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Abstract—The highly heterogeneous ecosystem of Next Generation
(NextG) wireless communication systems calls for novel networking
paradigms where functionalities and operations can be dynamically and
optimally reconfigured in real time to adapt to changing traffic conditions
and satisfy stringent and diverse Quality of Service (QoS) demands.
Open Radio Access Network (RAN) technologies, and specifically those
being standardized by the O-RAN Alliance, make it possible to in-
tegrate network intelligence into the once monolithic RAN via intelli-
gent applications, namely, xApps and rApps. These applications enable
flexible control of the network resources and functionalities, network
management, and orchestration through data-driven intelligent control
loops. Recent work has showed how Deep Reinforcement Learning
(DRL) is effective in dynamically controlling O-RAN systems. However,
how to design these solutions in a way that manages heterogeneous
optimization goals and prevents unfair resource allocation is still an
open challenge, with the logic within DRL agents often considered as
a black box. In this paper, we introduce PandORA, a framework to
automatically design and train DRL agents for Open RAN applications,
package them as xApps and evaluate them in the Colosseum wireless
network emulator. We benchmark 23 xApps that embed DRL agents
trained using different architectures, reward design, action spaces, and
decision-making timescales, and with the ability to hierarchically control
different network parameters. We test these agents on the Colosseum
testbed under diverse traffic and channel conditions, in static and mobile
setups. Our experimental results indicate how suitable fine-tuning of
the RAN control timers, as well as proper selection of reward designs
and DRL architectures can boost network performance according to the
network conditions and demand. Notably, finer decision-making granu-
larities can improve Massive Machine-Type Communications (mMTC)’s
performance by ∼ 56% and even increase Enhanced Mobile Broadband
(eMBB) Throughput by ∼ 99%.
Index Terms—Open RAN, O-RAN, Resource Allocation, Network Intel-
ligence, Deep Reinforcement Learning.

1 INTRODUCTION

Programmable, virtualized, and disaggregated architectures
are seen as key enablers of Next Generation (NextG) cellular
networks. Indeed, the flexibility offered through softwariza-
tion, virtualization, and open standardized interfaces pro-
vides new self-optimization capabilities through Artificial
Intelligence (AI). These concepts are at the foundation of
the Open Radio Access Network (RAN) paradigm, which is
being specified by the O-RAN Alliance. Thanks to the RAN
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Intelligent Controllers (RICs) proposed by O-RAN (i.e., the
near- and non-real-time RICs), intelligence can be embedded
into the network and leveraged for on-demand closed-
loop control of its resources and functionalities [1]. This
is achieved via intelligent applications, called xApps and
rApps, which execute on the near- or non-real-time RICs,
respectively. Through the RICs, these applications interface
with the network nodes and implement data-driven closed-
loop control based on real-time statistics received from the
RAN, thus realizing the vision of resilient, reconfigurable
and autonomous networks. Since they do not require prior
knowledge of the underlying network dynamics [2], Deep
Reinforcement Learning (DRL) techniques are usually pre-
ferred in the design of such control solutions for the Open
RAN [3]–[5].

1.1 Related Work

Intelligent control in O-RAN through xApps has widely
attracted the interest of the research community. For exam-
ple, [6] proposes the NexRAN xApp to control and balance
the throughput of different RAN slices. In [7], an O-RAN-
compliant RAN platform is introduced for Multi-Radio Ac-
cess Technology (multi-RAT) environments, enabling net-
work slicing and slice-specific scheduling. The FlexSlice
framework in [8] addresses RAN slicing and scheduling
with finer control loop granularity for real-time efficiency.
In [9], the authors discuss an O-RAN-based framework for
predictive Uplink (UL) network slicing, leveraging a Deep
Learning-based xApp for dynamic reconfiguration of RAN
scheduling for Ultra Reliable and Low Latency Commu-
nications (URLLC) services. Similarly, in [10], the authors
present a Deep Learning-based approach to develop a RAN
slicing xApp. The authors of [11] develop a Reinforcement
Learning (RL) xApp to assign resource blocks to certain
users according to their Channel State Information (CSI)
and with the goal of maximizing the aggregated data rate
of the network. A deep Q-learning-based xApp for control-
ling slicing policies to minimize latency for URLLC slices
is presented in [12], while a cooperative multi-agent RL
algorithm for Open RAN slicing and radio resource manage-
ment, taking into account various Service Level Agreement
(SLA) constraints, is discussed in [13]. The authors of [4]
experimentally evaluate and demonstrate three DRL-based
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xApps under a variety of traffic and channel conditions,
and investigate how different action space configurations
impact the network performance. Finally, other research
efforts focus on coordinating multiple xApps to control
different parameters via a combination of federated learning
and team learning [14]–[17].

DRL has been widely used for resource allocation [18],
[19] in the wireless communications and networking field.
In [20], the authors propose a Quality of Service (QoS)-
oriented resource allocation scheme for network slicing
and throughput maximization in 5th generation (5G) and
beyond networks. DeepSlicing in [21] relies on a DRL ap-
proach to determine the number of resources required by
the User Equipments (UEs) in each slice to ensure their
QoS demands are met. In [22], authors present a DRL-
based framework for NextG RAN slicing to improve re-
source utilization and meet the slices’ QoS requirements
by leveraging feedback generated by the Deep Q-Network
(DQN) agents. In [23], the authors discuss a two-level
scheduling framework to jointly maximize the Quality of
Experience (QoE) and Spectrum Efficiency (SE). Specifically,
the higher layer controller manages bandwidth allocation,
while the lower level controller is responsible for scheduling
the Physical Resource Block (PRB) and power allocation at a
smaller timescale, utilizing Multiple Input, Multiple Output
(MIMO) antenna technology. In [24] a Multi-Agent DRL
(DRL) approach is introduced for joint optimization of UE
scheduling and power control in a wireless environment
characterized by the coexistence of multiple Transmitters
(TXs) with multiple associated UEs. In [25], an energy-
efficient RAN slicing scheme utilizing DRL-assisted learn-
ing for resource allocation in 5G networks is introduced.
Specifically, a combination of Deep Learning and DRL is
employed for resource allocation on large and small time-
scales, respectively. In [26] a hierarchical DRL-based ap-
proach is employed for resource allocation, coupled with
a load balancing strategy to enhance energy efficiency while
ensuring user fairness from a QoS perspective.

1.2 Contributions and Outline

The above works clearly show that DRL and AI are cata-
lysts in the design and development of intelligent control
solutions for the Open RAN. However, despite early results
showing their success and effectiveness, designing DRL
agents which are effective at controlling and optimizing
complex Open RAN scenarios—characterized by the coex-
istence of diverse traffic profiles and potentially conflicting
QoS demands—is still an open challenge that, as we de-
scribe below, we aim at addressing in this paper. Specifically,
our goal is to go beyond merely using AI, and specifically
DRL, in a black-box manner. Instead, we try to address some
fundamental design questions that are key for the success of
intelligence in Open RAN systems.

We consider an Open RAN delivering services to
URLLC, Massive Machine-Type Communications (mMTC)
and Enhanced Mobile Broadband (eMBB) network slices.
Specifically, we use OpenRAN Gym [27]—an open-source
framework for Machine Learning (ML) experimentation in
O-RAN—to deploy such Open RAN on the Colosseum
wireless network emulator [28], and control it through
xApps using 23 different DRL agent designs. These xApps

have been trained to perform slice-based resource allocation
(i.e., scheduling profile selection and RAN slicing control)
and to meet the diverse requirements of each slice. We
investigate the trade-off between long-term and short-term
rewards, we discuss and compare different design choices of
action set space and DRL architecture, hierarchical decision-
making policies and action-taking timescales. Finally, we
show how these choices greatly impact network perfor-
mance and affect each slice differently.

To the best of our knowledge, in [29], we conducted the
first experimental study that comprehensively evaluated the
design choices for DRL-based xApps to provide insights on
the design of xApps for NextG Open RANs. In this paper,
we extend our previous work [29] and present PandORA, a
large-scale evaluation and profiling of DRL agents for Open
RAN, leveraging a framework to automate the training of
DRL agents and their on-boarding as xApps to be executed
in the near-real-time RIC. This all-in-one solution, spanning
from the automated end-to-end streamlining of DRL model
training, to testing on an Open RAN network, is enabled by
the Colosseum testbed. Moreover, we extend the analysis
in [29] by considering two new directions that affect DRL-
based xApp design. Specifically, (i) we investigate the trade-
offs between using a global DRL agent that takes decisions
for all slices against the case of training and deploying per-
slice dedicated xApps; and (ii) we analyze the effect of
RAN control timing (i.e., the temporal granularity we use
to compute and enforce new control actions). We explore
the aforementioned directions by training a variety of DRL
agents, which we then onboard on xApps. We test these
agents both under network conditions similar to those en-
countered in the training dataset (i.e., in-sample experimen-
tal evaluation), as well as under previously unseen network
conditions not encountered during the training process (i.e.,
out-of-sample experimental evaluation).

The remainder of this paper is organized as follows.
Section 2 describes the PandORA System Model and Evalu-
ation Framework. Section 3 presents the different DRL opti-
mization strategies considered in this work, while Section 4
details our experimental setup and training methodology,
through PandORA. Experimental results are discussed in
Sections 5, 6 and 7. Finally, Section 8 draws our conclusions.

2 THE PANDORA SYSTEM MODEL AND EVALUA-
TION FRAMEWORK

Before providing thorough implementation details of the
PandORA system design and its operational procedures
(Section 2.2), we first briefly introduce the O-RAN system
model considered in this paper (Section 2.1).

