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Abstract
Next generation (NextG) cellular networks will 

be natively cloud-based and built on programmable, 
virtualized, and disaggregated architectures. The 
separation of control functions from the hardware 
fabric and the introduction of standardized con-
trol interfaces will enable the definition of custom 
closed-control loops, which will ultimately enable 
embedded intelligence and real-time analytics, thus 
effectively realizing the vision of autonomous and 
self-optimizing networks. This article explores the 
disaggregated network architecture proposed by 
the O-RAN Alliance as a key enabler of NextG net-
works. Within this architectural context, we discuss 
the potential, the challenges, and the limitations of 
data-driven optimization approaches to network 
control over different timescales. We also present 
the first large-scale integration of O-RAN-compliant 
software components with an open source full-stack 
softwarized cellular network. Experiments conduct-
ed on Colosseum, the world’s largest wireless net-
work emulator, demonstrate closed-loop integration 
of real-time analytics and control through deep 
reinforcement learning agents. We also show the 
feasibility of radio access network (RAN) control 
through xApps running on the near-real-time RAN 
intelligent controller to optimize the scheduling pol-
icies of coexisting network slices, leveraging the 
O-RAN open interfaces to collect data at the edge 
of the network.

Introduction
The fifth and sixth generations (5G, 6G) of cel-
lular networks will undoubtedly accelerate the 
transition from inflexible and monolithic networks 
to agile, disaggregated architectures based on 
softwarization and virtualization, as well as on 
openness and re-programmability of network 
components [1]. These novel architectures are 
expected to become enablers of new functional-
ities, including the ability to:
•	 Provide on-demand virtual network slices 

that, albeit sharing the same physical infra-
structure, are tailored to different mobile 
virtual network operators, network services, 
and runtime traffic requirements

•	 Split network functions across multiple soft-
ware and hardware components, possibly 
provided by multiple vendors

•	 Capture and expose key performance indi-
cators (KPIs) and network analytics through 
open interfaces that are not available in old 
architectures

•	 Control the entire network physical infra-
structure in real time via third-party software 
applications and open interfaces

Disaggregation and Programmability in O-RAN
The O-RAN Alliance — a consortium of industry 
and academic institutions — is working toward 
realizing the vision of next generation (NextG) 
cellular networks, where telecom operators use 
standardized interfaces to control multi-vendor 
infrastructures and deliver high-performance ser-
vices to their subscribers [2]. To achieve this goal, 
the Alliance proposes an architectural innova-
tion based on two core principles. First, O-RAN 
embraces and promotes the 3rd Generation Part-
nership Project (3GPP) functional split, where 
base station (BS) functionalities are virtualized as 
network functions and divided across multiple 
network nodes: central unit (CU), distributed unit 
(DU), and radio unit (RU) [1]. This facilitates the 
instantiation and execution of diverse network-
ing processes at different points of the network. 
Specifically, CUs implement functionalities at the 
higher layers of the protocol stack operating over 
larger timescales, while DUs handle time-critical 
operations at the lower layers. Finally, the RUs 
manage radio frequency (RF) components and 
lower physical (PHY) layer parts.

The second core innovation — which is likely 
to be even more impactful — is the radio access 
network (RAN) intelligent controller (RIC), a new 
architectural component that provides a central-
ized abstraction of the network, allowing operators 
to implement and deploy custom control plane 
functions. In both its non- and near-real-time ver-
sions, the RIC facilitates RAN optimization through 
closed-control loops (i.e., autonomous action and 
feedback loops between RAN components and 
their controllers). O-RAN envisions different loops 
operating at timescales that range from 1 ms (e.g., 
for real-time control of transmission strategies) to 
thousands of milliseconds (e.g., for network slicing 
and traffic forecasting). For instance, the non-real-
time RIC performs operations with a time granu-
larity higher than 1 s, such as training of artificial 
intelligence (AI) and machine learning (ML) mod-
els. The near-real-time RIC instead handles proce-
dures at timescales above 10 ms, hosts third-party 
applications (xApps) that communicate with the 
CU/DU through standardized open interfaces, 
and implements intelligence in the RAN through 
data-driven control loops.

