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Abstract—In this paper, we consider a jammed wireless scenario
where a network operator aims to schedule users to maximize net-
work performance while guaranteeing a minimum performance
level to each user. We consider the case where no information
about the position and the triggering threshold of the jammer is
available. We show that the network performance maximization
problem can be modeled as a finite-horizon joint power control
and user scheduling problem, which is NP-hard. To find the op-
timal solution of the problem, we exploit Dynamic Programming
(DP) techniques. We show that the obtained problem can be de-
composed, i.e., the power control problem and the user scheduling
problem can be sequentially solved at each slot. We investigate
the impact of uncertainty on the achievable performance of the
system and we show that such uncertainty leads to the well-known
exploration-exploitation trade-off. Due to the high complexity of
the optimal solution, we introduce an approximation algorithm
by exploiting state aggregation techniques. We also propose a
Performance-aware Online Greedy Algorithm (POGA) to provide
a low-complexity sub-optimal solution to the joint power control
and user scheduling problem under minimum QoS requirements.
The efficiency of both solutions is evaluated through extensive
simulations, and our results show that the proposed solutions
outperform other traditional scheduling policies.

Index Terms—Scheduling, power control, jamming, QoS

I. INTRODUCTION

Many resource allocation problems in the networking do-
main can be modeled as network utility maximization problems
where cross-layer optimization techniques at both PHY and
MAC layers are used to maximize network performance.
Frequently, due to the time-varying behavior of both network
conditions and resource availability, the allocation of network
resources has to be performed within a fixed and finite temporal
window, i.e., the horizon of the optimization problem.

The resource allocation problem is further exacerbated with
the inclusion of Quality-of-Service (QoS) constraints and third-
party entities such as jamming attackers over which network
operators have no control. In particular, reactive jamming at-
tacks in wireless communications have been proven to be one of
the most threatening and harmful attacks as they can completely
or partially disrupt ongoing communications [1]. Reactive jam-
mers continuously monitor one or multiple channels, searching
for ongoing transmission activities by means of energy detec-
tors [2]. Then, only when a transmission is detected, the jammer
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starts its attack. The attacker node is able to transmit jamming
signals that interfere with those transmitted by legitimate users,
thus causing a drop in the Signal-to-Interference-plus-Noise
Ratio (SINR) of such users.

Reactive jamming attacks reach a high jamming efficiency
and can even improve the energy-efficiency of the jammer in
several application scenarios [2, 3]. Also, they can easily and
efficiently be implemented on COTS hardware such as USRP
radios [1, 4, 5]. But, more importantly, reactive jamming attacks
are harder to detect due to the attack model, which allows
jamming signal to be hidden behind transmission activities
performed by legitimate users [4, 6, 7]. In this paper, we
adopt this more general and efficient attack model. For a more
detailed discussion on jamming and anti-jamming techniques
we refer the reader to [8–11] and the references therein.

Main challenges in dealing with reactive jamming attacks are
1) to detect the presence of a jammer and 2) to develop proper
anti-jamming mechanisms to avoid the disrupting actions of
the jammer. It has been shown that detecting the presence
of a jammer requires complex or time-consuming operations,
such as statistical estimations and continuous packet monitor-
ing [6, 7, 12]. Moreover, customized solutions to counteract
jamming attacks are non-trivial as the exact behavior of the
jammer is generally unknown and unpredictable.

It is clear that under such hostile conditions, network per-
formance can be significantly reduced. Without proper anti-
jamming techniques, it is not easy to optimize network perfor-
mance within a finite-horizon. Most anti-jamming techniques
need either a priori information on jammer’s behavior and
channel conditions or a large number of temporal slots to
become effective. Also, guaranteeing a minimum performance
level to all users in the network can be even more challenging,
especially if service guarantees must be met in a limited tempo-
ral window. As an example, a capacity maximization problem
is investigated in [13] where authors aim to maximize the over-
all number of successful transmissions of a jammed network
consisting of several users by exploiting distributed no-regret
learning techniques. However, this approach does not guarantee
a minimum performance level to network users. Also, to find
the optimal solution, the iterative learning algorithm proposed
in [13] requires a large number of iterations, a condition that
cannot always be satisfied.

Solutions to a variety of QoS provisioning problems in
unjammed scenarios have been proposed in the literature. As
an example, in [14] and [15] authors propose optimal solu-
tions for the capacity maximization problem under minimum
performance guarantee constraints. However, such solutions do
not consider possible jamming attack, and it is shown that the
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proposed approaches converge to the optimal solution when the
horizon tends to infinity. Therefore, it is hard to apply these
solutions to the problem we address in this work.

In this paper, we consider a multi-user multi-carrier time-
slotted cellular network where the network operator has to
schedule network users to maximize achievable network per-
formance while guaranteeing a minimum performance level
to each user. We also consider the worst case scenario where
a reactive jammer is deployed within the base station (BS)
coverage range. Each node is affected by its jamming activity
and the transmission power of each user cannot exceed a given
maximum threshold. We further assume that channel conditions
vary in time according to the block-fading model.