2.1 System Model and Reference Use-Case Scenario
In this work, we consider an Open RAN multi-slice scenario
where UEs generate traffic with diverse profiles and QoS
demands. Without loss of generality, we assume that traffic
generated by UEs can be classified into eMBB, URLLC, or
mMTC slices.

We focus on the case where a set of xApps execute in
the near-real-time RIC to intelligently control the resource
allocation process in a way that satisfies the diverse QoS
demands required by each slice. These xApps take these
control decisions by leveraging AI/ML algorithms that can
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Fig. 1. PandORA framework for intent-driven DRL training, xApp on-boarding, and testing with Open RAN in Colosseum.

control Base Station (BS) parameters and functionalities
such as RAN slicing (i.e., the portion of available PRBs that
are allocated to each slice at any given time) and Medium
Access Control (MAC) layer scheduling policies. It is worth
mentioning that xApps can assign a certain scheduler profile
(to be selected among Round Robin (RR), Waterfilling (WF)
and Proportionally Fair (PF)) to each slice, but do not take
Transmission Time Interval (TTI)-level scheduling decisions,
which is instead left to the Next Generation Node Base
(gNB). xApps make decisions based on UE traffic demand,
load, performance and network conditions that are given
by Key Performance Measurements (KPMs) periodically
reported by the RAN.

2.2 PandORA Overview and Procedures

The architecture and building blocks of PandORA are illus-
trated in Fig. 1. These are key to our extensive evaluation
campaign, as they streamline the DRL design and xApp
evaluation. PandORA leverages automated pipelines that
cover the end-to-end lifecycle of AI development for O-RAN
systems. Specifically, it embeds the following components
and functionalities:

• Catalogs. These include AI/ML models trained offline,
xApps, and datasets that can be used to train and test
data-driven solutions.

• Intent-driven Auto-AI Engine. This is a fully-
customizable software component that parses training
intents defined in JSON format and automatically ex-
tracts the necessary data from datasets in the catalog.
Once the training process is instantiated, AI solutions
are trained based on the intent, and the AI training
is configured to match the desired inputs, outputs,
and goals. It also offers web-based dashboards (e.g.,
TensorFlow’s TensorBoard [30]) to monitor the training
phase.

• xApp On-boarding Module. Templates and pipelines
are provided to convert trained AI solutions into
xApps that are subsequently published to the cata-
log. These xApps are composed of two interconnected
units, namely a service model connector and a data-

driven logic unit. The former is responsible for handling
the communication with the near-real-time RIC (e.g.,
extracts live Key Performance Indicators (KPIs) from
the RAN nodes or sends control actions, via the E2
termination), while the latter is tasked with embedding
trained AI solutions [27].

• xApp Dispatcher Module. This module automates the
instantiation of xApps in order to facilitate their testing
process. This is done through scripts that automatically
create Docker containers of the xApps to dispatch and
deploy them on the near-real-time RIC.

• Integration with OpenRAN Gym and Colosseum.
PandORA is seamlessly integrated with OpenRAN
Gym [27] and Colosseum [28] to enable end-to-end
O-RAN-compliant testing of xApps in a reproducible
RF environment. Via OpenRAN Gym, PandORA also
offers data collection and analytics functionalities that
are useful to validate xApp behavior and evaluate
their performance under diverse conditions and de-
ployments.

In a nutshell, PandORA users (e.g., telco operators,
xApp developers) can generate an intent in JSON format
(Step 1 in Fig. 1) by specifying the control objective (e.g.,
maximizing a certain set of KPMs for each slice), desired
control parameters and observable inputs (e.g., throughput
measurements, Channel Quality Information (CQI), to name
a few). PandORA parses the intent (Step 2) and: (i) produces
a dataset to be used to train the AI algorithms (Step 3);
(ii) configures the AI algorithm to be trained, e.g., a DRL
agent based on the Proximal Policy Optimization (PPO)
architecture controlling slicing policies to maximize a certain
reward function (Step 4); and (iii) trains the AI solution
while offering a dashboard to monitor the training phase
(Step 5). Once the training phase is complete, the AI/ML
models are published to the Catalog, and PandORA inte-
grates with OpenRAN Gym [27] to convert the trained AI
solution into an xApp (Step 6), which then gets published to
the respective xApp Catalog (Step 7). Once the publishing
is complete, the xApp can be tested on Colosseum under
one or more Colosseum scenarios (Step 8), and testing data



4

is collected and stored to enable performance evaluation,
xApp validation and data analytics (Step 9).

PandORA is developed in Python using Tensorflow li-
braries [30]. Although it supports the training of any type
of AI/ML model, for the scope of this work, we primarily
focus on training DRL agents which are the state-of-the-art
for intelligent decision making in O-RAN [12], [31]–[33].

Following O-RAN specifications and requirements [1],
PandORA trains AI solutions offline using an extended and
customized version of the tf_agents library [34] where the
configuration of the training environment, the DRL agents
and the datasets are generated at run-time starting from a
JSON-based intent file.

A simplified example of a minimal intent document is
shown in Listing 1. The example shows how it is possible
to specify the slices to be controlled by the agent, the
actions that can be controlled, the KPIs for each slice that
constitute the observation of the state, and which should be
considered to compute the reward. PandORA intents use a
modular approach where PandORA users can specify slice-
specific rewards and set a global reward to combine them. In
Listing 1, we illustrate a case where a DRL agent is trained
to maximize both the average throughput and number of
transmitted packets in the Downlink (DL) for the eMBB
slice (Lines 4 - 9), while maximizing the average number
of DL transmitted packets for the mMTC slice (Lines 10 -
15) and minimizing the maximum DL buffer occupancy for
the URLLC slice (Lines 16 - 21).1

These three slice-specific rewards are then combined
using a global reward that aims at maximizing the weighted
sum of the individual reward contributions for each slice
(weights are defined at Line 25).

Users can specify a general control action space (e.g.,
controlling RAN slicing policies and scheduling profile as
shown in Line 23) without the need to specify the explicit
values of these control actions. At run-time, PandORA
parses the JSON-formatted intent and generates a dataset
that fulfills the intent. This dataset includes all necessary
KPMs required to compute observations and rewards. Ad-
ditionally, it generates the proper action space from the
available datasets. For instance, PandORA processes these
datasets, automatically determining the available schedul-
ing profiles (e.g., RR, WF, and PF as described in Sec-
tion 2.1), along with the RAN slicing policies suitable for
the given slices. More advanced PandORA users can also
specify the subset of actions that must be considered by the
agent. For example, they can force the agent to only consider
PF and RR schedulers and exclude WF.

Apart from offering modules to generate custom reward
functions, PandORA provides a set of pre-defined reward
functions that can be selected and combined to generate a
global reward. This includes rewards aimed at maximizing
or minimizing specific metrics through average, maximum,
minimum, and median values. It enables the prioritization
of certain KPMs by configuring weights, as demonstrated

1. Note that the weight associated to the URLLC slice is configured
in Line 25 and has negative value. Therefore, the MaxElemReward
function in Line 18 effectively results in minimizing the maximum
buffer occupancy. It is worth mentioning that the gNB does not have
direct access to end-to-end latency measurements, therefore we use the
buffer occupancy as a proxy for latency [29].

1 {
2 "intent": {
3 "slices": [
4 {
5 "name": "embb",
6 "reward": "MaxAverageReward",
7 "reward_KPIs": ["dl_brate", "dl_tx_pkts"],
8 "observation_KPIs": ["dl_buffer", "dl_tx_pkts"]
9 },

10 {
11 "name": "mmtc",
12 "reward": "MaxAverageReward",
13 "reward_KPIs": ["dl_tx_pkts"],
14 "observation_KPIs": ["dl_brate", "dl_tx_pkts"]
15 },
16 {
17 "name": "urllc",
18 "reward": "MaxElemReward",
19 "reward_KPIs": ["dl_buffer"],
20 "observation_KPIs": ["dl_buffer", "dl_brate"]
21 }
22 ],
23 "actions": ["scheduling", "ran_slicing"],
24 "global_reward_type": "NestedSumWeightedReward",
25 "global_reward_weights": [0.5, 0.25, -1]
26 }
27 }

Listing 1. A simplified example of a JSON intent for PandORA.

in Line 25. PandORA also offers pre-configured slice con-
figurations with tailored rewards and observable KPMs
that users can utilize. These configurations serve as default
values for each slice, and they can be overrided by the user.

It is also worth noting that intents, slice configurations,
rewards, actions, and observation configurations are mod-
ular and can be combined to generate new intents. In this
way, new intents specific to each slice are created, which are
later combined, providing further flexibility to PandORA
and its users.

Via tf_agents [34], PandORA provides access to a
range of DRL agents, including DQN, PPO, Deep Determin-
istic Policy Gradient (DDPG), Twin Delayed DDPG (TD3),
and various others. Users can utilize PandORA to select
the type of agents they want to use, along with specifying
hyperparameters. Once the selection is complete, PandORA
configures the agents at run-time, adjusting action and
observation spaces as well as rewards based on the specified
intent. Similarly to intents, users have the flexibility to
customize their DRL architecture and hyperparameters or
use default values pre-configured in PandORA.

