DeepWiERL: Bringing Deep Reinforcement
Learning to the Internet of Self-Adaptive Things

Francesco Restuccia and Tommaso Melodia
Institute for the Wireless Internet of Things
Northeastern University, Boston, MA 02115 USA
Email: {frestuc, melodia} @northeastern.edu

Abstract—Recent work has demonstrated that cutting-edge
advances in deep reinforcement learning (DRL) may be leveraged
to empower wireless devices with the much-needed ability to
“sense” current spectrum and network conditions and “react” in
real time by either exploiting known optimal actions or exploring
new actions. Yet, understanding whether real-time DRL can be
at all applied in the resource-challenged embedded IoT domain,
as well as designing IoT-tailored DRL systems and architectures,
still remains mostly uncharted territory. This paper bridges the
existing gap between the extensive theoretical research on wireless
DRL and its system-level applications by presenting Deep Wire-
less Embedded Reinforcement Learning (DeepWiERL), a general-
purpose, hybrid software/hardware DRL framework specifically
tailored for embedded IoT wireless devices. DeepWiERL provides
abstractions, circuits, software structures and drivers to support
the training and real-time execution of state-of-the-art DRL
algorithms on the device’s hardware. Moreover, Deep WiERL in-
cludes a novel supervised DRL model selection and bootstrap (S-
DMSB) technique that leverages transfer learning and high-level
synthesis (HLS) circuit design to orchestrate a neural network
architecture that satisfies hardware and application throughput
constraints and speeds up the DRL algorithm convergence.
Experimental evaluation on a fully-custom software-defined radio
testbed (i) proves for the first time the feasibility of real-time
DRL-based algorithms on a real-world wireless platform with
multiple channel conditions; (ii) shows that Deep WiERL supports
16x data rate and consumes 14x less energy than a software-based
implementation, and (iii) indicates that S-DMSB may improve the
DRL convergence time by 6x and increase the obtained reward
by 45% if prior channel knowledge is available.

I. INTRODUCTION

It is now widely accepted that the impressive scale of the
Internet of Things (IoT) — expected to reach 18B devices
by 2022 [1] — will impose a never-before-seen burden on
today’s wireless infrastructure [2]. To make matters worse,
existing IoT wireless protocols such as WiFi and Bluetooth
are deeply rooted in inflexible, cradle-to-grave designs, and
thus unable to address the demands of the next-generation
IoT. If unaddressed, this “perfect storm” may lead to severe
delays in the much-needed IoT’s global development — if not
its downfall. As such, it is today more important than ever to
shift toward a vision where self-optimization and adaptation
to unpredictable — perhaps, adversarial — spectrum conditions
is not a “nice-to-have” feature, but is deeply intertwined with
the IoT device’s software and hardware fabric.

Simply put, it has now become crucial to re-engineer [oT de-
vices, protocols and architectures to dynamically self-adapt to
different spectrum circumstances [3]. Bleeding-edge advances
in deep reinforcement learning (DRL) have recently stirred up

the wireless research community, now rushing to apply DRL
to address a variety of critical issues, such as handover and
power management in cellular networks [4, 5], dynamic spec-
trum access [6-9], resource allocation/slicing/caching [10-
14], video streaming [15-17], and modulation/coding scheme
selection [18], just to name a few [19]. This comes with no
surprise; DRL has shown to provide near-human capabilities
in a multitude of complex tasks, from playing dozens of
Atari video games [20] to single-handedly beating world-
class Go champions [21]. In a nutshell, DRL algorithms
solve partially-observable Markov decision process (POMDP)-
based problems without any prior knowledge of the system’s
dynamics [22]. Therefore, DRL may be the ideal choice to
design wireless protocols that (i) optimally choose among a set
of known network actions (e.g., modulation, coding, medium
access, routing, and transport parameters) according to the
current wireless environment and optimization objective; and
(ii) adapt the IoT platform’s software and hardware.

Why is Bringing DRL to the IoT Challenging?

Despite the ever-increasing interest in DRL from the wire-
less research community, existing algorithms (discussed in
details in Section VII) have only been evaluated through sim-
ulations or theoretical analysis — which has substantially left
the investigation of several key system-level issues uncharted
territory. Clearly, this is not without a reason; the resource-
constrained nature of IoT devices brings forth a number of core
research challenges — both from the hardware and learning
standpoints — that are practically absent in traditional DRL
domains and that we summarize below.

The first key aspect is that DRL is based on a training
phase, where the agent learns the best action to be executed
given a state, and an execution phase, where the agent selects
the best action according to the current state through a deep
neural network (DNN) trained during the training phase. Tra-
ditionally, DRL training and execution phases are implemented
with GPU-based software and run together in an asynchronous
manner, i.e., without any latency constraints. On the other
hand, in the embedded wireless domain, the DRL execution
phase must run in a synchronous manner — meaning with low,
fixed latency and with extremely low energy consumption —
features that only a hardware implementation can provide.
This is because (i) the wireless channel changes in a matter of a
few milliseconds and is subject to severe noise and interference
[23], and (ii) RF components operate according to strict timing

constraints. For example, if the channel’s coherence time is
approximately 20ms, the DNN must run with latency much
less than 20ms to (i) run the DNN several times to select the
best action despite of noise/interference; and (ii) reconfigure
the hardware/software wireless protocol stack to implement the
chosen action — all without disrupting the flow of I/Q samples
from application to RF interface. As far as we know, existing
work does not consider the critical aspect of real-time DRL
execution in the wireless domain, which is instead considered
and carefully analyzed for the first time in Section IV.

To further complicate matters, the strict latency and compu-
tational constraints necessarily imposed by the embedded IoT
wireless domain should not not come to the detriment of the
DRL performance. Indeed, usually DRL algorithms are trained
in very powerful machines located up in the cloud, where
we can afford computationally-heavy DRL algorithms and
DNNs with hundreds of thousands of parameters [20]. This
is obviously not affordable in the IoT domain, where devices
are battery-powered, their CPUs run at few hundreds of mega-
hertz, and possess a handful of megabytes of memory ar best.
Therefore, a core challenge is how to design a DNN “small”
enough to provide low latency and energy consumption, yet
also “big” enough to provide a good approximation of the
state-action function. This is particularly crucial in the wireless
domain, since the RF spectrum is a very complex phenomenon
that can only be estimated and/or approximated on-the-fly.
This implies that the stationarity and uniformity assumptions
[24, 25] usually made in traditional learning domains may not
necessarily apply in the wireless domain. All this considered,
it is necessary to provide a design methodology to explore
which DNN architectures are appropriate (in terms of latency
and convergence) to approximate state-action functions in the
embedded IoT domain.

