and depends on the duty-cycle parameter only.

Finally, to determine the efficiency of SISSA swarm phase, Figure 10 and Figure 11
show respectively the average energy (measured in mJ) spent by each of the kdes = 5
sensors during the communication phase as a function of sensor nodes’ duty cycle.
Obviously, as the time available for data exchange increases, the energy spent by the
kdes nodes increases. However, the energy per byte (measured in nJ) spent decreases as
the duty cycle increases (result not shown here due to space limitations). Such results

ACM Transactions on Sensor Networks, Vol. 12, No. 1, Article 2, Publication date: March 2016.



Optimizing the Lifetime of Sensor Networks with Uncontrollable Mobile Sinks 2:23

Table V. Experimental Convergence Ratio in Function of TPL (Transmission Power Level) and R

Transmission Powel Level
R 6 CI 9 CI 12 CI 15 CI 18 CI 21 CI

7m 0.444 ±0.091 0.974 ±0.048 0.996 ±0.045 0.996 ±0.021 0.994 ±0.032 0.996 ±0.012
10m 0.190 ±0.082 0.928 ±0.056 0.906 ±0.037 0.956 ±0.012 0.984 ±0.016 0.994 ±0.015
13m 0.218 ±0.079 0.894 ±0.026 0.956 ±0.089 0.960 ±0.018 0.966 ±0.043 0.990 ±0.021
15m 0.150 ±0.086 0.894 ±0.075 0.982 ±0.032 0.990 ±0.009 0.990 ±0.024 0.986 ±0.040

also conclude that the majority of the energy consumption by the kdes sensors during the
overall data collection process is due to the data transfer phase (e.g., 11 mJ vs. 105 mJ
when the duty cycle is set to 3%). Therefore, the additional energy spent by the SISSA
algorithm in the swarm phase is (much) less than the energy spent by the sensor node
while communicating, thus making the algorithm highly scalable and energy efficient
even with dense deployment.

7.2. Outdoor Experiments

The second set of experiments we conducted was aimed at evaluating the impact of
the transmission power level of swarm agents and the distance between sensors on
the performance of SISSA. In particular, in these experiments we set up an outdoor
experimental setup composed by 10 TelosB sensors deployed in a ring network con-
figuration with radius R. Sensors were deployed with an angle of about 36◦ between
them. As in the first set of experiments, the mobile sink speed was about 2m/s, and
50 MS tours were performed. To measure the performance of SISSA, we define the
convergence ratio as the number of MS tours in which SISSA converged (i.e., a timeout
did not happen) divided by the total number of MS tours. A value of convergence ratio
close to 1 indicates that SISSA converged most of the time in the given experimental
setup. Table V summarizes the convergence values obtained in the outdoor experi-
mental set with different values of the transmission power level4 of the CC2420 radio
transceiver [Chipcon 2004] and radius R of the ring network. As expected, Table V
concludes that when the transmission power of swarm agents is low and the distance
is relatively high, SISSA shows low convergence rate. However, as the transmission
power increases, SISSA obtains very high convergence ratio. This concludes that the
transmission power of swarm agents must be set accordingly to the distance between
nodes to ensure convergence of the SISSA algorithm.

8. OPTIMIZATION AND COMPARISON RESULTS

In this section, we analytically investigate the network lifetime as provided by SISSA,
and compare it with the ideal Oracle scheme defined in Section 3. Furthermore, we
report the results obtained by comparing the performance of SISSA with respect to
the IEEE 802.15.4 ZigBee carrier sense multiple access/collision avoidance (CSMA/CA)
medium access control (MAC) protocol (hereafter referred to as 802.15.4) [Society 2006],
as well as with respect to the time division multiple access (hereafter referred to as
TDMA) scheme. We chose 802.15.4 as it is currently the reference communication
technology for wireless sensor networks (WSNs); TDMA has been chosen given its re-
markable capability to efficiently achieving high throughput. If not specified otherwise,
then the analytical parameters used are the same as listed in Table II. Without loss
of generality, we have estimated the average contact time as 40s, corresponding to a
radio communication range of about 40m and a linear speed of 2m/s (average human
walking speed).