2.3 DRL Agent Architectures tested in this work
To control RAN slicing, and scheduling, we focus on data-
driven approaches that rely on RL. In RL, an agent iteratively
interacts with the environment by performing observations,
in order to learn the optimal control policy that maximizes
the desired cumulative reward. More specifically, the agent
explores the environment and takes actions in several envi-
ronmental states, without knowing a priori which actions
are more beneficial, and eventually learns the best policy
through experience. The reward is a metric that defines
the effectiveness of an action, while a sequence of states,
actions, and rewards that result in a terminal state is called
an episode. State Space S, represents all the possible states
of the environment s ∈ S, while Action Space A defines all
the feasible actions a ∈ A that can be taken by the agent.
Finally, in this work, we focus on DRL agents due to their
ability to learn directly from experience, without relying on
pre-existing models or explicit knowledge of the wireless
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environment [35]–[37] and therefore of its complex and
dynamically changing conditions. Moreover, we focus on
discrete actions and, for this reason, we limit our analysis to
PPO [38] and DQN [39] architectures which are two state-of-
the-art algorithms respectively for on-policy and off-policy
DRL for discrete action spaces.

PPO has been demonstrated several times to outperform
other architectures [4], [11]. It is based on an actor-critic
network architectural approach, where the actor and critic
network “work” cooperatively to learn a policy that selects
actions that deliver the highest reward possible for each
state. While the actor’s task is to take actions based on
current network states, the critic’s target is to evaluate
actions taken by the actor network and provide feedback
that reflects how effective the action taken by the actor is. In
this way, the critic helps the actor in taking actions that lead
to the highest rewards for each given state. The Clipped
Surrogate Objective function used by PPO is defined in
Eq. (1)

LCLIP(θ) = Êt

[
min

(
qt(θ)Ât, clip (qt(θ), 1− ϵ, 1 + ϵ) Ât

)]
, (1)

where Êt represents the empirical average; Ât is the es-
timator of the advantage function denoted as At, which
assesses how well an action performed compared to the
expected performance under the current policy; and qt(θ) =
πθ(at|st)

πθold (at|st) . This ratio represents the probability of taking
action at at state st following the current policy πθ , divided
by the respective probability when following the previous
policy (i.e., πθold ). When multiplied by the estimator of the
advantage function at time-step t (i.e., Ât), the unclipped
part Eq. (1) is obtained, as shown in Eq. (2), where Conserva-
tive Policy Iteration (CPI) stands for the technique leveraged
to avoid large policy updates [40].

LCPI(θ) = Êt

[
πθ (at | st)
πθold (at | st)

Ât

]
= Êt

[
qt(θ)Ât

]
. (2)

Since maximizing Eq. (2) directly would result in large pol-
icy updates, by clipping the probability ratio, we constrain
the surrogate objective function (i.e., Eq. (1)) and remove
the incentive to move the probability ratio (i.e., qt(θ)) out-
side the interval [1 − ϵ, 1 + ϵ]. ϵ is a hyperparameter that
determines the clip range and is chosen in a way to ensure
that the policy update will not be too large, indicating
a significant divergence between the old and the current
policy. Lastly, we take the minimum of the clipped and
non-clipped objectives. Therefore, the final objective serves
as a lower pessimistic bound of the unclipped objective.
This indicates that we select either the clipped or the non-
clipped objective based on qt(θ) and the advantage. The
final form of the Clipped Surrogate Objective Loss for the
actor-critic implementation of PPO is given in Eq. (3). It
is a combination of the Clipped Surrogate Objective func-
tion (i.e., LCLIP

t ), the squared-error value loss function (i.e.,
LVF

t (θ) =
(
Vθ (st)− V targ

t

)2) which is the difference between
predicted and target cumulative reward estimations, and the
entropy bonus (i.e., S”), with the latter ensuring sufficient
exploration, while c1,c2 are control parameters.

LCLIP+VF+S
t (θ) = Êt

[
LCLIP

t (θ)− c1L
VF
t (θ) + c2S” [πθ] (st)

]
(3)

In addition, based on a comparative analysis between mod-
els with diverse number of layers and neurons, the actor and
critic networks we select for this work both consist of fully-
connected neural networks with 3 layers of 30 neurons each.
The hyperbolic tangent serves as the activation function
while the learning rate is set to 10−3.

The DQN algorithm leverages Q-learning principles to
estimate the Q-function. The Q-function represents the ex-
pected discounted cumulative reward obtained by taking
action a in state s and then following the policy π. The
optimal state-action pair is computed using the Bellman
Equation, defined in Eq. (4)

Q∗(s, a) =

[
r + γmax

a′
Q∗ (s′, a′)] . (4)

This equation is approximated by a DQN that calculates
the cumulative future reward, denoted as rt at time t, and
discounted by a factor γ ∈ [0, 1], while s′ and a′ represent
the state and the action taken in the next time-step. In
addition, the algorithm uses a replay buffer to store expe-
rience and to cope with instabilities caused by correlation
between consecutive episodes. The set of experiences is
denoted as Dt = {e1, . . . , et}, where each e = (s, a, r, s′)
is a tuple that represents the state, action, reward, and the
next state. The system transitions to the next state s′ after
the agent takes an action a at each time-step t during the
training phase, while the experience vector is stored in the
replay buffer. In order to reduce the correlation between the
Q-function value and the optimal Q∗ value, a second Q-
Network is employed, namely the target Q-Network. Both
the main and target Q-Network share the same structure,
while the weights of the latter are periodically updated
to match those of the former. During the training phase,
the replay buffer is used to randomly select batches of
previous experiences. These experiences are then utilized
to calculate the DQN weights, denoted as θt in Eq. (5).
This calculation involves minimizing the loss function using
Stochastic Gradient Descent (SGD) method. Concludingly,
the loss equation leveraged during the Q-Learning update
at iteration t is given by Eq. (5)

Lt (θt) = Es,a,r,s′

[(
r + γmax

a′
Q
(
s′, a′; θ−t

)
−Q (s, a; θt)

)2
]
,

(5)

where θ−t are the weights of the target Q-Network, and γ
is the discount factor that prioritizes instantaneous rewards
against long-term rewards. Additionally, the ϵDQN-greedy is
employed, where the DRL agent’s choice of action depends
on the parameter ϵDQN ∈ [0, 1]. In detail, with a probability
of 1 − ϵDQN, an action computed by the DQN is selected.
Conversely, with a probability of ϵDQN, the agent selects
a random action from the action space A. This strategy
effectively balances the exploration of new actions, ran-
domly selected, and the exploitation of the agent’s learned
knowledge, based on actions selected by the DQN. In our
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Fig. 2. Reference O-RAN testing architecture with focus on the case
of two xApps operating at different time scales, Ti, as described in
Section 5.2.

analysis, the latter is implemented as a feed-forward multi-
layer Neural Network (NN), consisting of 5 hidden layers
of 50 neurons each. The learning rate is set to 10−3, while
the discount factor is γ = 0.95. Finally, the replay buffer
memory size is set to 10, 000, while ϵDQN = 0.1.

We follow the same approach as in [4], where the in-
put (e.g., KPMs) of the DRL agent is first processed by
the encoding part of an autoencoder for dimensionality
reduction. This also synthetically reduces the state space
and makes training more efficient in terms of time and
generalization. In detail, the autoencoder converts an input
matrix of K = 10 individual measurements of M = 3 KPM
metrics (i.e., DL throughput, buffer occupancy, and number
of transmitted packets) into a single M -dimensional vector.
The Rectified Linear Unit (ReLU) activation function and
four fully-connected layers of 256, 128, 32 and 3 neurons are
also used in the encoder. Although the channel state infor-
mation (e.g., CQI, Modulation and Coding Scheme (MCS)) is
not directly fed to the AI/ML agents, it is worth mentioning
that its effect on performance is indirectly captured by the
KPIs used to feed the DRL agents (e.g., Throughput, Buffer
Occupancy, Transmitted Packets), which has been shown
to be sufficient to implicitly capturing channel effects on
network performance [4].

In the case of the joint-slice optimization, the cumulative
average reward function of the DRL agent is designed to
jointly satisfy the QoS demand of the three slices with
respect to their KPM requirements. For instance, eMBB users
aim to maximize throughput, while mMTC users aim at
maximizing the number of transmitted packets. Finally, the
goal of URLLC users is to deliver packets with minimum
latency. Since the base station cannot measure end-to-end
application-layer latency (which is instead measured at the
receiver side), we measure latency in terms of number of
bytes in the transmission buffer, the smaller the buffer,
the smaller the latency. The reward is formulated as the
weighted sum in Eq. (6)

R =

∞∑
t=0

γt

(
N∑

j=1

wj · rj,t

)
, (6)

where t represents the training step, and N = 3 is the
total number of slices, wj represents the weight associated
to slice j, considered for reward maximization in the three
corresponding slices. Finally, γ is the discount factor and rj,t
describes the slice-specific reward obtained at each training
step t. In our case, rj,t represents the average value of
the KPM measured by all users of slice j at time t (e.g.,
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Fig. 3. Reference O-RAN testing architecture with focus on the case of
four xApps operating at time scale, T , as described in Section 5.3.

throughput for the eMBB slice). Note that the weight wj for
the URLLC slice is negative to model the minimization of
the buffer occupancy. The models that we have designed
and trained are deployed as xApps on the near-real-time
RIC, as illustrated in Fig. 2.

In the case of the per-slice optimization, the respective
weighted average reward function of the DRL agent is given
as follows in Eq. (7)

R =

∞∑
t=0

γt (wj · rj,t) , (7)

The models that we have designed and trained are deployed
as xApps on the near-real-time RIC, as illustrated in Fig. 3.