Figure 1 illustrates one of the possible dis-
aggregated deployments specified by O-RAN, 
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where different network components are con-
nected by open interfaces.

In this deployment (“Scenario B,” deemed the 
most common [1]), the RICs are deployed in the 
cloud. They interact with each other via the A1 
and O1 interfaces, and control specific parame-
ters of the RAN defined through the so-called ser-
vice models (SMs). The CU and DU are deployed 
at the network edge, interconnected through the 
F1 interface and controlled by the near-real-time 
RIC via the E2 interface [3]. The RU is located at 
the operator cell site, and controlled by the DU 
through the Open Fronthaul interface. Finally, CU, 
DU, and RU are connected to the non-real-time 
RIC through the O1 interface for periodic report-
ing. Other deployment options allow instantiating 
RICs and CUs in the edge or regional cloud (Sce-
narios A and C–F, respectively); the DU in the 
edge cloud (A–D); and the RU at the operator 
cell site (A–D) or in the cloud cell site, possibly 
co-located with the DU (E, F) [1].

Contributions
While the O-RAN architectural vision is gaining 
momentum among researchers, the challenges of 
implementing it for data-driven, open, program-
mable, and virtualized NextG networks are still 
largely to be dealt with. Important architectural 
questions have yet to be answered, including:
•	 The exact functionalities and parameters to 

be controlled by each network component
•	 Where to place network intelligence
•	 How to validate and train data-driven control 

loop solutions
•	 How AI agents can access data and analyt-

ics from the RAN while minimizing the over-
head of moving them from the RAN to the 
storage and inference locations

To answer these questions, we provide the follow-
ing contributions:
•	 We discuss how data-driven, closed-con-

trol loop solutions can be implemented in 
NextG RANs. We focus on the opportunities 
offered by the O-RAN architecture, including 
functional split and open interfaces, and on 
their role in advancing intelligent and pro-
grammable networks.

•	 Different from prior work [1, 4], we inves-
tigate the limitations of the current O-RAN 

specifications and the challenges associated 
with deploying data-driven policies at differ-
ent nodes of the RAN.

•	 We discuss how large-scale experimental 
testbeds will play a key role by providing 
researchers with heterogeneous and large 
datasets, critical to the success of data-driven 
solutions for cellular networks. We focus on 
the three PAWR platforms (i.e., POWDER 
[5], COSMOS [6], and AERPAW [7]), and 
on Colosseum and Arena [8], which can all 
be used to generate massive datasets under 
a variety of network configurations and RF 
conditions.

•	 We provide the first demonstration of an 
O-RAN data-driven control loop in a large-
scale experimental testbed using open 
source, programmable RAN and RIC com-
ponents. We deploy O-RAN on the Colos-
seum network emulator and use it to control 
multiple network slices instantiated on 4 
software-defined radio (SDR) BSs serving 40 
SDR user equipments (UEs).

•	 We develop a set of deep reinforcement 
learning (DRL) agents as RIC xApps to 
optimize key performance metrics for dif-
ferent network slices through data-driven 
closed-control loops. Experimental results 
show that our DRL approach outperforms 
other control strategies, improving spectral 
efficiency by up to 20 percent and reducing 
buffer occupancy by up to 37 percent. We 
released the DRL agents and the 7 GB data-
set used to train them.1
The remainder of this article is organized as 

follows. We first discuss how intelligent control 
schemes can be embedded in the O-RAN archi-
tecture. We then present how experimental test-
beds can foster the development of data-driven 
solutions. Finally, we present our experimental 
evaluation and draw our conclusions.

Intelligent Wireless Architectures
Openness, programmability, and disaggrega-
tion are key enablers of data-driven applications. 
However, they are only the first step toward the 
seamless integration of AI- and ML-based control 
loops in cellular networks. Typically, data-driven 
approaches involve several steps, ranging from 

FIGURE 1. O-RAN: An example of disaggregated deployment.
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1 https://git.io/JiFPR
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data collection and processing, to training, model 
deployment, and closed-loop control and testing. 