4The transmission power range of the CC2420 transceiver spans from 1 to 31, which respectively correspond
to about 14.70mW and 31.32mW when the voltage is 1.8V.
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Table VI. Optimum Duty-Cycle Values δ∗

Bound kdes = 1 kdes = 2
θdes ≥ 5s 0.6% 0.7%
θdes ≥ 10s 0.7% 1.1%
θdes ≥ 12.5s 0.75% 1.6%
θdes ≥ 15s 0.85% 2.1%

Fig. 12. Network lifetime, θdes = 15s.

Fig. 13. Network lifetime, θdes = 10s.

Table VI shows the optimized duty cycles obtained from SISSA with varying number
of kdes and θdes. Furthermore, Figures 12 and 13 show the network lifetime with θdes =
15s and θdes = 10s, respectively (both shown for kdes = 2). Results in these figures
are shown for varying number of the redundancy ratio R of nodes and waiting time W ,
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Table VII. Lifetime Approximation Ratio Results

W = 30s
θdes R = 2 R = 4 R = 6 R = 8 R = 10
5s 75.80 61.16 51.21 44.05 38.65
10s 87.26 77.41 69.55 63.14 57.81
12.5s 89.01 80.20 72.79 66.94 61.93
15s 89.38 80.79 73.71 67.77 62.72

W = 60s
θdes R = 2 R = 4 R = 6 R = 8 R = 10
5s 70.76 54.75 44.65 37.69 32.61
10s 81.89 69.33 60.12 53.06 47.49
12.5s 82.58 70.33 61.24 54.23 48.66
15s 82.33 69.97 60.84 53.81 48.24

W = 120s
θdes R = 2 R = 4 R = 6 R = 8 R = 10
5s 62.32 46.18 36.38 30.02 25.55
10s 73.23 57.77 47.70 40.62 35.37
12.5s 72.15 56.43 46.34 39.31 34.13
15s 71.13 55.19 45.09 38.11 33.00

which is the time spent by the sensors in the discovery process before the MS enters the
communication area. Both figures show that the lifetime provided by SISSA increases
as θdes decreases. This was expected, since we have shown in Equation (13) that lower
energy spent in the communication phase corresponds to higher network lifetime. In
addition, both figures conclude that SISSA is able to exploit very well the redundancy
ratio to increase lifetime, especially when the waiting time becomes smaller. This is
because the additional energy spent in the discovery phase impacts negatively on the
overall energy consumptions of sensors, rendering the SISSA algorithm less effective.

However, Table VI points out that SISSA guarantees every θdes constraint using
a relatively low duty cycle (maximum 2.1%). The reasons behind these results are
summarized as follows. First, by guaranteeing contention-free access, SISSA allows
sensor nodes to have the same channel access time, irrespective of the number of nodes
in the WSN. Second, since SISSA allows only a subset of nodes to communicate during
each visit, the time slot allocated to each node becomes larger. Therefore, SISSA is
able to guarantee stringent constraints on the θdes value by using a relatively low duty
cycle (not shown here for the sake of space). In other words, SISSA is energy efficient
and optimizes network lifetime without compromising the QoS guarantees required by
the sensing application. In addition, we would like to remark here that optimizing the
energy consumption during the MS discovery process is not the primary target of this
paper. In particular, other techniques (e.g., learning-based [Shah et al. 2011; Kondepu
et al. 2012] or hierarchical discovery [Restuccia et al. 2012]) can be used on top of
SISSA to further reduce the duty cycles adopted in the MS discovery and, therefore,
further increase the network lifetime.

Table VII reports the LAR provided by SISSA as compared to the ideal, optimum
Oracle scheme. Recall that the LAR was defined as the ratio between the lifetime pro-
vided by SISSA and that provided by Oracle. In Table VII the LAR has been expressed
as a percentage value. Results in Table VII are shown with varying waiting time W
and redundancy ratio R, considering kdes = 2. Overall, Table VII concludes that SISSA
approximates better the ideal Oracle scheme when the MS discovery process takes
shorter time and the redundancy ratio is lower. This is because Oracle does not in-
clude MS discovery, which is instead necessary in real-world WSNs implementations.
Therefore, the LAR of SISSA decreases as the value of the redundancy ratio R and the
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waiting time W increases. Nevertheless, SISSA provides high LAR level in most of the
considered network parameters, achieving an average of 56.9% for the set of network
parameters considered.