3 DRL OPTIMIZATION STRATEGIES

Our goal is to investigate how different design choices affect
the effectiveness and decision-making of the DRL-based
xApps. For this reason, we consider the following design
choices, which resulted in the generation and testing of a
total of 23 xApps.

Short-term vs. Long-term Rewards. We train DRL
agents with different values of the discount factor γ. The
PPO discount factor weights instantaneous rewards against
long-term rewards. A higher value prioritizes long-term
rewards, while a lower γ prioritizes short-term rewards.
Results of this exploration are provided in Section 5.1.

Hierarchical Decision-Making. We investigate the case
of two xApps configuring different parameters in parallel
but at different timescales. In this way, we investigate how
multiple xApps with different optimization goals and op-
erating timescales impact the overall network performance.
The findings of this investigation are provided in Section
5.2, and a practical example is illustrated in Fig. 2.

Per-Slice Scheduling Profile Selection. We explore a
hierarchical decision-making configuration of four xApps
operating simultaneously at the same time granularity and
reconfiguring the BS’s control parameters. In detail, one
slicing xApp simultaneously allocates PRBs to all slices. The
remaining three xApps are exclusively assigned one slice
each and select a dedicated scheduling profile for each slice.
In this way, we aim to examine the effects of multiple xApps
operating at the same timescale, and to compare a widely
used state-of-the-art off-policy architecture (i.e., the DQN),
with its on-policy counterpart (i.e., the PPO algorithm). A
practical example is depicted in Fig. 3, while the results of
this investigation are presented in Section 5.3.

Impact of Reward’s Weights. We test different values
for the weights wi of the slices in Eq. (6). A different weight
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(a) eMBB Throughput (b) mMTC Packets (c) URLLC Buffer Occupancy

Fig. 4. Performance evaluation under different action spaces and values of the γ parameter with the PPO DRL Architecture.

(a) eMBB DL Throughput (b) mMTC Packets

Fig. 5. Median values under different action spaces and values of γ with
the PPO DRL Architecture.

TABLE 1
Traffic Profiles

Profile Name eMBB [Mbps] mMTC [kbps] URLLC [kbps]

Profile 1 1 30 10
Profile 2 4 44.6 89.3

configuration affects how DRL agents prioritize each slice.
The results of this analysis are reported in Section 5.4, where
we show how weights significantly impact the overall per-
formance and can result in inefficient control strategies.

Effect of RAN Control Timers. Finally, we aim at un-
derstanding how different RAN control timers (i.e., different
periodicities for RAN telemetry, report and control) will
have an impact on the decision-making process and how
different control sets will prioritize one slice over the other.
Specifically, we look into three control timers namely the
KPM log time, the Distributed Unit (DU) Report Timer, and
the action update time, i.e., how frequently the actions sent
back by the RIC get updated and enforced by the BS. The
reported findings of this strategy are provided in Section 5.5.

It is reminded that the action set A consists of both
scheduling and RAN slicing policies. In our analysis,
we consider the cases where an agent can control either
scheduling or slicing decisions individually, or control both
jointly. The state S is represented by the output of the
autoencoder which is used to compress input KPIs collected
over the E2 interface and convert them into latent repre-
sentations. Finally, although in our analysis we evaluate
diverse reward designs that consider long-term and short-
term goals, and combine diverse target KPIs for each slice,
the general form of the reward R considered in all of our
DRL agents is defined in Eq. (6) .

4 EXPERIMENTAL SETUP AND DRL TRAINING

To experimentally evaluate the DRL agents, we leverage the
capabilities of OpenRAN Gym [27], an open-source experi-
mental toolbox for end-to-end design, implementation, and
testing of AI/ML applications in O-RAN. It features:

TABLE 2
Weight Configurations

Weights eMBB mMTC URLLC

Default 72.0440333 0.229357798 0.00005
Alternative 72.0440333 1.5 0.00005

• End-to-end RAN and core network deployments
though the srsRAN [41] softwarized open-source pro-
tocol stack;

• Large-scale data collection, testing and fine-tuning
of RAN functionalities through the SCOPE frame-
work [42], which adds open Application Programming
Interfaces (APIs) to srsRAN for the control of slicing
and scheduling functionalities, as well as for KPMs
collection;

• An O-RAN-compliant control architecture to execute
AI/ML-based xApps via the ColO-RAN near-real-time
RIC [4]. The E2 interface between RAN and the RIC and
its Service Models (SMs) [1] manage streaming of KPMs
from the RAN and control actions from the xApps.

We deploy OpenRAN Gym on Colosseum [28], a pub-
licly available testbed with 128 Standard Radio Nodes
(SRNs), i.e., pairs of Dell PowerEdge R730 servers and
NI USRP X310 Software-defined Radios (SDRs). Colosseum
enables large-scale experimentation in diverse Radio Fre-
quency (RF) environments and network deployments. The
channel emulation is done through the Massive Channel
Emulator (MCHEM) component, which leverages Field Pro-
grammable Gate Array (FPGA)-based Finite Impulse Re-
sponse (FIR) filters to reproduce different conditions of the
wireless environment (e.g., path loss, fading, attenuation,
interference of signals) modeled a priori through ray-tracing
software, analytical models, or real-world measurements.
Similarly, the Colosseum Traffic Generator (TGEN), built
on top of the Multi-Generator (MGEN) TCP/UDP traffic
generator [43], emulates different traffic types, demand, and
distributions (e.g., Poisson, periodic).

We deploy a 3GPP-compliant cellular network with
one base station and 6 UEs uniformly distributed across
3 different slices. These are: (i) eMBB that concerns high
traffic modeling of high-quality multimedia content and
streaming applications; (ii) URLLC for time-critical applica-
tions, such as autonomous driving in Vehicle-to-everything
(V2X) scenarios; and (iii) mMTC for Internet of Things
(IoT) devices with low data rate requirements but with
high need for consistent information exchange. In terms of
physical deployment, we consider two different topologies
both located in the urban environment of Rome, Italy [42].
Specifically, Location 1 concerns UEs uniformly distributed
within a 50 m radius from the BS, while in Location 2, the
corresponding UEs are placed within a 20 m radius from
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(a) eMBB Throughput (b) mMTC Packets (c) URLLC Buffer Occupancy

Fig. 6. Performance evaluation under different hierarchical configurations with the PPO DRL Architecture.

(a) eMBB DL Throughput (b) mMTC Packets

Fig. 7. Median values under different hierarchical configurations with the
PPO DRL Architecture.

the BS.
The bandwidth of the BS is set to 10 MHz (i.e., 50 PRBs)

and is divided among the 3 slices, with 2 users statically
assigned to each slice. Slice-based traffic is generated fol-
lowing the specifications reported in Table 1. Specifically, we
consider two different traffic profile configurations (i.e., Pro-
file 1 and Profile 2) with different source bitrates. However,
for both profiles, we consider a constant bitrate traffic for
eMBB users, while URLLC and mMTC UEs generate traffic
based on a Poisson distribution.

To train the DRL agents, we used the publicly avail-
able dataset described in [4]. This dataset contains about
8 GB of KPMs collected by using OpenRAN Gym and the
Colosseum network emulator over 89 hours of experiments,
and concerns setups with up to 7 base stations and 42 UEs
belonging to different QoS classes, and served with hetero-
geneous scheduling policies. Each DRL model evaluated in
the following sections takes as input RAN KPMs such as
throughput, buffer occupancy, number of PRBs, and out-
puts resource allocation policies (e.g., RAN slicing and/or
scheduling) for RAN control.

Abiding by the O-RAN specifications [44], which do
not permit the deployment of untrained data-driven solu-
tions, we train our ML models offline on Colosseum’s GPU-
accelerated environment, which includes two NVIDIA DGX
A100 servers with 8 GPUs each. Notably, AI/ML solutions
should be trained offline to avoid actions that can poten-
tially lead to performance degradation in the network [1].
Then, the trained DRL-agents are onboarded on xApps
inside softwarized containers implemented via Docker and

TABLE 3
Per-Slice Top performing xApps under the Default Weight Configuration

eMBB mMTC

1)Sched & Slicing 0.5 Slicing 0.99
2)Sched & Slicing 0.99 Slicing 0.5
3)Slicing 0.5 Sched 0.99
4)Slicing 0.99 Sched & Slicing 0.99
5)Sched 0.99 Sched 0.5
6)Sched 0.5 Sched & Slicing 0.5

deployed on the ColO-RAN near-real-time RIC.

TABLE 4
Hierarchical Reporting Setup

Setup ID Slicing 0.5 Sched 0.99

1 1 s 10 s
2 1 s 5 s
3 10 s 1 s
4 5 s 1 s

5 IN-SAMPLE EXPERIMENTAL EVALUATION

In this section, we present the results of an extensive perfor-
mance evaluation campaign, with more than 38 hours of ex-
periments in Colosseum, to profile the impact of the strate-
gies discussed in Section 3. These results were produced
by taking the median as the most representative statistical
value of a dataset, and averaged over multiple repetitions
of experiments in the DL direction of the communication
system. Last, all the experiments of the in-sample exper-
imental evaluation campaign concern Location 1 which
is the configuration used to collect training data, and all
the UEs are assumed static. Out-of-sample evaluation, i.e.,
testing the DRL agents against data collected in a entirely
different network deployment, will be the focus of Section 6.

5.1 Impact of Discount Factor on the Action Space

We explore how RAN slicing, MAC scheduling, and joint
slicing and scheduling control are affected by training pro-
cedures that favor short-term against long-term rewards. All
the reported results were obtained with γ ∈ {0.5, 0.99},
while the reward’s weight configuration is shown in Table 2
and identified as Default.