This section illustrates how O-RAN is steering 
5G deployments to bring intelligence to the net-
work by defining a practical architecture for the 
swift execution of data-driven operations, and dis-
cusses extensions to control procedures not cur-
rently considered by O-RAN.

Data Handling and Training Procedures. The 
effectiveness of data-driven approaches heavily 
depends on how data is handled, starting from 
data collection and aggregation at the RAN 
(where data is generated) to the point where it 
is processed for model training and inference. 
However, collecting and moving large amounts 
of data might result in significant overhead and 
latency costs. Hence, data-driven architectures 
must cope with trade-offs between centralized 
approaches — providing a comprehensive view of 
the state of the network at the cost of overhead 
and latency — and distributed ones — operating at 
the edge only, gathering data from a small num-
ber of sources while enjoying low latency [9].

In this context, the O-RAN ML specifications 
introduce standardized interfaces (e.g., O1) to 
collect and distribute data across the entire infra-
structure as well as operational guidelines for the 
deployment of ML and AI solutions in the net-
work [10]. These include practical considerations 
on how, where, and when models can be trained, 
tested, and eventually deployed in the network. 
First, AI/ML models are made available to opera-
tors via a marketplace system similar to that of the 
well-established network function virtualization 
(NFV) management and orchestration (MANO) 
architecture, where models are stored in a cata-
log together with details on their control objec-
tives, required resources, and expected inputs 
and outputs. Second, data-driven solutions must 
be trained and validated offline to avoid causing 
inefficiencies — or even outages — to the RAN. 
Indeed, since AI/ML techniques usually rely on a 
randomized initialization, O-RAN requires all ML 
models to be trained and validated offline before 
their deployment [10]. As we discuss next, albe-
it shielding the network from unwanted behav-
ior, this requirement also limits the effectiveness 
of such approaches, especially the online ones. 
Online AI/ML techniques could still be used in 
O-RAN-compliant architectures by allowing mod-
els to be trained with offline data in the non-real-
time RIC, and then perform online learning in the 

near-real-time RIC. The smaller timescale of the 
control loops of the latter would in fact allow the 
online training pipeline to be fed with data col-
lected in real time.

Control Loops. Figure 2 portraits how intel-
ligence can be embedded at different layers 
and entities of a disaggregated cellular network 
together with the challenges and limitations of 
doing so. Each closed-control loop optimizes 
RAN parameters and operations by running at 
different timescales, with different number of UEs, 
and using different sources for the input data. 
The O-RAN Alliance is also looking into how to 
standardize the data-driven workflows for these 
control loops. As of this writing, O-RAN only con-
siders non- and near-real-time loops, while real-
time loops are left for future studies. Figure 2 also 
depicts the additional inference timescale below 
1 ms to process raw I/Q samples and perform 
AI-driven PHY layer tasks, currently not part of 
O-RAN as it would require device- and/or RU-lev-
el standardization. 

To better highlight the potential and limitations 
of the approach proposed by O-RAN, in the fol-
lowing we analyze each control loop individually, 
highlighting the role of each network component. 
Finally, we discuss how the current O-RAN archi-
tecture can be extended to realize the control 
loops and applications illustrated in Fig. 2.

Non-Real-time Control Loop
The O-RAN Alliance defines non-real-time any 
control loop that operates on a timescale of at 
least 1 s. As shown in Fig. 2, this involves coordina-
tion between the non real-time and near-real-time 
RIC through the A1 interface. This control loop 
manages the orchestration of resources at the 
infrastructure level, making decisions and applying 
policies that impact thousands of devices. These 
actions can be performed using data-driven opti-
mization algorithms processing data from multiple 
sources, and inference models deployed on the 
non-real-time RIC itself.