Real-Time Embedded Deep Reinforcement Learning

We believe that the above core challenges can only be
addressed through novel, IoT-specific DRL designs and ar-
chitectures. As such, this paper proposes Deep Wireless Em-
bedded Reinforcement Learning (DeepWiERL), the first DRL
system carefully designed to bridge the existing gap between
theoretical and system-level aspects of wireless DRL in the IoT
landscape. The key and critical innovation behind DeepWiERL
is to bring to the IoT research community what has been
missing so far — a general-purpose framework to design,
implement and evaluate the performance of IoT-tailored real-
time DRL algorithms on embedded devices.

3
) DRL Execution (4) P
(Hardware —> eal-Time
Synch . - TX/RX Logic
Network ynchronous) Action
State (2) Deep NN Data (5)
Parameters
(1) DRL Training IoT
(Software, Application
Asynchronous) (Software)

Fig. 1: The DeepWiERL approach to DRL in the IoT.

Figure 1 provides an eagle’s-eye overview of the approach
taken by DeepWiERL. Specifically, the system’s core oper-
ations are divided into two different yet tightly intertwined
tasks: (i) an asynchronous, software-based DRL training (step
1), where the algorithm learns to select the best policy ac-
cording to the specific task at hand; and (ii) a synchronous,
hardware-based DRL execution, where the results of the train-
ing, i.e., the deep neural network (DNN) parameters, are
periodically sent (step 2) to the IoT platform to enforce the
execution of the policy. The IoT device, in turn, runs the
hardware-based DNN to select an action from the current
network state (step 3) and then enforce the action in the
transmission/reception logic (step 4). The IoT application can
then transmit/receive its data according to the new wireless
logic decided by the DNN (step 5).

DeepWiERL is fundamentally different from existing DRL
systems and frameworks, since it physically separates two
traditionally interconnected steps — DRL training and execu-
tion — by (a) placing the DNN on the hardware portion of
the IoT platform to guarantee real-time constraints; and (b)
interconnecting the DNN both to the DRL training phase and
to the RF components of the platform to enforce the real-time
application of the action selected by the hardware-based DNN.
This allows at once to (i) guarantee real-time and low-power
requirements and (ii) make the general-purpose and applicable
to a multitude of software-based DRL training algorithms.

Novel Technical Contributions

The design of DeepWiERL and its implementation on a
practical testbed was a daunting task, as it required us to
intertwine concepts from the fields of real-time embedded
systems and deep reinforcement learning — which, before this
paper, have been treated separately. As a result, this paper
demonstrates for the first time the system-level applicability
of DRL algorithms to the embedded real-time IoT landscape.

Specifically, we make the following technical advances:

e We propose DeepWiERL, an loT-tailored framework pro-
viding real-time DRL execution coupled with tight integration
with DRL training and RF circuitry (Section III). Specifically,
we (i) design a DRL framework for system-on-chip (SoC)
architectures integrating RF circuits, DNN circuits, low-level
Linux drivers and low-latency network primitives to support
the real-time training and execution of DRL algorithms on IoT
devices (Section 1V); and (ii) propose a new Supervised DRL
Model Selection and Bootstrap (S-DMSB) technique (Section
V) that combines concepts from transfer learning and high-
level synthesis (HLS) circuit design to select a deep neural
network architecture that concurrently (a) satisfies hardware
and application throughput constraints and (b) improves the
DRL algorithm convergence;

e We prototype DeepWiERL on a customized software-
defined radio testbed (Section VI), and demonstrate Deep-
WIiERL on a concrete physical-layer rate maximization prob-
lem, where the transmitter uses a customized variation of
the low-computation cross-entropy DRL algorithm [26] to

optimize the modulation scheme in real-time. We also compare
the latency performance of DeepWiERL with a software-
based Pytorch implementation, and compare S-DMSB with
a traditional “clean-slate” approach where the DNN weights
are initialized at random. Experimental results obtained with
our testbed indicate that (i) DeepWiERL supports 16x more
data rate and 14x less energy consumption than a software-
based implementation; and that (ii) S-DMSB may speed up the
convergence by 6x and obtains 45% better reward than a clean-
slate DRL algorithm if prior state information is available.

II. BACKGROUND ON DEEP REINFORCEMENT LEARNING

Reinforcement learning (RL) can be broadly defined as a
class of algorithms providing an optimal control policy for a
Markov decision process (MDP). There are four elements that
together uniquely identify an MDP, i.e., (i) an action space
A, (ii) a state space S, (iii) an immediate reward function
r(s,a), and (iv) a transition function p(s,s’,a), with s,s" €
S and a € A). The core challenge in MDPs is to find an
optimal policy 7*(s, a), such that the discounted reward R =
Zfio ~vir(ss,as), sy € S and a; € A is maximized, where
0 <~ <1 is a discount factor and actions are selected from
policy 7*. We refer the interested reader to [22] for a detailed
introduction to MDPs and RL.

Different from dynamic programming (DP) strategies, RL
can provide an optimal MDP policy also in cases when the
transition and reward functions are unknown to the learning
agent. Thanks to its simplicity and effectiveness, Q-Learning is
one of the most widely used RL algorithm today. Q-Learning
is named after its Q(s, a) function, which iteratively estimates
the “value” of a state-action combination as follows. First, ()
is initialized to a possibly arbitrary fixed value. Then, at each
time ¢t the agent selects an action a;, observes a reward 7y,
enters a new state sy;1, and @ is updated. The core of Q-
Learning is a simple value iteration update rule:

Q(St7at) = (1_a)-Q(St7at)+ & . (1)
old value learning rate

learned value

e + 5 max Q(s¢41,a) >
~—~ a
reward discount factor

estimate of optimal future value

where 7; is the reward received when moving from the state
s¢ to the state s;11, and 0 < o < 1 is the learning rate. An
“episode” of the algorithm ends either when state s;;; is a
“terminal state” or after a certain number of iterations.

The main issue with traditional RL is the so-called “state-
space explosion” problem, in other words, explicitly represent-
ing the Q-values in real-world problems is prohibitive. Let’s
assume, for example, that we use a vector of 64 complex
elements to represent the channel state in a WiFi transmis-
sion (i.e., number of WiFi subcarriers). Therefore, we would
(potentially) need to store all possible vectors S € R'?8 in
memory — which is obviously intractable, especially for the
limited memory available in embedded IoT devices.

Deep reinforcement learning (DRL) addresses the state-
space explosion issue by using a deep neural network (DNN),
also called Q-Network, to “lump” similar states together by
using an non-explicit, non-linear representation of the Q-
values, i.e., a deep Q-network (DQN). This way, we (i) use
Equation (1) to compute the Q-values, and then (ii) stochastic
gradient descent (SGD) to make the DQN approximate the
Q-function. Therefore, DRL trades off precision in state-
action representation for a reduced storage requirement (which
ultimately becomes O(1) complexity).

III. DEEPWIERL: AN OVERVIEW

Figure 2 provides a very high-level overview of the Deep-
WIiERL system. At its core, we can describe DeepWiERL
as a self-contained software-defined radio (SDR) platform
where the platform’s hardware and software protocol stack
is continuously and seamlessly reconfigured based on the
inference of a DRL algorithm.