In Fig. 4, we report the Cumulative Distribution Function
(CDF) of individual KPMs for each slice and for different
xApps trained to control different sets of actions and using
different values of γ. The median of such measurements for
the eMBB and mMTC slices is instead reported in Fig. 5.
The median for the URLLC slice is not reported, as this
value is zero in all configurations. The best performing
configurations for the eMBB and mMTC slices are instead
listed in numerical order in Table 3 from best to worst
performing.

Our results show that Sched & Slicing and Slicing
0.5 favor eMBB the most, with Sched & Slicing 0.5
being the best configuration among the ones considered.
Moreover, slicing is essential to ensure high throughput
values (the four top-performing xApps for eMBB include
slicing as a control action). We also notice that prioritizing
immediate rewards (i.e., γ = 0.5) results in higher through-
put values if compared to xApps embedding agents trained
to maximize long-term rewards. This design option, when
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(a) eMBB Throughput (b) mMTC Packets (c) URLLC Buffer Occupancy

Fig. 8. Performance evaluation under the Default weight configuration for different actions spaces and discount factor γ = 0.95 with the DQN DRL
Architecture.

(a) eMBB DL Throughput (b) mMTC Packets

Fig. 9. Median values under the Default weight configuration for different
actions spaces and discount factor γ = 0.95 with the DQN DRL Archi-
tecture.

TABLE 5
RAN Control Timers

Control Time Set 1 Set 2 Set 3

DU Report 1 s 250 ms 100 ms
KPMs Log 250 ms 250 ms 100 ms

Action Update 250 ms 250 ms 100 ms

combined with a bigger action space (e.g., scheduling &
slicing) ultimately yields a higher throughput.

For the mMTC slice, the Slicing 0.99 xApp always
yields the best performance. However, we notice that Sched
& Slicing 0.5, which is the best-performing xApp for
eMBB, yields the worst performance for mMTC. Although a
larger action space and a short-term reward design is ideal
for eMBB (e.g., Sched & Slicing 0.5), we notice that
this performance gain comes at the expense of the mMTC
slice. Indeed, in Figs. 5(a) and 5(b), we observe that the
higher the eMBB performance, the lower the mMTC’s. This
is clearly illustrated when we compare the “best” per-slice
policies, respectively Sched & Slicing 0.5 (eMBB) and
Slicing 0.99 (mMTC). The former delivers the highest
reported eMBB throughput (4.168 Mbps) but the lowest
number of mMTC packets (16 packets), while the latter
delivers the highest number of mMTC packets (37 packets)
and one of the lowest measured eMBB throughput values
(i.e., 3.636 Mbps).

Hence, eMBB-mMTC slices indicate a competitive be-
havior, since we cannot optimally satisfy both of them
without loss in their respective rewards, as they compete
for the amount of packets required for transmission. Our
results show that, in general, controlling scheduling only is
not ideal as it strongly penalizes eMBB performance with
a modest improvement in terms of number of transmitted
mMTC packets.

TABLE 6
Feasible PRB Allocation

eMBB mMTC URLLC
30 9 11
30 15 5
36 9 5
24 21 5
24 15 11
18 15 17
18 9 23
18 21 11
12 27 11
12 15 23
12 9 29
6 27 17
6 39 5
6 15 29
6 9 35
36 3 11

5.2 Impact of Hierarchical Decision-Making
In this analysis, we evaluate the effectiveness of making dis-
joint decisions to control scheduling and slicing policies. We
select the best performing single-action xApps from Table 3,
i.e., Slicing 0.5 and Sched 0.99, and we compare their
execution at different timescales. The former, provides a
good balance in terms of eMBB throughput (∼ 4 Mbps) and
number of mMTC packets, while the latter, provides the best
performance for the mMTC slice. With this design choice,
we expect to maintain high performance for both eMBB and
mMTC.

We consider four setups, summarized in Table 4. Each
entry describes how frequently the BS reports KPMs to the
RIC. For instance, in Setup 1, the xApp for slicing control
receives data from the BS every 1 s, while the scheduling
agent receives the respective metrics every 10 s. Despite
taking into account RAN telemetry reported every 1, 5 or
10 s, the DRL decision-making process and the enforcement
of a control policy on the BS occur within a granularity of
tens of milliseconds, and hence the intelligent control loops
are still in compliance with the timescale requirements of
the near-real-time RIC.

Results of this analysis are presented in Figs. 6 and 7.
From Fig. 6(a), Setup 3 delivers the best eMBB performance,
Setups 1 and 2 perform almost equally, while Setup 4 per-
forms the worst. For mMTC, in Fig. 6(b) we notice that all
combinations perform similarly and deliver approximately
26 packets, with Setup 1 and Setup 4 delivering an additional
packet. From Fig. 6(c), we notice that all setups deliver the
same performance for the URLLC slice and, despite not
being reported in the figures, they all yield a median buffer
occupancy of 0 byte, i.e., they maintain an empty buffer to
ensure low latency values. In Fig. 7(a), we notice that Setups
2 and 3 deliver the highest eMBB throughput. In Fig. 7(b),
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(a) eMBB Throughput (b) mMTC Packets (c) URLLC Buffer Occupancy

Fig. 10. Performance evaluation with 4 xApps and per-slice scheduling profile selection under PPO and DQN Architectures.

(a) eMBB Throughput (b) mMTC Packets

Fig. 11. Median values obtained with a 4-xApp setup and per-slice
scheduling profile selection under PPO and DQN Architectures.

instead, we notice that Setups 1 and 4 deliver the highest
number of transmitted mMTC packets.

Our findings on hierarchical control verify eMBB’s and
mMTC’s competitive behavior for individual reward maxi-
mization. Our results show that the rewards of eMBB and
mMTC slices are competing with one another, as the best
configuration for eMBB corresponds to the worst config-
uration for mMTC, and vice versa. Among all considered
configurations, Setup 3 offers the best trade-off, as it delivers
the highest throughput at the expense of a single mMTC
packet less being transmitted.

5.3 Impact of Per-Slice Scheduling Profile Selection

We extend our prior work [29] by evaluating the coexistence
of a multitude of xApps delivering services to an Open RAN
multi-slice scenario. Specifically, we consider the case where
a single xApp distributes the available PRBs to all three
slices, while three xApps are each tasked with selecting
a dedicated scheduling profile for a single slice. All four
xApps operate at the same timescale as given in Set 1
of Table 5, where KPMs and actions are both logged and
updated every 250 ms respectively, while fresh RAN data
are reported by the DU within a granularity of 1 s.

We begin the evaluation by focusing on the DQN algo-
rithm and the case of the joint-slice optimization. All results
were produced with agents trained under the Default
weight configuration of Table 2 and with a discount factor
of γ = 0.95. The findings presented in Figs. 8 and 9 indicate
that in the eMBB slice, DQN underperforms compared to
PPO for both γ ∈ {0.5, 0.99}, with only Slicing delivering
the highest reported throughput value at 2.733 Mbps, as
reported in Fig. 9(a). With respect to mMTC, Figs. 8(b)
and 9(b) depict a similar performance to the one shown in
Figs. 4(b) and 5(b), when examining the actions separately
under their respective discount factor (i.e., γ ∈ {0.5, 0.99}).
In detail, we observe that in both cases, Slicing delivers
the highest reported number of transmitted packets, fol-
lowed by Sched, and Sched & Slicing. It is also shown
that the Sched xApp, in the case of DQN, performs better
in the mMTC compared to the case with PPO, delivering a

median value of 32 transmitted packets, which is ∼ 28%
more compared to Sched 0.99 with PPO, as shown in
Fig. 5(b). Finally, we observe that slicing is the action that
delivers the best performance in both eMBB and mMTC.
Indeed, the competitive behavior observed with PPO is
mitigated in the case of DQN, as shown in Fig. 9, since
the actions that deliver the highest eMBB throughput also
deliver the highest number of mMTC transmitted packets.
On the URLLC, all configurations once again delivered
optimal performance, reporting a median buffer occupancy
of 0 byte.

Both DRL architectures are model free, i.e., they do not
rely on an explicit model of the environment. Instead, the
DRL agent learns directly by interacting with the environ-
ment and makes decisions through trial and error. PPO
employs a trust region method [38], [45], that helps in
achieving more stable training, compared to DQN which
can suffer from divergence and slow convergence [46]. The
trust region ensures that the old and current policy do
not deviate significantly, which helps mitigate divergence
issues. Actor and critic networks calculate the state-value,
with the critic network reducing variance in action value
estimates. This reduction in variance makes policy updates
more reliable and exploration safer [47]. On the contrary,
DQN does not implement trust regions and uses the target
network to achieve stability during training [35]. In environ-
ments affected by noisy observations and stochasticity, the
aforementioned features, combined with the model’s ability
to explicitly model the policy’s probability distribution over
actions, make PPO capable of adapting more efficiently to
varying conditions. This ability to generalize better across
tasks and environments can be achieved with DQN but
might require more fine-tuning and adjustments when tran-
sitioning to new tasks. Furthermore, DQN relies on epsilon-
greedy exploration, which can be less efficient, especially in
complex environments [48], [49]. PPO, being an on-policy
algorithm, manages to optimize the current policy directly
based on the most recent experiences. On the other hand,
DQN, an off-policy algorithm, estimates the value of actions
independently of the current policy. On-policy methods of-
ten work better when the policy is changing during training,
especially in stochastic environments. Therefore, in the latter
case where rapid policy changes are observed, off-policy
methods may struggle to deal successfully with them, and
they may require more extensive replay buffers or further
fine-tuning to handle noisy environments effectively [50]–
[52].