Practical examples of non-real-time data-driv-
en control include instantiating and orchestrating 
network slices, as well as selecting which pre-
trained inference models in the catalog should 
be deployed to accomplish operator intents, and 
deciding in which near-real-time RIC these models 
should be executed. Said decisions can be made 
according to a variety of factors, ranging from 
computational resources and data availability to 

FIGURE 2. Learning-based closed-control loops in an O-RAN architecture.
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minimum performance requirements to comply 
with service level agreements. Moreover, since 
the non-real-time RIC is endowed with service 
management and orchestration capabilities, this 
control loop can also handle the association 
between the near-real-time RIC and the DUs/
CUs. This is particularly useful in virtualized sys-
tems where DUs and CUs are dynamically instan-
tiated on demand to match the requests and load 
of the RAN. However, non-real-time loops are 
challenging to actuate in practice because of the 
very many interactions among the non-real-time 
RIC and the network elements, which require 
tight coordination, data collection, and orchestra-
tion capabilities.

Near-Real-Time Control Loops
Near-real-time control loops operate on a time-scale 
between 10 ms and 1 s. As shown in Fig. 2, they 
run between the near-real-time RIC and two 
components of the next generation node bases 
(gNBs): the CU and the DU. Because one near-
real-time RIC is associated with multiple gNBs, 
these control loops can make decisions affecting 
up to thousands of UEs, using user-session aggre-
gated data and medium access control (MAC)/
PHY layer KPIs. ML-based algorithms are imple-
mented as external applications (i.e., xApps) and 
are deployed on the near-real-time RIC to deliver 
specific services such as inference, classification, 
and prediction pipelines to optimize the per-user 
quality of experience, controlling load balancing 
and handover processes, or the scheduling and 
beamforming design. Challenges of near-real-time 
control loops include the need to promptly make 
decisions in a matter of tens or hundreds of mil-
liseconds for each of the several CUs and DUs 
controlled by the RIC.

Real-Time Control Loops
A crucial component of the operations of a cel-
lular network involves actions at a sub-10 ms, or 
even sub-millisecond, timescale. In O-RAN, these 
operations are labeled real-time control loops, and 
mainly concern interactions between elements in 
the DU. Control loops at a similar timescale could 
also be envisioned to operate between the DU 
and the RU, or at the UEs. However, as deploying 
ML solutions at the DU is not currently supported, 
these loops are left for future extensions of the 
O-RAN specifications.

Finally, data-driven approaches at the lower 
layers of the protocol stack or at the device (i.e., 
involving sub-millisecond timescales) are extreme-
ly powerful and can be used for data-driven 
scheduling decisions [11] and for feedback-less 
detection of PHY layer parameters (e.g., mod-
ulation and coding scheme, and interference 
recognition) [12]. Overall, the fact that device-/
RU-level standardization is required for sub-milli-
second loops makes it very challenging to realize 
them in practice, thus limiting their applicability.

Open Wireless Data Factories
Data-driven approaches are aimed at auton-
omously managing the network requiring little 
to no human intervention. Training and testing 
algorithms and data-driven closed-control loop 
policies require large amounts of data gathered 
in diverse scenarios, with varying traffic patterns, 

requirements, and user behaviors so that the 
resulting policy is effective when deployed in real 
networks.

Access to the massive amounts of data needed 
for training, however, is usually a privilege that 
only telecom operators enjoy. Due to privacy and 
competition concerns, operators seldom share 
such data openly with the research community. 
As a consequence, researchers and practitioners 
are often constrained to rely on datasets collected 
in small laboratory setups, which seldom capture 
the variety and scale of real cellular deployments. 
In the context of intelligent networking for NextG 
cellular systems, large-scale wireless testbeds are 
needed for developing, training, and testing new 
data-driven solutions, serving as open wireless 
data factories for the community. Such open plat-
forms would facilitate massive data collection in 
realistic and diverse wireless deployments [1].