A. Key Features

Due to the generalization and extrapolation abilities of
neural networks, we cannot afford to use a single deep neural
network (DNN) to both retrieve and learn the optimal Q-
values. Critically, this is well known to lead to a slow or even
unstable learning process [27-30]. Moreover, Q-values tend to
be overestimated due to the max operator [31].

FPGA

Operative A DtR_L e L ad
ction
Neural Network Circuits «?D
(ONN)) and
ﬁ DRL {U} TNN Protocol
2| State |5| Params stack | | (4)
CPU

(2) El (8)

DeepWiERL Controller

TNN DRL State,
5
Params E ™ Action, 8)
Reward

Target Neural (6)
Network (TNN)

I/Q Samples ¢ (1)

Experience
Buffer

Fig. 2: An overview of the main components of DeepWiERL.

For this reason, DeepWiERL uses a target neural network
(TNN), implemented in the edge/cloud, and an operative
neural network (ONN), implemented in the FPGA portion of
the platform. The ONN is updated with the TNN’s parameters
once every C' DRL iterations to prevent instabilities. While
the usage of two DNNs is (to some extent) straightforward
in the software domain, achieving the same architecture in
the embedded IoT domain is extremely challenging. Criti-
cally, this is because the TNN training will be performed
over the course of minutes (or hours, in some cases), yet
as explained in Section V-A, the ONN has to work in the
scale of microseconds. Therefore, we took particular care
in designing a hybrid synchronous/asynchronous architecture
able to handle the different time scales, as explained in Section
III-B. According to recent advances in DRL, we also leverage

an experience buffer [32] to store <state, action, reward>
tuples for IV time steps. The updates to the TNN are then made
on a subset of tuples (called mini-batch) selected randomly
within the replay memory. This technique allows for updates
that cover a wide range of the state-action space.

B. A Walkthrough

Figure 2 shows DeepWiERL’s main operations. Throughout
the paper, we will use red, blue and grey color to distinguish
between hardware, software and hybrid software/hardware
components. First, the wireless protocol stack — which includes
both RF components and physical-layer operations — receives
I/Q samples from the RF interface, which are then fed to
the controller module (step 1). The controller module is
tasked with creating a DRL state out of the I/Q samples,
according to the application under consideration. The DRL
state is then used sent by the controller to the Operative
Neural Network (ONN), which resides in the FPGA and thus
can only be accessed through drivers. The ONN provides
with fixed latency a DRL action (step 3), which is then
used to reconfigure in real-time the wireless protocol stack
of the platform (step 4). This action can be anything from the
physical layer (“change modulation to BPSK”) to the MAC
layer and above (“increase packet size to 1024 symbols, use
a different CSMA parameters” and so on). Steps 2-4 are
continually performed in a loop fashion, which reuses the
previous state if a newer one is not available; this is done to
avoid disrupting the I/Q flow to the RF interface. Section V-A
will provide details on how the ONN has been implemented
and the tradeoffs between accuracy and performance that must
be achieved by the system.

Once the DRL state has been constructed, it is sent by the
controller to the training module (step 5), which is located in
another host outside of the platform (on the edge or up in the
cloud). Thus, sockets are used to asynchronously communicate
to/from the platform from/to the training module. The target
of the training module is to (i) receive the <state, action,
reward> tuples corresponding to the previous step of the
DRL algorithm; store the tuples in the experience buffer; and
(iii) utilize the tuples in the experience buffer to train the
TNN according to the specific DRL algorithm being used
(e.g., cross-entropy, deep Q-learning, and so on). The ONN’s
parameters are updated with the TNN’s parameters by the
training module after each epoch of training (step 7). Finally,
the ONN’s parameters are updated through driver by the
controller inside the platform (step 8).

IV. DEEPWIERL: HARDWARE DESIGN

Our design ethos was to keep DeepWiERL as general-
purpose as possible yet also provide a concrete implementation
on a real-world IoT platform. To accomplish the above, we
choose a system-on-chip (SoC) architecture for our designs
[33, 34], as SoCs (i) integrate CPU, RAM, FPGA, and I/O
circuits all on a single substrate; and (ii) are low-power and
highly reconfigurable, as the FPGA can be reprogrammed
according to the desired design.

(1) (2)

RX I/Q Sampl Operative NN (FPGA)
Baseband amples — o FPGA RN
RX Chain — ooavo —= m ’ IBnRI;.\L;;It :

-OOO el 1
T . J :
IoT DRL : :
@) Application State : = 1
e Tensor ~ s o !
g (t=k) g : i
Bytes ~ i Layers]
o B . -l | = !
G DeepWiERL 2 : 1
o Controller S | : 5 :
3 Buffer (CPU) = : . 1
W”@ (3| (B bytes) 5 i = = .
¢ s : Layers)
| Params

i (5)| Buffer I BRAM = 1
Release & DRL) !
Baseband | seack [¢a| | Action ———— Output |
X Chain || pqontation| | | (t=k+1) | [To cPu1_______ - BRAM _ 1

Fig. 3: The ONN and its main interactions with DeepWiERL.

A. Hardware Design Constraints

There are several key design constraints, both on time and
memory, that need to be addressed in DeepWiERL, which we
illustrate with the help of Figure 3. Once the 1/Q samples
have been received and processed by the RX chain (step 1),
and the controller has created the ONN’s input (i.e., the DRL
state tensor) as explain in Section V-A, the input is thus sent
to the ONN through driver (step 2), which will provide the
DRL action after a latency of L seconds (step 3). At the same
time, the IoT application generates bytes, which have to be
temporarily stored in a buffer of size B bytes, since the stack
has to be reconfigured according to the selected DRL action.

Let us suppose that the RF interface is receiving samples at
T million samples/sec. Usually, a digital-to-analog converter
takes as input I/Q samples that are 4 bytes long in total.
Therefore, 4 - T" MB worth of data must be processed each
second to achieve the necessary throughput. Critically, since
spectrum data is significantly time-varying, we need to assume
that the ONN has be run S times each each second to retrieve
the DRL action on fresh spectrum data. Furthermore, we
cannot assume that the memory of the platform is unlimited.
For the sake of generality, we assume the memory of the
platform allows for maximum of B bytes of data to be
buffered.