Surprisingly enough, and conversely to what Figure 13 concludes, Table VII demon-
strates that SISSA presents higher LAR when the constraint on θdes is more stringent,
especially for low W (e.g., 90.85 vs. 77.18 when R = 2 and W = 30s). This, however,
can be explained as follows. When θdes is higher and W is lower, the contribution to
the energy consumption is due to the energy consumed in the communication phase.
Therefore, in this case the SISSA algorithm approximates better the Oracle scheme,
given the energy consumption in the discovery process is negligible. However, the value
of the network lifetime is lower in the case of θdes = 15s, as Figure 12 points out.

Another interesting aspect exhibited by Table VII is that, when W = 60s and W =
120s, the LAR value decreases as θdes increases from 12.5s to 15s, which does not happen
when W = 30s. This is explained by the definition of LAR presented in Equation (14).
In fact, when the energy spent during MS discovery becomes significant, the increase
in the energy spent in the communication phase due to the increase in the θdes value
is counterbalanced by the increase in the energy spent during MS discovery. In other
words, higher θdes implies higher LAR only when the waiting time is relatively small.

8.1. Comparison with IEEE 802.15.4 and TDMA

In this section, we show the results obtained by comparing SISSA with the 802.15.4
and TDMA schemes. Radio parameters are the same as listed in Table II. In these
experiments, SISSA results were obtained from the analytical model, while 802.15.4
and TDMA were simulated. For the 802.15.4 parameters, we chose the standard pa-
rameter set (i.e., macMinBE = 3, macMaxBE = 5, macMaxCSMABackoffs = 4, mac-
MaxFrameRetries = 3), as specified by the standard [Society 2006]. If not specified
otherwise, then the value of the waiting time is W = 5min. As in Section 8, we es-
timated the minimum contact time as 40s. In all experiments we performed at least
10,000 MS tours. Confidence intervals have been omitted when below 3%.

Figures 14 and 15, respectively, show the energy spent per byte successfully transmit-
ted and throughput (calculated without considering the headers’ overhead) obtained
by SISSA, 802.15.4 and TDMA for varying number of nodes in the subarea. In or-
der to evaluate the efficiency of SISSA with respect to different QoS constraints on
θdes and kdes, the different bars of SISSA were obtained by considering the optimal
duty-cycle values in Table VI. By considering the parameters in Table II, the bounds of
θdes = 5s, 10s, and 12s correspond, approximately, to 100, 200, and 400kB, respectively.
In addition, we considered the fixed duty-cycle values of 5%, 7%, and 10% for 802.15.4
and TDMA to allow sufficient available transmission time per MS tour. Figure 14 con-
cludes that SISSA and TDMA are energy-efficient irrespective of the number of nodes,
while 802.15.4 becomes inefficient as the network size assumes significant values. This
is because SISSA and TDMA provide a contention-free channel access to the sensor
nodes, allowing them to transmit their data efficiently regardless of the number of
nodes considered.

However, as Figure 15 points out, both 802.15.4 and TDMA fail to provide any
of the minimum throughput constraints required by the application (i.e., 100, 300,
and 400kB), irrespective of the considered duty-cycle or the number of nodes. This
is because, as anticipated, 802.15.4 suffers from the well-known “MAC unreliability
problem” (discussed in detail in Anastasi et al. [2011]), so it becomes more and more
inefficient as the network size increases. On the other hand, TDMA preallocates slots
to each sensor in the subarea, and hence the time reserved by TDMA to each node
decreases as the number of nodes increases, as so does the throughput per each node.
Conversely, as shown in Table VI, SISSA guarantees all throughput constraints using
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Fig. 14. Energy per byte, SISSA vs. 802.15.4 and TDMA.