The city-scale platforms of the U.S. Nation-
al Science Foundation PAWR program promise 
to be a valuable tool to provide the community 
with the desired diversity of scenarios and scale. 
The program currently supports three open test-
beds representative of a variety of wireless use 
cases, ranging from state-of-the-art SDRs and 
massive multiple-input multiple-output (MIMO) 
communications (POWDER, in Salt Lake City, 
Utah [5]), to ultra-high-capacity and low-latency 
wireless networks (COSMOS, in New York City 
[6]), and to aerial wireless communications (AER-
PAW, in the Research Triangle of North Carolina 
[7]). All three platforms provide users with data 
generation and analysis tools [1]. Arena is a SDR 
ceiling testbed that allows study of MIMO, cellu-
lar, and Internet of Things (IoT) applications with 
up to 64 antennas deployed in an 8  8 grid in 
an office space [8].

Another instrument for wireless research 
at scale is Colosseum, the world’s largest wire-
less network emulator with hardware in the 
loop. Colosseum includes 128 compute nodes, 
called standard radio nodes (SRNs), equipped 
with USRP X310 SDRs that can be used to run 
generic protocol stacks. These are connected in 
a mesh topology through 128 additional USRPs 
X310 of the massive channel emulator (MCHEM) 
for emulating realistic RF scenarios. The wireless 
channel between each pair of devices is modeled 
through complex-valued RF filter taps. In this way, 
scenarios are able to capture effects such as path 
loss, multi-path, and fading as if the SDRs were 
operating in a real RF environment. Colosseum is 
also equipped with an edge data center, with 900 
TB of storage and the capability of processing RF 
data at a rate of 52 TB/s, enabling massive data 
collection and testing of ML algorithms on hetero-
geneous networks.

Use Case: Scheduling Control in Sliced 5G 
Networks through the O-RAN RIC

This section showcases an example of a data-driv-
en closed-loop control implemented using the 
O-RAN Software Community near-real-time RIC 
and an open cellular stack on Colosseum (Fig. 3). 
We demonstrate the feasibility of a closed-con-
trol loop where DRL agents running in xApps on 
the near-real-time RIC select the best-performing 
scheduling policy for each RAN slice.

Data-driven approaches 
are aimed at autonomously 

managing the network 
requiring little to no human 
intervention. Training and 

testing algorithms and 
data-driven closed-control 
loop policies require large 
amounts of data gathered 
in diverse scenarios, with 

varying traffic patterns, 
requirements, and user 

behaviors so that the result-
ing policy is effective when 
deployed in real networks.
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Experimental Scenario. We have emulated a 
5G network with 4 BSs and 40 UEs (Fig. 3, left) 
in the dense urban scenario of Rome, Italy. The 
locations of the BSs have been extracted from 
OpenCelliD (a database of real-world cellular 
deployments) and cover an area of 0.11 km2. 
Downlink and uplink frequencies have been set 
to 0.98 and 1.02 GHz, respectively, and the chan-
nel bandwidth to 3 MHz. While these parameters 
might be atypical for 5G, their choice depends 
on the Colosseum environment. We note, how-
ever, that this does not affect our findings on how 
data-driven solutions improve the RAN perfor-
mance.

We consider a multi-slice scenario in which 
UEs are statically assigned to a slice of the net-
work and request three different traffic types: 
high-capacity enhanced mobile broadband 
(eMBB), ultra-reliable low-latency communica-
tions (URLLC), and machine-type communica-
tions (MTC). This reflects the case, for instance, 
of telecom operators providing different levels 
of service to different devices (e.g., MTC service 
to IoT-enabled devices, or URLLC to devices for 
time-critical applications). The BSs serve each slice 
with a dedicated — and possibly different — sched-
uling policy, selecting among proportionally fair 
(PF), waterfilling (WF), and round-robin (RR) [13]. 
We also consider the case where the number of 
physical resource blocks (PRBs) allocated to each 
slice varies over time [14, 15].