To summarize, in 1/s seconds, DeepWiERL needs to (i)
insert 4 7'/s bytes into a buffer (either in the DRAM or in the
FPGA); (ii) send the DRL state tensor to the input BRAM of
the ONN through driver; (iii) wait for the ONN to complete its
execution after L seconds; (iv) read the DRL action from the
output BRAM, (v) reconfigure the protocol stack and release
the buffer. By experimental evaluation, we know that (i), (ii),
(iv) and (v) are negligible with respect to L, therefore, we
approximate those delays to zero for simplicity. Therefore, to
respect the constraints, the following must hold:

S - L <1 (time constraint) 2)
4-T .
e < B (memory constraint) 3)
To give an example of the magnitude of the above contraints
in real-world systems, let’s assume that 7" = 20 MS/S (e.g.,

WiFi transmission) and that we want to sample the spectrum
every millisecond S = 1000. To sustain these requirements,
the ONN’s latency L must be less than 1 millisecond, and the
buffer B must be greater than 80 KB. We point out that the
sampling rate 7' and the buffer size B are hard constraints
imposed by the platform hardware/RF circuitry, and can be
hardly relaxed in real-world applications. Thus, at a system
design level, the only things that can be leveraged to meet
performance requirements are L and .S. Notice, moreover, that
increasing S' can help meet the second constraint (memory)
but may fail the first constraints (time). On the other hand,
decreasing S could lead to poor system/learning performance
as spectrum data could be stale when the ONN is run. In other
words, we need to decrease the latency L as much as possible,
which in turn will (i) help us increase S (learning reliability)
and thus (ii) help meet the memory constraint.

V. DEEPWIERL: DEEP LEARNING DESIGN

In this section, we introduce the TNN and ONN design in
Section V-A, followed by our novel supervised DRL model
selection and bootstrap (S-DMSB) technique in Section V-B.

A. TNN and ONN Design

As explained in Section III-B, the TNN and ONNs are at
the core of DeepWiERL. The ONN is entirely located in the
FPGA portion of the platform while the TNN resides in the
cloud/edge. This challenging yet crucial design choice allows
for real-time (i.e., known a priori and fixed) latency DRL
action selection yet scalable DRL training.

The crucial target of the ONN is to approximate the state-
action function of the DRL algorithm being trained in the
TNN. On the other hand, differently from the computer vision
domain, the neural networks involved in deep spectrum learn-
ing should be lower complexity and learn directly from I/Q
data [34]. To address these challenges, and in accordance to
recent work [35, 36], we decided to implement the TNN/ONN
with a one-dimensional convolutional neural network (in
short, ConvlD). We chose ConvlD over two-dimensional
convolutional networks because they are significantly less
resource- and computation-intensive than Conv2D networks,
and because they work well for identifying shorter patterns
where the location of the feature within the segment is not of
high relevance. Similarly to Conv2D, a Conv1D layer has a set
of N filters F,, € RP*W 1 < n < N, where W and D are
the width of the filter and the depth of the layer, respectively.
By defining as S the length of the input, each filter generates a
mapping O" € RS~W+! from an input I € RP*S as follows:

S—w
O =Y F'y-Ing (4)
£=0

Creating the ONN Input. We now discuss how the Deep-
WiERL controller creates an input to the first Conv1D layer of
the ONN from the I/Q samples received from the RF interface.
Let us consider a complex-valued 1/Q sequence s[k], with
k > 0. The w-th element of the d-th depth of the input, defined
as I, 4, is constructed as

Iiw=Re{s[d-d+w-(c—1)]}
Iiwyr =Im{s[d-6 +w- (o —1)]J} 5)
where 0 <de D,0<w< W

where we introduce ¢ and ¢ as intra- and inter-dimensional
stride, respectively. Therefore, (i) the real and imaginary part
of an I/Q sample will be placed consecutively in each depth;
(i1) we take one I/Q sample every o sample; and (iii) we start
each depth once every § 1/Q samples. The stride parameters
are application-dependent and are related to the learning vs
resource tradeoff tolerable by the system.

B. Supervised DRL Model Selection and Bootstrap (S-DMSB)

(1) Motivation. A crucial problem for the embedded IoT
domain is selecting the “right” architecture for the TNN/ONN.
We know from Section IV-A that the ONN needs to be “small”
enough to satisfy hard constraints on latency. At the same
time, we need the ONN to possess the necessary depth to
approximate well the current network state. It is intuitive that
to allow DRL convergence, the TNN/ONN architecture should
be “large enough” to distinguish between different spectrum
states. A major challenge here is to verify constraints that are
very different in nature — on one side, we have classification
accuracy (software), on the other we have latency/space con-
straints (hardware). Therefore, we need a design methodology
able to (i) evaluate those constraints and (ii) automatically
transition from Python/PyTorch models to the FPGA bitfile.

On top of this, it is well known that DRL’s weakest point is
its slow convergence time [20]. Canonical approaches, indeed,
start from a “clean-slate” neural network (i.e., random weights)
and explore the state space hoping the algorithm will converge.
Existing work has attempted to tackle this problem through
a variety of approaches, for example, exploring Q-values in
parallel. However, these solutions are hardly applicable to the
IoT domain, where resources are extremely limited and the
wireless channel changes continuously. What we need in the
wireless domain, instead, is a bootstrapping procedure where
the TNN/ONN start from a “good” parameter set that will help
speed up the convergence of the overarching DRL algorithm.

(2) Our Approach. We propose Supervised DRL Model
Selection and Bootstrap (S-DMSB) to address the above issues
at once through transfer learning [37]. Transfer learning
allows the knowledge developed for a classification task to
be “transferred” and used as the starting point for a second
learning task to speed up the learning process. To explain why
this process works in practice, we make the following example.
Consider two people who want to learn to play the guitar.
One person has never played music, while the other person
has extensive music background through playing the violin.
Intuitively, the person with an extensive music knowledge will
be able to learn the piano faster and more effectively, simply by
transferring previously learned music knowledge to the task of
learning the guitar. Similarly, in the wireless domain, we can
train a model to recognize different spectrum states, and let the

DRL algorithm figure out which ones yield the greater reward.
This will at once help (i) select the right DNN architecture for
the TNN/ONN to ensure convergence and (ii) speed up the
DRL learning process when DeepWiERL is actually deployed.

(DxW) @ Parameters (DxW)
DNN Input X (2) Bootstrap DRL Input
a— 3)

: S-DMSB

Initial N
DNN Model Design Steps

(1xG) @
DNN Output

DeepWiERL
TNN/ONN
v

(1xA)
DRL Actions

1 1
1 | Supervised HLS HDL FPGA !
: Training [:> Translation [:> Synthesis E> Integration :

. 1
! (PyTorch) (C++) (Verilog) (Bitfile) N
H Check Check "
! DNN Model v Hardware !
1 Accuracy Constraints :

Fig. 4: Supervised Model Selection and Bootstrap (S-DMSB).

Figure 4 summarizes the S-DMSB technique, which is based
on high-level synthesis [34] (HLS). In short, HLS translates
a software-defined neural network to an FPGA-compliant
circuit, by creating Verilog/VHDL code from code written in
C++ [38]. The first step in S-DMSB is to train a DNN to
classify among G spectrum states — for example, different SNR
levels — low, medium, and high SNR, as in Figure 10. Once
high accuracy (e.g., 95%) is reached through hyper-parameter
exploration, the model is translated with a customized HLS
library that generates an HDL description of the DNN in
Verilog language. Finally, the HDL is integrated with the other
circuits in the FPGA and the DNN delay is checked against the
requirements. In other words, if the model does not satisfy the
latency constraint in (3) or the model occupies too much space
in hardware, the model’s number of parameters are decreased
until the constraints are satisfied. Once the latency/accuracy
trade off has been reached, the parameters are transferred to
the TNN/ONN networks and used as a starting point (i.e.,
“bootstrap”) for the DRL algorithm.