Lastly, PPO has been shown to work more efficiently in
problems with high-dimensional state and action spaces, as
demonstrated in [53], owing to its policy-based and trust
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(a) eMBB Throughput (b) mMTC Packets (c) URLLC Buffer Occupancy

Fig. 12. Performance evaluation under the Alternative weight configuration for different actions spaces and discount factors with the PPO DRL
Architecture.

(a) eMBB DL Throughput (b) mMTC Packets

Fig. 13. Median values under the Alternative weight configuration for
different actions spaces and discount factors with the PPO DRL Archi-
tecture.

region approaches. In our work, the state and action spaces
are high-dimensional. In detail, a total of 43 actions are
considered when resource allocation is performed jointly for
all slices. For scheduling, the size of the action space is 27,
while for slicing, it is 16. The former size encompasses all
possible combinations of scheduling policies for all three
slices (i.e., RR, WF, and PF), while the combination for PRB
allocation is given in Table 6 for a total of 50 PRBs. Finally,
the observation of the state, obtained through srsRAN,
consists of 10 independent measurements of 3 KPIs, i.e.,
DL buffer occupancy, the DL throughput and the number
of transmitted packets on the DL.

From the previous discussion, we have seen that DQN
performs poorly in the high-dimensional state and action
spaces, such as the ones considered in this work. Therefore,
we test its effectiveness in a reduced action space where the
DQN agent only controls scheduling decisions. Specifically,
we consider the case of one Slicing xApp that serves
all slices simultaneously, while the remaining 3 xApps are
dedicated to each slice and control the scheduling profile
for the corresponding slice only. For instance, one xApp
selects a scheduling profile for the eMBB slice, another one
focuses on the mMTC slice, and the last one controls the
URLLC slice only. This configuration allows for both testing
and mixing different DRL architectures, such as PPO and
DQN. It also enables experimentation with a setup in which
the scheduling selection action follows the PRB allocation.
Therefore, the preceding xApps will reconfigure a network
where the action space is altered after the changes made by
the Slicing xApp.

In Figs. 10 and 11, we present the results obtained from
testing a total of 4 xApps that perform resource allocation.
For the purposes of the experiments we consider two cases,
namely Case A and Case B. In both cases, the Slicing
xApp embeds a DRL agent trained with PPO under the
discount factor, γ = 0.5. In Case A, the remaining Sched
xApps also embed PPO agents trained with γ = 0.5. In

TABLE 7
Weight Design

weMBB wmMTC wURLLC

αeMBB · 1

A
βmMTC · 1

B
γURLLC ·

(
− 1

C

)

Case B, the xApps embed DQN agents with a discount
factor of γ = 0.95, as described in Section 2.3. In Fig. 10,
we observe that Case A performs better for the eMBB slice.
Indeed, the results reported in Fig. 11 indicate that Case A
achieves a median eMBB throughput value of 4.024 Mbps,
which is ∼ 6.5% higher than that of Case B. Regarding the
mMTC slice, the median for the corresponding KPM metric
was measured at 27 transmitted packets, representing an
increase of ∼ 60% compared to Case A. For URLLC, both
cases delivered optimal performance with a median buffer
occupancy of 0 byte. We notice that Case A performs simi-
larly to the case of jointly performing slicing and scheduling
control with γ = 0.5, as shown in Figs. 4 and 5, by deliv-
ering one additional mMTC packet, as depicted in Fig. 11.
With regards to Case B, the obtained results closely match
those reported with Hierarchical Control under Setup 1 in
Fig. 7. Precisely, as depicted in Fig. 11(b), the two con-
figurations achieve identical performance on the mMTC
slice, by achieving the same median value of transmitted
packets (i.e., 27 packets). For the eMBB slice, the setup with
4 xApps (i.e., Case B) exhibits a minimal drop of ∼ 0.66%
in the median throughput value compared to the perfor-
mance achieved with Setup 1. Therefore, Case B provides
a more flexible and heterogeneous setup where different
DRL agents can coexist, without a significant performance
degradation. Furthermore, the DQN can still be leveraged
in those cases where agents independently optimize the
performance of each slice thanks to the reduced action
space.

5.4 Impact of Weight Configuration
In this study, we consider different weight configurations to
compute the cumulative average reward function in Eq. (6).
The considered configurations are reported in Table 2. The
Alternative weight configuration is computed by using the
weights in Table 7, where A,B,C, αeMBB , βmMTC , and
γURLLC are used to both scale and prioritize certain slices.
Specifically, A,B,C are used to scale the individual weights
according to statistical information of corresponding KPMs.
For example, A,B,C can represent either the average,
minimum or maximum values reported KPM per slice so
as to scale the weight according to the dynamic range of
the corresponding KPM. Similarly, αeMBB , βmMTC , and
γURLLC can be used to give priority to one slice or the other.
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(a) eMBB Throughput (b) mMTC Packets (c) URLLC Buffer Occupancy

Fig. 14. Performance evaluation under different action spaces, values of the γ parameter and sets of RAN control timers with the PPO DRL
Architecture.

(a) eMBB DL Throughput (b) mMTC Packets

Fig. 15. Median values under different action spaces and RAN control
timers with the PPO DRL Architecture.

We set αeMBB = 1000, βmMTC = 456 and γURLLC = 1.
As a reference for A, B and C , we choose the histori-
cally maximum reported KPM values for each slice, i.e.,
A = 13.88 Mbps, B = 304, and C = 20186 byte.

Based on these steps, we derive their respective weights
weMBB , wmMTC , wURLLC . For example, the weight of

mMTC can be computed as wmMTC = βmMTC · 1

B
=

456/304 = 1.5, as reported in the Alternative configuration
in Table 2. The goal of comparing the two Default and Al-
ternative weight configurations is to explore and understand
the dynamics between mMTC and eMBB and the overall
impact on the network performance. Specifically, since pre-
vious results have shown that the mMTC can be penalized
by the eMBB slice, with the Alternative configuration we aim
at giving the former a weight that is 6× larger than the
Default configuration.

Results for the Alternative configuration are reported
in Figs. 12 and 13. In Fig. 12(a), Sched & Slicing 0.5
delivers the best eMBB performance. Similarly to the re-
sults presented in Section 5.1, Scheduling & Slicing
0.5 and Slicing 0.5 are the best choices, with short-
term reward design being ideal for eMBB. In Fig. 12(b),
the Alternative weight configuration results in Scheduling
& Slicing 0.99 being the best mMTC choice and long-
term rewards are better for mMTC users. For URLLC,
all policies perform well, with Scheduling & Slicing
0.5 performing slightly better compared to Scheduling
& Slicing 0.99.

Figs. 13(a) and 13(b), confirm that controlling scheduling
alone does not improve performance in general. Similarly
to our previous analysis, a high eMBB performance (i.e.,
Sched & Slicing 0.5) results in a degraded mMTC
performance. However, if compared with the Default,
the Alternative weight configuration achieves a 31.25%
increase for mMTC, with the same equally good URLLC
performance and a 1% throughput increase for eMBB users.

In Table 8 we summarize the design options that have

TABLE 8
Design Options Catalog

Option 1 Sched & Slicing 0.5 - Alternative
Option 2 Slicing 0.5 - Default
Option 3 Hierarchical Control - Setup 1
Option 4 Slicing 0.99 - Default

delivered a good overall performance so far. Table 9 indi-
cates eMBB and mMTC’s dynamic and competitive relation.
Option 2 brings balance, in terms of throughput and trans-
mitted packets, Option 1 favors eMBB, and Option 4 boosts
mMTC but with a significant decrease in the QoS of the
eMBB slice.

TABLE 9
Design Options

eMBB [Mbps] mMTC [packet] URLLC [byte]

Option 1 4.208 21 0
Option 2 4.114 26 0
Option 3 3.804 27 0
Option 4 3.636 37 0

5.5 Impact of RAN Control Timers
We look into the case where we control three different
RAN control timers, as reported in Table 5, with the focus
primarily steered onto Sets 2 and 3. In the latter cases, the
KPM collection granularity (i.e., KPMs Log time) matches
both the Action Update and the KPM report granularities
on the BS’s DU. In detail, KPMs are directly streamed into
the RIC, upon collected, with an action being sent back
through the E2 termination. This is in contrast with the case
of Set 1, where the DU report time is equal to 1 s, and hence
some of the freshly captured data may not be reported. The
findings of this evaluation are presented in Figs. 14 and 15,
and all configurations concern DRL agents trained under
the Default weight configuration presented in Table 2.

In Fig. 14(a), it is observed that all configurations result
in a comparable high performance, delivering a median
throughput value of ∼ 4 Mbps (Fig. 15(a)) with the only
exception of Sched 0.99 under Set. 2 which delivers poor
throughput performance. The aforementioned configuration
yields a performance similar to the one reported in Fig. 5(a),
where Sched 0.99 is evaluated under the time granular-
ities of Set. 1. Indeed, this combination achieves the same
number of transmitted packets (i.e., 25 packets) with a negli-
gible drop on the eMBB throughput, which is now reported
at ∼ 2.02 Mbps, a value approximately 5% less than the
2.125 Mpbs reported with Set 1. Additionally, the Sched
0.99 xApp, when tested under Set 3, attains the maximum
reported throughput value for controlling scheduling using
a single xApp, (reaching 4.028 Mbps, a ∼ 99% increase
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(a) eMBB Throughput (b) mMTC Packets (c) URLLC Buffer Occupancy

Fig. 16. Performance evaluation under mobility with Settings 1 and 2 of Table 10 and the PPO DRL Architecture.