We used srsLTE to implement our softwarized 
cellular network. This open source framework, 
which has recently been renamed “srsRAN” to 
reflect a new focus toward 5G NR, provides a 
full-stack implementation of BSs and UEs, as well 
as a lightweight core network. Although this 
framework is not yet fully compliant with the NR 
specifications, we are confident that our DRL-
based approach enabled by O-RAN can be easily 
extended to future NR-compliant versions of this 
(or any other) software where BSs expose control 
interfaces to the network. For ease of prototyping, 
we co-located the core network on the same SRN 
that runs the BS application. For the purposes of 
our work, this setup is equivalent to deploying the 
core network on a dedicated SRN (Fig. 3). We 

extended the BS implementation to include net-
work slicing capabilities and additional scheduling 
policies [13]. The scenario we considered con-
cerns pedestrian user mobility with time-varying 
path loss and channel conditions. Traffic among 
BSs and UEs is generated through the Colosseum 
traffic generator (TGEN), configured to send dif-
ferent traffic types to UEs of different slices, that 
is, eMBB (1 Mb/s constant bit rate traffic), URLLC 
(Poisson traffic, with 10 pkt/s of 125 bytes), and 
MTC (Poisson traffic, with 30 pkt/s of 125 bytes). 
For each BS, the UE-slice allocation is as follows: 
eMBB and URLLC slices serve three UEs each, 
while MTC slices serve four UEs. We embedded 
the DRL agents into xApps running in the near-
real-time RIC (Fig. 3, right) for a total of 12 DRL 
agents running in parallel and making decisions 
with a time granularity of 500 ms. Agents connect 
to the network BSs through the O-RAN E2 inter-
face. This interface is composed of two elements: 
the application protocol and the SM [3]. The for-
mer defines the set of messages that the near-real-
time RIC and RAN nodes can exchange, and the 
procedures for the RAN node subscription to the 
RIC. The SM instead defines which parameters 
of the RAN nodes can be controlled by the RIC 
to achieve a given closed-loop control objective. 
Specifically, the E2 interface exposes analytics and 
the scheduler policy selection using a custom SM. 
As shown in Fig. 3, xApps interface with the BSs 
through the O-RAN E2 manager, which ultimately 
connects with the BSs via the E2 interface. Other 
components of the RIC include the RIC database, 
which keeps entries on the connected BSs, the 
training engine, and the ML model catalog, which 
deploys the DRL model chosen by the telecom 
operator on the near-real-time RIC. Finally, mes-
sages internal to the RIC are managed by the 
Message Router, a library which associates mes-
sage types to destination endpoints.

DRL Agent Training. To train our DRL agents, 
we generated some 7 GB of training data of 
various performance metrics (e.g., through-
put and bit error rate), system state information 
(e.g., transmission queue size, signal-to-interfer-
ence-plus-noise ratio, and channel quality infor-
mation), and resource allocation strategies (e.g., 

FIGURE 3. O-RAN integration in Colosseum.
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slicing and scheduling policies) by running a total 
of 89 hours of experiments on Colosseum. Each 
DRL agent has been trained via the proximal poli-
cy optimization (PPO) algorithm to manage a sin-
gle slice for fine-grained and flexible control of the 
whole cellular network. Agents have been trained 
under network configurations obtained by vary-
ing the distance between BSs and UEs and the 
mobility of the UEs. Testing has been performed 
in the most challenging setup, which includes the 
random mobility of the UEs. Although the training 
is performed with the same topology configura-
tion, we notice that our agents are topology-inde-
pendent, as each of them controls a single slice 
for a given BS. Specifically, agents process the 
performance metrics received by the BS they are 
controlling — which possibly expresses the per-
formance of several UEs — through an encoder. 
This allows them to cast the dimensionality of the 
input data to a fixed size and to process it regard-
less of the number of active UEs of the slice. As 
a consequence, the DRL agents do not need to 
be aware of the number of UEs and BSs in the 
network, which makes our approach general and 
scalable. Through the RIC Indication messages 
sent via the O-RAN E2 interface (Fig. 3), the agent 
is fed real-time performance measurements of the 
slice it controls. These messages generate an over-
head of 72 B/UE. Data goes through an encoder 
for dimensionality reduction and is then used by 
the agent to identify the state of the system. The 
agent uses a fully connected neural network with 
5 layers and 30 neurons each to determine the 
best scheduling policy for the corresponding slice. 
This policy is then signaled to the corresponding 
BS through RIC Control messages sent via the 
E2 interface. The reward of the agents depends 
on the specific slice and the corresponding KPI 
requirements. Specifically, eMBB and MTC agents 
have been trained to maximize the throughput of 
UEs; the URLLC agent has been trained to mini-
mize latency by allocating resources (i.e., PRBs) 
as quickly as possible. To comply with O-RAN 
directives, we have trained the DRL agents offline 
in the non-real-time RIC, which also performs the 
initial data collection and deploys the model in 
the near-real-time RIC. We have then tested them 
on the emulated Colosseum scenario. 