VI. EXPERIMENTAL EVALUATION

In this section we extensively evaluate the performance
of DeepWiERL and compare its latency performance with a
traditional software-based implementation in PyTorch. Fur-
thermore, we demonstrate the performance of DeepWiERL on
a concrete rate adaptation problem.

A. Software-defined Radio Testbed

Figure 5 shows our experimental testbed. The transmitter
has been implemented on a customized software-defined radio
(SDR) platform, made up by (i) a Xilinx ZC706 evaluation
board, which contains a Xilinx Zyng-7000 system-on-chip
(SoC) equipped with two ACM Cortex CPU and a Kintex-
7 FPGA; and (ii) an Analog Device FMCOMMS2 evalua-
tion board equipped with a fully-reconfigurable AD9361 RF
transceiver and VERT2450 antennas. The receiver is imple-
mented on a less-powerful Zedboard, which is also equipped
with an AD9361 transceiver and a Zynq-7000 with a smaller

FPGA. In both cases, the platform’s software, drivers and data
structures have been implemented in the C language, running
on top of an embedded Linux kernel. The receiver’s side of the
OFDM scheme has been implemented on Gnuradio, while the
DeepWIERL Controller has been implemented in C language
for maximum performance and for easy FPGA access through
drivers. To measure power consumption, we have used the
PMBUS controller from Texas Instrument.

, 'iakx‘.
| t‘c}ose)l

A RX “Close” |

O RX “Medium”
O RX “Far” {

Fig. 5: Experimental testbed for DeepWIERL.
B. Randomized Cross-Entropy with Fixed Episodes (RCEF)

To maximize the state-action function, we use a customized
variation of the cross entropy (CE) DRL method [39], which
we call randomized CE with fixed episodes (RCEF). We lever-
age CE instead of more complex DRL algorithms thanks to its
good convergence properties, and because it is well known to
perform excellently in problems that do not require complex,
multi-step policies and have short episodes with frequent
rewards, as in our rate maximization problem. However, we
point out that DeepWiERL provides a very general framework
that can support generalized DRL algorithms, including the
more complex Deep Q-Learning.

Episode (K = 3)
'

\
o {I (51, A, Ra) | (52, s, Re) | (53, A,) | | o~
Rand | [(Ss, A1, Re) | (Ss, A2, Rs) [(Ss, As, Re) | | ®

(6o A ®) | 6o, An Ro) | (55 Ay Ry | 2
1-a | [Gon o, ") [(55, o, Ry [o, A, R] | ©
ONN | 8

I (So, A1, Ro) I (Se, A2, Re) I (Sk, As, Rr)

Episode i1 Reward (Er,i): YR: / K
Select Q Episodes in the B Percentile
Train TNN on (Si, Ai) in set Q

Fig. 6: Randomized CE with Fixed Episodes (RCEF).

Figure 6 summarizes RCEF, which is a model-free, policy-
based, on-policy method, meaning that (i) it does not build any
model of the wireless transmission; (ii) directly approximates
the policy of the wireless node; and (iii) requires fresh spec-
trum data obtained from the wireless channel. The CE method
feeds experience to the wireless node through episodes, which
is a sequence of spectrum observations obtained from the wire-
less environment, actions it has issued, and the corresponding
rewards. Episodes are of fixed length K and are grouped in
a batch of M episodes. At the beginning of each episode,
the node can choose to either explore the action space with
probability « or exploit the ONN knowledge with probability
1 — «a for the duration of the episode. After completion,

episode 7 is assigned a reward E, ; = ZZKZO R;/K. After the
episodes in the batch are completed, RCEF selects the episodes
belonging to the [percentile of rewards and puts them in a
set 2. The TNN is trained on the tuples (S;, A;) in €.
Notice that since the policy is ultimately a probability
distribution over the possible actions, the action decision
problem boils down to a classification problem where the
amount of classes equals the amount of actions. In other words,
after the algorithm has converged, the transmitter only needs
to (i) pass a spectrum observation to the ONN, (ii) get the
probability distribution from the ONN output, and (iii) select
the action to execute using that distribution. Such random
sampling adds randomness to the agent, which is especially
needed at the beginning to explore the state action space.

C. DeepWiERL vs Software Performance

Our experimental evaluation was specifically targeted at
evaluating the latency and energy performance of DeepWiERL
with respect to a software implementation, and the conver-
gence performance of S-DMSB with respect to clean-state
approaches. To achieve this goal, we consider a rate adapta-
tion problem where the modulation scheme of an orthogonal
frequency division multiplexing (OFDM)-based transmission
scheme is optimized based on the current spectrum conditions.
Specifically, the spectrum is represented by 128 complex
channel taps — corresponding to the FFT size used by the
OFDM scheme — which are estimated at the receiver’s side
using pilots. Therefore, since our CNN accepts only real
numbers, we extend each complex number to a set of two real
numbers, thus obtaining a state vector of dimension (1, 256).
The CNN architecture used for our experimental evaluation
includes (i) a Conv-1D layer with N filters of W size, as
shown in Equation (4); (ii) a dense layer containing D neurons;
and (iii) a softmax layer of three actions, corresponding to
BPSK, QPSK and 8PSK modulation schemes, respectively.

100 — __ 1000 —
\%/ 80 DeepWIERL (HW) &xxx1 \%/ 800 CPU (SW) ===
> 60 z 600
© 1 © r 1
; 0 < gi %’ - 0 E 7. [}
Z, 2, Z, 2,
% % % % %

TNN/ONN Architecture TNN/ONN Architecture

Fig. 7: DeepWiERL (Hardware) vs CPU (Software) DNN
latency as a function of Dense Layer Size.

Figure 7 shows the latency comparison between Deep-
WIiERL (hardware) and a software implementation of the
deep neural network in C++ running on the CPU of our
evaluation board. In these experiments, we show results with
fixed N = 12 and W = 6 as we found that D is the parameter
that most impacts latency. These results were obtained by
setting the FPGA clock frequency to 100 MHz while the RF
front-end and the CPU are clocked at 200 MHz and 667 MHz,
respectively. The software’s latency results were obtained over

100 runs and we also show 90% confidence intervals. The
results show that DeepWiERL'’s latency is about 16x times
lower than the software implementation in PyTorch — notice
that the scale of the HW graph is 10x less than the SW
graph. Notice that according to Equation (3), this implies that
DeepWIERL'’s achievable application rate is 16x greater than
PyTorch’s, assuming the same buffer is used.

2 12 . ,

\;E i [Standby £Xxxx1 7

s CPU-based (SW) 5

S 0.8 [DeepWIERL (HW) zzzz

2 06

s

8§ o4

=B EE S
P S 7 S 1 R]

1.0V 1.8V 1.5V 2.5V 3.3V Total

Power Rails (V)

Fig. 8: DeepWIiERL (Hardware) vs CPU (Software) Power
Consumption for Different Power Rails.