(a) eMBB Throughput (b) mMTC Packets

Fig. 17. Median values obtained under mobility with Settings 1 and 2 of
Table 10 and the PPO DRL Architecture.

compared to 2.02 Mbps achieved with Set 2). The latter is
achieved while transmitting 23 packets, which is two pack-
ets fewer than the maximum number of transmitted packets
ever recorded when controlling scheduling alone, and with
PPO-implemented agents. Based on these findings, schedul-
ing should be controlled using small time granularities (i.e.,
∼ 100 ms) to ensure high eMBB throughput, while guar-
anteeing no performance degradation on the mMTC slice.
Furthermore, the results illustrated in Figs. 14(b) and 15(b)
indicate that both scheduling and slicing, as well as schedul-
ing under Sets 2 and 3, can achieve the same performance
on the mMTC. However, Sched & Slicing 0.5 delivers
higher eMBB throughput, and hence, is preferred compared
to Sched 0.99. In consistency with the reported findings
so far, and when focusing on the three action profiles indi-
vidually, we observe mMTC’s and eMBB’s competitive be-
havior (e.g., they heavily compete to gain radio resources).
This trend is clearly illustrated in Figs. 14(a), 14(b), 15(a),
and 15(b), where Slicing 0.5 under Set 3 achieves the
highest throughput value at 4.195 Mbps, but the lowest
number of transmitted packets (i.e., 18 packets). The re-
ported results in Figs. 15(a) and 15(b) also indicate that Set 3
primarily boosts eMBB’s performance, compared to Set 2
which is a better fit for mMTC UEs. Finally, in Fig. 14(c),
we note that all configurations for the investigated set of
granularities deliver identical performance on the URLLC
slice, and although not shown in the figures, they consis-
tently maintain a median buffer occupancy of 0 byte to
ensure low latency. It is also observed that both Sched
& Slicing 0.5 and Slicing 0.5 under Set 2, perform
slightly better on the aforementioned slice, compared to
Sched 0.99 under Set 2, which performs slightly worse.

6 OUT-OF-SAMPLE EXPERIMENTAL EVALUATION

In the Out-of-Sample experimental performance evaluation,
we focus on the case of Location 2, and we test the
framework’s performance in static and mobile scenarios

TABLE 10
ML Agent & Network Condition Settings

Setting
ID

UE
Speed [m/s]

Traffic
Load

RAN Control
Timers

Weight
Configuration

1 3 Profile 1 Set 1 Alternative/Default
2 3 Profile 2 Set 1 Alternative/Default
3 0 Profile 2 Set 1 Alternative
4 0 Profile 2 Set 2 Default

under two different traffic loads. Recall that our agents have
been trained using data from Location 1 only. Information
regarding the traffic profiles and the UE mobility can be
found in Tables 1 and 10.

In Figs. 16 and 17, we present the results collected when
testing the framework under mobile UE conditions and
diverse traffic profiles for Settings 1 and 2 as defined in
Table 10. We juxtapose the configuration that delivered the
highest eMBB throughput (i.e., 4.208 Mbps), among those
tested in this work, namely Option 1: Sched & Slicing
0.5 - Alternative with the case of two xApps which
jointly optimize the performance of all slices, namely Op-
tion 2: Slicing 0.5, and Sched 0.99. Finally, the set of
granularities which are considered for this evaluation are
given by Set 1 of Table 5.

In Figs. 16(a), 16(b), and 16(c), we observe that under the
traffic conditions of Setting 1, both configurations deliver
almost identical performance. This is clearly depicted in
Figs. 17(a) and 17(b), where the mentioned xApps achieve
the same median values for eMBB throughput and number
of mMTC transmitted packets. However, when the two
configurations are tested under Setting 2 and specifically
under Traffic Profile 2, a slight performance degradation is
observed in the case of joint-slice optimization with 1 xApp.
In detail, Figs. 16(a) and 17(a) indicate that the performance
of eMBB is optimized when using 2 xApps, resulting in
∼ 16% more throughput compared to the case with a single
xApp. In the mMTC slice, both configurations deliver simi-
lar performance, as shown in Fig. 16(b). However, when fo-
cusing on the former setup, it results in delivering two more
packets as shown in Fig. 17(b). On the URLLC, it is noted
that most of the configurations under both Settings resulted
in a median buffer occupancy of 0 byte. However, in the case
of joint optimization with 1 xApp, this value was reported at
52 byte. Hence, in case of UE mobility, Sched & Slicing
0.5 - Alternative underperforms compared to joint
optimization with Slicing 0.5, and Sched 0.99. Based
on the reported findings, the simultaneous operation of two
xApps can more successfully tackle possible UE disconnec-
tions caused by mobile conditions, and therefore enhance
network performance.

In Figs. 18 and 19 we include the results collected when
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(a) eMBB Throughput (b) mMTC Packets (c) URLLC Buffer Occupancy

Fig. 18. Performance evaluation focusing on the case of joint-slice optimization with a single xApp and the PPO DRL Architecture under Settings 3
and 4 of Table 10.

(a) eMBB Throughput (b) mMTC Packets

Fig. 19. Median values obtained when focusing on the case of joint-slice
optimization with a single xApp and the PPO DRL Architecture under
Settings 3 and 4 of Table 10.

testing the optimization framework under Settings 3 and 4
in Location 2. In this evaluation, we once again compare
Option 1: Sched & Slicing 0.5 - Alternative with
Sched & Slicing 0.5 - Default. It is noted that the
main difference between these two setups pertains to the
fact that the former is evaluated under granularity Set 1,
while the latter under Set 2. This comparison allows us to
assess how collecting and reporting KPMs as well as updat-
ing actions at smaller timescales (i.e., 250 ms) will impact
the effectiveness of the optimization framework, under the
traffic load defined in Profile 2. Additionally, the latter xApp
is chosen due to the fact that, among all configurations eval-
uated in Section 5.5 in terms of RAN control timers, it has
managed to provide the most significant performance boost
in the network. In detail, when tested under Set 2, it has
improved the performance of mMTC by ∼ 56 %, achieving
a median value of 25 packets, as shown in Fig. 15(b). This
is in contrast to when it was evaluated under Set 1, where
it delivered a median value of 16 packets (Fig. 5(b)). With
regards to the eMBB slice, it still manages to maintain good
overall performance, delivering a median throughput value
of 4.140 Mbps (Fig. 15(a)).

The results reported in Figs. 18(a) and 19(a) indicate
that both configurations deliver similar performance in
the eMBB slice, with Option 1: Sched & Slicing 0.5 -
Alternative performing slightly better. However, on the
mMTC slice, Sched & Slicing 0.5 - Default per-
forms better, as depicted in Fig. 18(b), by achieving a median
value of 30 transmitted packets (Fig. 19(b)). URLLC UEs,
once again, achieve zero latency (i.e., buffers are emptied),
and, as a result, the respective figures are omitted.

7 BROADER EVALUATION OF PANDORA

The goal of this section is to provide additional insights into
PandORA by: (i) considering a broader set of evaluation
metrics aimed at shedding light on resource utilization and
UE satisfaction; and (ii) testing across scenarios with a larger
number of UEs. Specifically, in the latter case, we examine
the performance of our xApps in a scenario where we
add additional UEs to the the mMTC slice. In line with
the previous sections, we will evaluate PandORA in setups
previously seen during the training process (i.e., in-sample
experimental evaluation in Location 1), as well as unseen
conditions (i.e., out-of-sample experimental evaluation in
Location 2). All subsequent results concern joint optimiza-
tion with Sched & Slicing 0.5 and are tested using
Sets 1 and 2 of RAN control timers from Table 5 and the
Traffic Profiles listed in Table 1, both in static and mobile
scenarios (e.g., 3 m/s).

It is noted that so far we have considered three main
reward functions for the respective slices (i.e., maximization
of DL eMBB throughput and mMTC TX Packets, and mini-
mization of DL buffer occupancy in the URLLC). In order to
demonstrate PandORA’s capabilities as well as to compare
the reward functions evaluated so far, we additionally craft
two new reward designs, which are defined in Table 11.
In Reward Design I, all slices are given the same priority
(i.e., they are all assigned a weight of 1). The reward for
all slices is the maximization of the PRB Ratio, defined
as PRB Ratio = Sum of Granted PRBs

Sum of Requested PRBs ,where PRB Ratio ∈ [0, 1],
that represents the amount of the allocated PRBs per slice.
For Reward Design II, we consider the maximization of the
eMBB throughput and the minimization of the URLLC
buffer occupancy, with their weights defined in Table 2
under the Default weight configuration. For the mMTC
slice, we consider the maximization of the PRB Ratio and the
slice’s weight is set to 0.5. Lastly, Reward Design III pertains
to the joint scheduling and slicing optimization discussed
and evaluated in Section 5.1 and shown in Table 11. The
results of this experimental evaluation are illustrated in
Figs. 20, 21, 22 and were collected under Traffic Profile 2 (i.e.,
4 Mbps eMBB throughput, 44.6 kbps mMTC throughput
and 89.3 kbps URLLC throughput), in Location 1 (i.e, 50 m
radius from the BS), and Set 1 of RAN control timers (see
Table 5), for a total of 6 UEs, uniformly distributed across
the slices.