Experimental Results. Figure 4 shows the 
cumulative distribution function (CDF) of the 
downlink spectral efficiency of the eMBB slice. 
We compare the performance of the network 
when DRL agents dynamically select the best 
scheduling strategy among RR, PF, and WF 
against the case where scheduling strategies are 
fixed over time. Our results clearly indicate that 
data-driven optimization outperforms fixed poli-
cies by delivering gains in spectral efficiency that 
are up to 20 percent higher than that of the best 
performing static policy. This is due to the fact 
that eMBB traffic requires high data rates, and 
DRL agents are capable of dynamically adapting 
scheduling decisions to the current network state 
and traffic demand.

Figure 5 shows the CDF of the downlink buffer 
size for the URLLC slice under different sched-
uling policies. Low buffer size indicates timely 
data delivery to requesting UEs; higher buffer size 
results in higher latency due to packets waiting in 
the queue. Results show that DRL agents serve 

the UEs faster than the static policies, resulting 
in lower latency. In particular, the average buffer 
size of the URLLC slice when using DRL control 
is 37, 5, and 17 percent smaller than that of the 
RR, WF, and PF scheduling policies, respectively. 
The DRL agent also significantly outperforms the 
WF policy between the 50th and 90th percentiles.

Figure 6 depicts how often DRL agents select 
specific scheduling policies as a function of the 
number of PRBs of each slice. The bigger the cir-
cle, the higher the probability of selecting a given 
policy. We observe that MTC and eMBB DRL 
agents select WF 99 percent of the time. Also, 
eMBB agents select RR 4 percent of the time 
when only a few PRBs are allocated to the slice. 
On the contrary, URLLC DRL agents are likely to 
select both PF and WF scheduling policies even 
when more PRBs are available. These results show 
that adapting control strategies to current net-
work state and traffic requirements is essential to 
achieve remarkable performance improvements 
(Fig. 4 and Fig. 5). DRL agents dynamically select 
the best performing scheduling strategy based 
on available resources and current network state, 
providing performance gains simply unattainable 
with static scheduling policies.

Conclusions
In this article we provide a path to and a demon-
stration of the feasibility of integrating closed-con-
trol loops in cellular networks. We first review key 
enablers, namely, virtualization, disaggregation, 
openness, and reprogrammability of NextG cellu-

FIGURE 5. Downlink buffer size of the URLLC slice for different scheduling policies and with DRL control.

FIGURE 4. Downlink spectral efficiency of the URLLC slice for different scheduling policies and with DRL control.
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lar networks using O-RAN as an exemplary tech-
nology. We then discuss which data-driven control 
loops can be implemented, their timescale, and 
whether the current O-RAN architecture supports 
them. We finally show how large-scale experimen-
tal testbeds can be used to develop and validate 
data-driven algorithms by deploying a DRL-based 
O-RAN RIC on Colosseum. Our results show that 
using closed-control loops can provide a strong 
foundation toward the full realization of future 
generation, data-driven, autonomous, and self-op-
timizing cellular networks.
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FIGURE 6. DRL action selection distribution vs. number of slice PRBs. Values > 99 percent (big circles) or < 0.5 per-
cent (small circles) are omitted.
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