Finally, Figure 8 shows the comparison in terms of power
consumption between DeepWiERL and the CPU-based imple-
mentation, for all the five power rail of the ZC706 evaluation
board. The results align with the intuition that DeepWiERL
should consume more power (1.16W vs 0.98W), due to the
involvement of the FPGA. However, as shown in Figure 7,
DeepWIERL has an order of magnitude less latency than CPU.
Therefore, the difference in energy consumption (597.8 pJ vs
42.92 pJ in the case of 24/12/6 model) makes DeepWiERL 14x
more energy efficient than the CPU-based implementation.

D. System-wide Performance Evaluation

This section shows the experimental results on convergence
obtained on the rate maximization problem described earlier.
The experiments performed in Figures 9 and 11 were pur-
posely performed in an “in-the-wild” laboratory environment
with the presence of several interference coming from nearby
wireless devices. Specifically, we choose 2.437G as center
frequency, which is the 6th WiFi channel, with a sampling
rate of 10 MS/s.

>
S 1.4 T T

g 12 Kernels, Size = 6/3 &=xxx= Kernels, Size = 12/3 tzzza |
8 g . Kernels, Size = 6/6 ——2 Kernels, Size = 12/6
o ! - .

Qo 0.6

g=

£ 5 0.4

@ 0.2

< 0

© 6 12 24

Number of Neurons in Dense Layer

Fig. 9: DNN Accuracy as a function of Dense Layer Size,
Number of Kernels and Kernel Size.

Before deployment, we ran S-DMSB to understand which
DNN model was appropriate for the problem under consider-
ation. Therefore, we fixed the position of the transmitter and
we collected data by changing the position of the receiver to

about 5ft, 15ft, and 40ft distance from the transmitter, so as to
have a “Close”, “Medium”, and “Far” configuration as shown
in Figure 5. After data collection, we trained different DNN
models to evaluate the accuracy of each model. Figure 10
shows examples of training data obtained using our testbed.

(a) “Close”

Fig. 10: Channel I/Q taps in the “Close”, “Medium” and “Far”
scenarios.

(b) “Medium” (c) “Far”

Figure 9 shows the DNN accuracy as a function of the
dense layer size, for different values of N (number of kernels)
and W (kernel size). Figure 9 indicates that the dense layer
size is the predominant hyper-parameter as it significantly
impacts the classification accuracy of the DNN models. This
was expected, as more complex features can be learned by the
DNN. Furthermore, the number and size of kernels do impact
the classification accuracy but to a lesser extent. Since the
24/12/6 model achieves the best performance, we choose this
one as our reference DNN model.

Average Reward Average Reward

Reward, "Far" 4

051 Reward, "Close" 1 05F
0.4 0.4
0.3 - 0.3
0.2 0.2
0.1 0.1 F
0 . : : . . 0 . . : .
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Loss Function Loss Function

T T T T T T
Loss, "Close" —e— Loss, "Far" —e—

L e ——— 1]

]
0.5 0.5
0 . , . . . 0 . , . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Avg. Action Avg. Action
(0: BPSK, 1: QPSK, 2: 8PSK) (0: BPSK, 1: QPSK, 2: 8PSK)
2 T T T T T 2 T T T T T
15 Action, "Close" B 15k Action, "Far"
1 1
0.5 05
0 0 . n . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Episode Episode

Fig. 11: Reward, Loss and Action Obtained by RCEF as a
Function of the Episode.

To evaluate the convergence performance of RCEF in a
challenging “in-the-wild” scenario, we consider the Close and
Far configurations and run DeepWiERL with the 24/12/6 DNN
model starting from a “clean-slate” (i.e., random parameter
set). Figure 11 shows the reward, loss function and average
action per episode obtained by RCEF, as a function of the
number of episodes. The average action is plotted as a real
number between 0 and 2, where we assign 0, 1 and 2 to
BPSK, QPSK and 8PSK actions, respectively. As far as RCEF
is concerned, we fixed K to 10, the batch size B to 10, and
a and f to 0.1 and 0.7, respectively.

Intuitively, the expected behavior of the RCEF would be
to converge to BPSK and 8PSK modulations in the Far and
Close scenarios, respectively. However, Figure 11 shows that
in Close the preferred action is to switch to QPSK instead
of 8PSK. Indeed, this is due to the fact that in our testbed
experiments the QPSK modulation performs better than the
other two modulations, and RCEEF is able to learn that without
human intervention and based just on unprocessed spectrum
data. Interestingly, we notice from Figure 11 that RCEF
converges faster in Far than in Close. This is because in the
Far scenario the 8PSK transmissions always fail and thus the
related observations are never recorded at the receiver’s side.
This, in turn, speeds up convergence significantly — 1 batch
vs 2 batches in the Close scenario — as also witnessed by the
lower loss function values reported in Figure 11.

E. S-DMSB Bootstrapping Performance

The experiments shown in Figure 12 were performed in
a controlled environment where the transmitter and receiver
are connected through an RF cable and the SINR is changed
instantaneously though the introduction of path loss. This
was done to (i) explicitly control the RF channel impact and
evaluate the convergence performance of RCEF and S-DMSB
under repeatable conditions; (ii) determine the optimal reward
and action at a given moment in time, which are reported
respectively in Figure 12(a) and (b). In these experiments, we
changed the SINR level approximately one every 10 episodes,
except for the first 20 episodes where we change it every
5 episodes to help RCEF converge better. This was done
to emulate highly-dynamic channel conditions between the
transmitter and the receiver yet also evaluating the action
chosen by the ONN as a function of the SINR.

Figure 12 presents the average reward and action as a
function of the episode number obtained by (i) RCEF with
a “clean-slate” 6/6/3 DNN in subfigures (c) and (d), (i) RCEF
with a “clean-slate” 24/12/6 DNN in subfigures (e) and (f), and
(iii)) RCEF with a “bootstrapped” 24/12/6 DNN in subfigures
(g) and (h), obtained through the S-DMSB method described
in Section V-B and with the data collected in Section VI-D.

Figures 12(c) and (d) hint that the 6/6/3 architecture is
not able to capture the difference between different spectrum
states, as it converges to a fixed QPSK modulation scheme
regardless of the SINR levels experienced on the channel. On
the other hand, Figures 12(e) and (f) show that the 24/12/6
architecture performs much better in terms of convergence, as
it is both able to distinguish between different spectrum states
and is able to switch between BPSK and QPSK when the
SINR level changes. However, we can see that convergence
does not happen until episode 60. Finally, Figures 12(g) and
(h) indicates that S-DMSB’s bootstrapping procedure is signif-
icantly effective in the scenario considered. Indeed, we obtain
an increase in average reward of more than 45% with respect
to clean-slate RCEF, and 6x speed-up in terms of convergence
— indeed, RCEF + S-DMSB converges to the “seesaw’ pattern
at episode 10, while clean-slate RCEF converges at episode 60.