In Fig. 20, we show the PRB Ratio for the three Reward
Designs defined in Table 11. We observe that with Reward
Design I, eMBB UEs experience lower levels of satisfaction
(Fig. 20(a)), in terms of the number of allocated PRBs.
On the contrary, both on the mMTC and URLLC slices
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(a) eMBB PRB Ratio (b) mMTC PRB Ratio (c) URLLC PRB Ratio
Fig. 20. UE Satisfaction expressed in the form of PRB ratio for the Reward Designs of Table 11.

(a) eMBB Throughput (b) mMTC Packets (c) URLLC Buffer Occupancy

Fig. 21. Impact of the Reward Designs from Table 11 on DL eMBB Throughput, DL mMTC and TX Packets.

(a) eMBB DL Throughput (b) mMTC Packets

Fig. 22. Impact of the Reward Designs from Table 11 on the median
values of DL eMBB throughput, DL mMTC TX Packets, and DL URLLC
buffer occupancy.

(Figs. 20(b) and 20(c)), Reward Design I results in significant
UE satisfaction. The latter is due to the fact that both mMTC
and URLLC have lower traffic requirements to satisfy (i.e.,
44.6 kbps and 89.3 kbps throughput, respectively), com-
pared to eMBB (i.e., 4 Mbps throughput). With Reward
Design II, we observe an improvement in UE satisfaction
levels on the eMBB, meaning that UEs are granted the re-
sources they request, along with equally good performance
in mMTC and URLLC. The results with Reward Design III
indicate that this combination of weight configuration (i.e.,
tailored to prioritize one slice over the other) and slice-
specific rewards effectively result in good overall perfor-
mance without penalizing one slice over the other. Notably,
Reward Design III is the configuration under which eMBB
UEs experience more satisfaction. Finally, we can observe
the competitive behavior among eMBB and mMTC. Indeed,
the reward designs that delivers a higher UE satisfaction for
eMBB (Fig. 20(a)) also delivers lower satisfaction for mMTC
(Fig. 20(b)).

In Figs. 21 and 22, we observe the impact of the Re-
ward Designs explored in Fig. 20 on the three KPIs of
interest, namely DL eMBB throughput, mMTC TX packets,
and URLLC buffer occupancy. In detail, Figs. 20(a), 21(a)
and 22(a) demonstrate a similar trend, since a higher value
of PRB Ratio yields in higher throughput. A similar trend is
observed in Figs. 20(b), 21(b) and 22(b) for the mMTC slice,
with Reward Designs I & II demonstrating similar perfor-
mance (i.e., a median value of 22 TX packets as illustrated

in Fig 22(b)). These results indicate that the maximization of
the PRB Ratio poses as ideal reward for the aforementioned
slice but with a penalty on the eMBB. Specifically, even
though Reward Designs I & II result in ∼ 37.5% improvement
on the performance of the mMTC, they result in lower eMBB
throughput values as depicted in Fig. 22(a). On the URLLC,
all Reward Designs result in empty buffers, with Reward
Design I slightly resulting in higher performance, as seen
in Fig. 21(c).

In Fig. 23, we include the distribution of actions in terms
of selected PRBs for the xApp Catalog presented in Table 12.
The performance evaluation results indicate that agents
can make decisions resulting in diverse action distributions
(summarized in Table 6), which is due to varying rewards
and design choices, impacting the performance achieved by
the system.

We now consider the case where we increase the number
of UEs allocated to the mMTC slice as illustrated by Use
Cases II & III. Specifically, Use Case II involves a total of
7 UEs, while in Use Case III, the setup comprises a total
of 8 UEs, with 3 and 4 UEs allocated to the mMTC slice,
respectively. Use Case I, corresponds to a setup of 6 UEs
in total, and all deployments have been tested under Traffic
Profile 1 of Table 1 and Set 1 of RAN control timers of Table 5
in Location 2 (i.e., 20 m radius from the BS). Finally, the
xApp under evaluation corresponds to Reward Design III of
Table 11.

TABLE 11
DRL Reward Design Catalog for Sched & Slicing 0.5 with PPO in

Location 1 and Set 1 of RAN control timers.
Reward

Design ID eMBB mMTC URLLC

I
Weight Config.
Slice Reward

1
Max. PRB Ratio

1
Max. PRB Ratio

1
Max. PRB Ratio

II
Weight Config.
Slice Reward

72.0440333
Max. DL Throughput

0.5
Max. PRB Ratio

0.00005
Min. DL Buffer Occupancy

III
Weight Config.
Slice Reward

72.0440333
Max. DL Throughput

0.229357798
Max. DL TX Packets

0.00005
Min. DL Buffer Occupancy

Figs. 24, 25 and 26 demonstrate that even when the
number of UEs increase, xApps trained using PandORA still
deliver good performance, with all Use Cases resulting in
good resource utilization (Fig. 24) for the three slices. Simi-
larly, the improved UE satisfaction is reflected on the eMBB
DL throughput (Fig. 25(a)), with all Use Cases enjoying a
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(a) eMBB PRBs (b) mMTC PRBs (c) URLLC PRBs
Fig. 23. Selection of PRB Actions for the three slices from the xApp Catalog of Table 12.

(a) eMBB PRB Ratio (b) mMTC PRB Ratio (c) URLLC PRB Ratio
Fig. 24. Resource Utilization and UE Satisfaction for a network deployment described by three different Use Cases.

(a) eMBB Throughput (b) mMTC Packets (c) URLLC Buffer Occupancy

Fig. 25. Impact of the network deployment described by three different Use Cases on DL eMBB Throughput, DL mMTC TX Packets, and DL URLLC
Buffer Occupancy.

(a) eMBB DL Throughput (b) mMTC Packets

Fig. 26. Impact of the network deployment described by three Use
Cases on the median values of DL eMBB Throughput and DL mMTC
TX Packets.
median throughput value of ∼ 1 Mbps (Fig. 26(a)). For the
mMTC slice, and specifically in Fig. 25(b), we observe that
as the number of UEs increase, the number of generated
TX packets also increases, with Use Case III reporting the
highest median value of 15 DL TX packets (Fig. 26(b)). In
line with the results presented in the previous evaluation
sections, the performance on the URLLC remains high (i.e.,
empty buffers), with Use Case III performing slightly better
as seen in Figs. 24(c) and 25(c).

8 CONCLUSIONS

In this paper, we presented PandORA, a comprehensive
evaluation with insights on how to design DRL agents
for RAN control. PandORA leverages a framework to
streamline and automate DRL agent training and xApp
on-boarding for extensive evaluation and testing of DRL
agents with Open RAN in Colosseum. We investigated the
impact of DRL design on the performance of an Open RAN
system controlled by xApps embedding DRL agents that

TABLE 12
xApp Catalog for Sched & Slicing 0.5 with the PPO DRL

Architecture.
xApp

ID eMBB mMTC URLLC Testing
Conditions

I

Weight Config.
Slice Reward

Traffic

72.0440333
Max. DL Throughput

1 Mbps

1.5
Min. DL TX Packets

30 kbps

0.00005
Min. DL Buffer Occupancy

10 kbps
mobility, RAN Control
Timer Set 1, Location 2

II

Weight Config.
Slice Reward

Traffic

72.0440333
Max. DL Throughput

4 Mbps

0.229357798
Max. DL TX Packets

44.6 kbps

0.00005
Min. DL Buffer Occupancy

89.3 kbps
RAN Control

Timer Set 2, Location 2

III

Weight Config.
Slice Reward

Traffic

1
Max. PRB Ratio

4 Mbps

1
Max. PRB Ratio

44.6 kbps

1
Max. PRB Ratio

89.3 kbps
RAN Control

Timer Set 1, Location 1

IV

Weight Config.
Slice Reward

Traffic

72.0440333
Max. DL Throughput

4 Mbps

0.5
Max. PRB Ratio

44.6 kbps

0.00005
Min. DL Buffer Occupancy

89.3 kbps
RAN Control

Timer Set 1, Location 1

V

Weight Config.
Slice Reward

Traffic

72.0440333
Max. DL Throughput

4 Mbps

0.229357798
Max. DL TX Packets

44.6 kbps

0.00005
Min. DL Buffer Occupancy

89.3 kbps
RAN Control

Timer Set 1, Location 1

VI

Weight Config.
Slice Reward

Traffic

72.0440333
Max. DL Throughput

4 Mbps

1.5
Max. DL TX Packets

44.6 kbps

0.00005
Min. DL Buffer Occupancy

89.3 kbps
RAN Control

Timer Set 1, Location 1

make decisions in near-real-time to compute efficient slicing
and scheduling control policies. We benchmarked 23 xApps
trained using DRL agents with different actions spaces, ar-
chitectures, reward design and decision-making timescales.
Additionally, we tested the DRL agents under various traffic
and mobility conditions, considering different hierarchical
setups and time granularities in locations both observed and
unseen during the training phase. Our experimental results
show that network slices with similar objectives (e.g., max-
imizing throughput and number of transmitted packets)
might result in a competitive behavior that can be mitigated
using proper weight and reward configurations, and possi-
bly different architectures. Additionally, we have explored
how the fine-tuning of RAN control timers can boost the
performance of various xApps tasked with altering different
action spaces. Based on the reported findings, the PandORA
evaluation shows that DRL agents adapt well to network
conditions encountered during the AI/ML training phase as
well as unforeseen conditions, while ensuring high system
resource utilization.
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