Fig. 15. Throughput, SISSA vs. 802.15.4 and TDMA.
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Fig. 16. Network Lifetime, SISSA vs. 802.15.4 and TDMA.

a (much) lower duty cycle than both TDMA and 802.15.4. The reasons behind these
results are summarized as follows.

First, by guaranteeing contention-free access to selected nodes, SISSA allows sensor
nodes to attain a very high throughput, irrespective of the number of nodes considered.
Second, since SISSA allows just a subset of nodes to communicate during each tour,
the time slot allocated to each node becomes larger as compared to TDMA. Therefore,
SISSA is able to guarantee a much higher throughput while using a lower duty cycle
(as shown in Table VI) when both kdes = 1 and kdes = 2.

The importance of having a very low duty cycle while in the discovery phase is
exhibited by Figure 16, in which we report the network lifetime yielded by SISSA,
802.15.4, and TDMA. For the sake of space, we report only the case of δ = 0.6%,
corresponding to θmin ≥ 5s and kdes = 1. Figure 16 depicts the results obtained with
802.15.4 and TDMA considering a duty cycle of 5%. These results conclude that SISSA
outperforms both 802.15.4 and TDMA irrespective of the number of nodes and the
waiting time.

From Figure 16 we observe that the lifetime improvement provided by increasing
the redundancy ratio becomes more effective as the waiting time becomes smaller. This
is derived from the fact that the maximum lifetime provided by SISSA is inversely
proportional to the energy spent in the discovery phase. Therefore, as the waiting
time increases, the energy spent during the discovery phase becomes predominant as
compared to the energy spent during the communication phase; thus SISSA becomes
less effective in order to extend lifetime. Note that this behavior is also experienced by
802.15.4 and TDMA.

Nevertheless, SISSA is able to improve network lifetime by several times in each
considered scenario. For example, considering redundancy ratio of R = 15 and waiting
time of W = 10min, SISSA increases the network lifetime by 6.03× and 5.80× with
respect to 802.15.4 and TDMA, respectively. Even considering θdes ≥ 12.5s, kdes = 2,
and S = 5 (not shown in Figure 16 for space limitation), SISSA improves lifetime by
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76% and 72% with respect to 802.15.4 and TDMA. It is noteworthy that SISSA achieves
these enhancements of lifetime while guaranteeing a much larger throughput, whereas
802.15.4 and TDMA fail to guarantee any of these QoS constraints to the sensing
application (see Figure 15). This is because SISSA uses a lower duty cycle while in the
discovery phase, as shown in Table VI.

From Figure 16 it also appears that 802.15.4 and TDMA increase network lifetime
when the network size grows. However, as depicted in Figure 15, this is simply related
to the fact that the network throughput provided by 802.15.4 and TDMA decreases
when the network size increases and so does the energy consumption. This misbehavior
allows sensor nodes to consume less energy and then increase network lifetime.

9. CONCLUSIONS

In this paper, we have formulated the problem of optimizing the lifetime of a WSN in the
presence of uncontrollable sink mobility and QoS constraints on throughput and data
reliability. We first proposed the optimal Oracle scheme, which is proved to maximize
the network lifetime. Next, we proposed SISSA, a novel algorithm based on the swarm
intelligence which optimizes network lifetime. By deriving a comprehensive analytical
model, we have derived performance parameters such as energy consumption and
minimum throughput guarantees, we have proven bounds on energy consumption,
number of swarm agents exchanged, and the convergence time. We have also derived
an approximate formula to estimate the network lifetime yielded by SISSA under
different network parameters. We have validated our model through experiments on a
real sensor network experimental setup, as well as compared the performance of SISSA
with respect to the Oracle scheme, as well as with the IEEE 802.15.4 and TDMA
schemes. Results show that SISSA can effectively and energy-efficiently guarantee
strict QoS constraints and approximates well the ideal scheme. This concludes that
SISSA is suitable to most of the existing sensing scenarios in which the MS mobility is
uncontrollable and yet QoS needs to be guaranteed.
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