Average Reward Avg. Action (0: BPSK, 1: QPSK, 2: 8PSK)

07 25 T

Optimal Reward Optimal Action —e— l

o2 EahinEeNElE

0.1

0

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

(@) (b)
T 25F

0.7
0.6
05
0.4 i 15
0.3 1 R4

0.2 i

o1l 1 osf 1

0 10 20 30 40 50 60 70 80 %610 20 30 40 50 60 70 80 90 100
(©) (d)

0.7 ‘

0.6} 24/12/6, RCEF, Clean-Slate

0.5
0.4+ 7
0.3 i
0.2 7
0.1

6/6/3, RCEF, Clean-Slate 6/6/3, RCEF, Clean-Slate —s— |

24/12/6, RCEF, Clean-Slate —a—)

0

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 90 100
(e))
T 25
of
I 15
- ol 1“. R ot PR e
A W O O

VY

S S S R 1 1
10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
(@) (h)

Fig. 12: Reward and Actions obtained by RCEF and S-DMSB.

r 24/12/6, RCEF + S-DMSB 24/12/6, RCEF + S-DMSB —=— |

COOO00O00
omihvwhruON
i

o

VII. CONCLUDING REMARKS

This section discusses the related work and compares it to
ours, and concludes the paper by summarizing the contribu-
tions of this paper and the ongoing work.

Related Work and Comparison

Deep reinforcement learning [22] has recently received a
remarkable surge of attention. This section summarizes a small
part of existing work only — for a recent comprehensive
survey on the topic, the reader may refer for example to
[40]. As far as cellular networks are concerned, Liu et al.
[4] proposed DeepNap, a DRL- based algorithm for dynamic
base station (BS) sleeping control in cellular networks. Wang
et al. [5] propose a two-layer DRL framework to learn the
optimal handover patterns in networks with heterogeneous
user mobility. DRL has also been leveraged to improve video
quality [15, 17] and to accommodate QoE demands [16].

Much research efforts in DRL for wireless has been devoted
to address dynamic spectrum access (DSA) issues [6-9].
Chang et al. [9] apply DRL to make secondary users (SUs) in
DSA networks learn appropriate spectrum access strategies in
a distributed fashion assuming no knowledge of the underlying
system statistics. Naparstek and Cohen [8] leverage DRL to
formulate a DSA strategy to maximize a given network utility
function in a distributed manner without online coordination
or message exchanges between users, where at each time slot,
each user maps its current state to the spectrum access actions
based on a trained DQN. Similarly, the authors in [7] use
DRL to learn an access policy from the observed states of

all channels when SUs have no knowledge about the channel
model. Yu et al. [6] design a “universal” Deep-reinforcement
Learning Multiple Access (DLMA) protocol, and show that
a DRL agent can learn the optimal (i.e., sum throughput or
a-fairness) MAC strategy for harmonious co-existence with
time-division multiple access (TDMA) and ALOHA nodes.

Recently, the topic of DRL-based resource allocation and
management has received significant interest [10-14, 41-43].
Li et al. [13] investigate the application of DRL in solving
network slicing scenarios and demonstrate the advantage of
DRL over several competing schemes through simulations.
Sun et al. [12] study the problem of resource management
in Fog radio access networks. Zhang et al. [14] consider
the challenges of network heterogeneity, comprehensive QoS
goals, and dynamic environments. Xu et al. [41] present a
DRL-based control framework for traffic engineering, while
Feng and Mao [10] tackle the problem of limited backhaul
capacity and highly dynamic data rates of users in millimeter-
wavelength (mmWave) systems by presenting a DRL scheme
that learns blockage patterns and allocate backhaul resources
to each user. Jiang et al. [42] use DRL to determine the
configuration that maximizes the long-term average number
of served IoT devices.

The closest work to ours is [34], where the authors proposed
a framework to integrate a 2-D convolutional neural network
(CNN) in the hardware RF loop. However, our work separates
itself from [34] since the authors do not consider DRL and
instead strictly focus on supervised learning aspects (i.e.,
modulation recognition). Indeed, the above work applies deep
learning at the receiver’s side, while in this paper it is applied
at the transmitter’s side.

Summary of Contributions and Current Work

This paper’s key innovation is Deep Wireless Embed-
ded Reinforcement Learning (DeepWiERL), a general-purpose
hardware-based DRL framework specifically tailored for the
IoT and providing support for training and real-time execution
of state-of-the-art DRL algorithms. We have (i) modeled the la-
tency/memory design constraints of DeepWiERL; (ii) proposed
a hardware-based 1-D CNN architecture to infer the current
spectrum state; and (iii) proposed a novel DRL bootstrapping
technique (S-DMSB) to select a DNN model meeting the
hardware/latency requirement and speed-up convergence time.
Experimental results have shown that system-level real-time
DRL is indeed feasible; that our hardware approach supports
up to 16x data rate and 14x less energy consumption than
software-based solutions; and that S-DMSB is effective in
bringing DRL algorithms to convergence faster and to a better
optimal solution.

ACKNOWLEDGEMENTS

This work is supported by the Office of Naval Research
(ONR) and Raytheon Inc. under contracts N00014-18-9-0001
and 4201829283. The views and conclusions contained herein
are those of the authors and should not be interpreted as neces-

sarily representing the official policies or endorsements, either
expressed or implied, of the ONR or the U.S. Government.

[1]
[2]

[3]

[4]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

Ericsson Incorporated, “Internet of Things forecast,” https://www.
ericsson.com/en/mobility-report/internet-of-things-forecast, 2019.

L. Da Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233—
2243, 2014.

F. Restuccia, S. D’Oro, and T. Melodia, “Securing the Internet of Things
in the Age of Machine Learning and Software-defined Networking,”
IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4829-4842, 2018.
J. Liu, B. Krishnamachari, S. Zhou, and Z. Niu, “DeepNap: Data-
Driven Base Station Sleeping Operations Through Deep Reinforcement
Learning,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4273—
4282, Dec 2018.

Z. Wang, L. Li, Y. Xu, H. Tian, and S. Cui, “Handover Control in
Wireless Systems via Asynchronous Multiuser Deep Reinforcement
Learning,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4296
4307, 2018.

Y. Yu, T. Wang, and S. C. Liew, “Deep-Reinforcement Learning Mul-
tiple Access for Heterogeneous Wireless Networks,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 6, pp. 1277-1290, June
2019.

S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep Reinforce-
ment Learning for Dynamic Multichannel Access in Wireless Networks,”
IEEE Transactions on Cognitive Communications and Networking,
vol. 4, no. 2, pp. 257-265, 2018.

O. Naparstek and K. Cohen, “Deep Multi-user Reinforcement Learning
for Distributed Dynamic Spectrum Access,” IEEE Transactions on
Wireless Communications, vol. 18, no. 1, pp. 310-323, 2019.

H.-H. Chang, H. Song, Y. Yi, J. Zhang, H. He, and L. Liu, “Distributive
Dynamic Spectrum Access through Deep Reinforcement Learning:
A Reservoir Computing Based Approach,” IEEE Internet of Things
Journal, 2018.

M. Feng and S. Mao, “Dealing with Limited Backhaul Capacity in
Millimeter-Wave Systems: A Deep Reinforcement Learning Approach,”
IEEE Communications Magazine, vol. 57, no. 3, pp. 50-55, 2019.

Y. He, N. Zhao, and H. Yin, “Integrated Networking, Caching, and
Computing for Connected Vehicles: A Deep Reinforcement Learning
Approach,” IEEE Transactions on Vehicular Technology, vol. 67, no. 1,
pp. 44-55, Jan 2018.

Y. Sun, M. Peng, and S. Mao, “Deep Reinforcement Learning-Based
Mode Selection and Resource Management for Green Fog Radio Access
Networks,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1960-
1971, April 2019.

R. Li, Z. Zhao, Q. Sun, C. I, C. Yang, X. Chen, M. Zhao, and H. Zhang,
“Deep Reinforcement Learning for Resource Management in Network
Slicing,” IEEE Access, vol. 6, pp. 74429-74441, 2018.

H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye, “ReLeS: A Neural
Adaptive Multipath Scheduler based on Deep Reinforcement Learning,”
Proc. of IEEE Conference on Computer Communications (INFOCOM),
2019.

H. Pang, C. Zhang, F. Wang, J. Liu, and L. Sun, “Towards Low
Latency Multi-viewpoint 360° Interactive Video: A Multimodal Deep
Reinforcement Learning Approach,” Proc. of IEEE Conference on
Computer Communications (INFOCOM), 2019.

F. Wang, C. Zhang, F. Wang, J. Liu, Y. Zhu, H. Pang, and L. Sun,
“Intelligent Edge-Assisted Crowdcast with Deep Reinforcement Learn-
ing for Personalized QoE,” Proc. of IEEE Conference on Computer
Communications (INFOCOM), 2019.

Y. Zhang, P. Zhao, K. Bian, Y. Liu, L. Song, and X. Li, “DRL360: 360-
degree Video Streaming with Deep Reinforcement Learning,” Proc. of
IEEE Conference on Computer Communications (INFOCOM), 2019.
L. Zhang, J. Tan, Y. Liang, G. Feng, and D. Niyato, “Deep Rein-
forcement Learning based Modulation and Coding Scheme Selection
in Cognitive Heterogeneous Networks,” IEEE Transactions on Wireless
Communications, pp. 1-1, 2019.

J. Jagannath, N. Polosky, A. Jagannath, F. Restuccia, and T. Melodia,
“Machine Learning for Wireless Communications in the Internet of
Things: A Comprehensive Survey,” Ad Hoc Networks, vol. 93, p.
101913, 2019.

[20]

[21]

[22]

[23]

[24]
[25]

[26]

(27]

(28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with Deep Reinforcement
Learning,” arXiv preprint arXiv:1312.5602, 2013.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the Game of Go Without Human Knowledge,” Nature, vol. 550, no.
7676, p. 354, 2017.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT press, 2018.

I. E. Telatar and D. N. C. Tse, “Capacity and Mutual Information of
Wideband Multipath Fading Channels,” IEEE Transactions on Informa-
tion Theory, vol. 46, no. 4, pp. 1384-1400, 2000.

R. S. Sutton, A. G. Barto et al., Introduction to Reinforcement Learning.
MIT press Cambridge, 1998, vol. 135.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning.
MIT press Cambridge, 2016, vol. 1.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking Deep Reinforcement Learning for Continuous Control,” in
International Conference on Machine Learning, 2016, pp. 1329-1338.
L. Baird, “Residual Algorithms: Reinforcement Learning With Function
Approximation,” in Machine Learning Proceedings 1995. Elsevier,
1995, pp. 30-37.

“Analysis of temporal-diffference learning with function approximation.”
G. J. Gordon, “Stable Function Approximation in Dynamic Program-
ming,” in Machine Learning Proceedings 1995. Elsevier, 1995, pp.
261-268.

M. Riedmiller, “Neural Fitted Q Iteration—First Experiences With a
Data Efficient Neural Reinforcement Learning Method,” in European
Conference on Machine Learning. Springer, 2005, pp. 317-328.

H. Van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

L.-J. Lin, “Self-Improving Reactive Agents Based on Reinforcement
Learning, Planning and Teaching,” Machine Learning, vol. 8, no. 3-4,
pp. 293-321, 1992.

R. F. Molanes, J. J. Rodrguez-Andina, and J. Faria, “Performance
Characterization and Design Guidelines for Efficient Processor - FPGA
Communication in Cyclone V FPSoCs,” IEEE Transactions on Indus-
trial Electronics, vol. 65, no. 5, pp. 43684377, May 2018.

F. Restuccia and T. Melodia, “Big Data Goes Small: Real-Time
Spectrum-Driven Embedded Wireless Networking Through Deep Learn-
ing in the RF Loop,” Proc. of IEEE Conference on Computer Commu-
nications (INFOCOM), 2019.

N. E. West and T. O’Shea, “Deep Architectures for Modulation Recogni-
tion,” in Proc. of IEEE International Symposium on Dynamic Spectrum
Access Networks (DySPAN), 2017.

T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-Air Deep Learning
Based Radio Signal Classification,” IEEE Journal of Selected Topics in
Signal Processing, vol. 12, no. 1, pp. 168-179, 2018.

K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A Survey of Transfer
Learning,” Journal of Big Data, vol. 3, no. 1, p. 9, 2016.

F. Winterstein, S. Bayliss, and G. A. Constantinides, “High-Level
Synthesis of Dynamic Data Structures: A Case Study Using Vivado
HLS,” in Proc. of International Conference on Field-Programmable
Technology (FPT), Kyoto, Japan, 2013, pp. 362-365.

I. Szita and A. Lorincz, “Learning Tetris Using the Noisy Cross-entropy
Method,” Neural Computation, vol. 18, no. 12, pp. 2936-2941, 2006.
N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang,
and D. I. Kim, “Applications of Deep Reinforcement Learning in
Communications and Networking: A Survey,” IEEE Communications
Surveys Tutorials, vol. 21, no. 4, pp. 3133-3174, 2019.

Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven Networking: A Deep Reinforcement Learning based
Approach,” in Proc. of IEEE Conference on Computer Communications
(INFOCOM), 2018.

N. Jiang, Y. Deng, A. Nallanathan, and J. A. Chambers, “Reinforcement
Learning for Real-Time Optimization in NB-IoT Networks,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1424—
1440, June 2019.

Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, “Experience-Driven
Congestion Control: When Multi-Path TCP Meets Deep Reinforcement
Learning,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 6, pp. 1325-1336, June 2019.