We show that the above problem can be modeled as a finite-
horizon joint power control and user scheduling problem. Also,
we prove that finding an optimal solution is NP-hard. We
formulate the problem by exploiting techniques from Dynamic
Programming (DP). The DP formulation allows us to show that
the joint power control and user scheduling is a decomposable
problem. That is, at each optimization step we can sequentially
solve the power control and the user scheduling problems. We
show that, under some conditions, it is possible to identify the
optimal power control policy, i.e., conservative, exploratory or
aggressive. To avoid the curse of dimensionality of the DP
approach, we exploit state aggregation techniques to propose
an approximated solution and study its complexity.

We also propose a Performance-aware Online Greedy Al-
gorithm (POGA) to provide a low-complexity sub-optimal
solution for the joint power control and scheduling problem
under minimum QoS requirements. Accordingly, we present
an algorithmic implementation of POGA and we show that its
computational complexity is polynomial in the number of users
in the system.

We evaluate the achievable performance of both the ap-
proximated solution and POGA through extensive simulation
results. Also, we investigate the impact of jammer’s behavior
and position on achievable system’s performance. Finally, we
compare the performance of the above proposed solutions with
those achieved by traditional scheduling policies. We show that
both our solutions outperform other considered approaches.

The rest of the paper is organized as follows. Related work
is presented in Section II. In Section III, we first illustrate the
system model and, then, we formulate the joint power control
and user scheduling problem. In Section IV, we propose a
decomposable DP formulation of the original problem. A dis-
cretized version of the original problem is proposed in Section
V, and POGA is presented in Section VI. In Section VII, we
evaluate the achievable performance of the proposed solutions
through numerical simulations. Finally, Section VIII concludes
the paper.

II. RELATED WORK

Providing jamming-proof communications is an interesting
topic and several solutions have been proposed in the literature.
For example, spread-spectrum techniques are commonly used
to avoid the jammer and its attacks [16–19]. However, to be
effective, such techniques need to either share or establish a

secret among network users. For this reason, such techniques
cannot be applied in all wireless scenarios [20, 21].

In [20, 22, 23] a trigger-identification approach is presented.
First, nodes whose transmission trigger the reactive jammer,
i.e., the triggering nodes, are identified. Then, optimal routing
paths are established, which exclude triggering nodes from the
routing process. However, such solutions are designed for large
sensor networks where multi-hop communication is feasible.
Such solutions fail in scenarios where the whole network is
under attack and any node can potentially be a trigger node.

To detect transmission activities, the jammer has to first sense
ongoing communications. Then, when an activity is detected
the jammer starts its attack. Thus, there is a delay, i.e., activation
time, between the detection and attack phases. All bits trans-
mitted during the activation time escape jamming and can be
exploited to establish communications under reactive jamming
attacks [21].

Another approach is proposed in [24–26] where radio si-
lences are exploited to establish secure communications. As the
reactive jammer does not attack when no transmission activities
are performed by users, it is possible to encode the information
to be transmitted in silences between consecutive packets.
Accordingly, although transmitted packets can be completely
damaged, the radio silence between consecutive packets can be
modulated to convey data by mapping bit sequences and silence
period durations. However, the above solutions neither aim to
maximize network performance nor provide any minimum QoS
service level to network users.

Power control has been recently proposed to overcome pos-
sible reactive jamming attacks [27, 28]. The intuition is that
by controlling the transmission power of users, it is possible
to let the received power at the jammer remain under the
triggering threshold [28]. In [27], authors consider a single
sender-receiver pair and propose a joint frequency hopping (FH)
and power control scheme to avoid reactive jamming attacks.
The proposed solution consists in selecting user’s transmission
power such that the sender’s power at the receiver side is higher
than that of the jammer. However, the latter approach fails when
dealing with systems with multiple senders and where FH is not
possible such as the one we consider in this paper.

III. SYSTEM MODEL

A. Network Model

We consider a multi-carrier slotted wireless system where
a set of users access the network and communicates with a
shared BS through several non-interfering channels. Let N be
the set of users and K be the set of the channels accessed by
these users. We assume that users are power-constrained and are
equipped with single-antenna transceivers. Their instantaneous
transmission power is limited to a maximum power level P and
they can transmit on at most one channel at a time. Also, we
assume that a given slot on a given channel can be assigned to
only one user. In our paper, we focus on the uplink scheduling
problem.

In our model, we assume Additive White Gaussian Noise
(AWGN) channels with channel gains defined as i.i.d. random
variables. As shown in Fig. 1, let hnk be the channel gain
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TABLE I
NOTATION

Variable Description
N ,K,H Sets of users, channels and slots

P Maximum transmission power level of users
PJ , Pth Maximum transmission power level and triggering

threshold of the jammer
gnk Channel gain between user n and the BS on channel k
H Horizon duration
αnk Triggering function for n transmitting on k
θnk(j) Allocation indicator for n on k at slot j
pnk(j) Power control variable for n on k at slot j
pmnk(j) Maximum transmission power of n on k that has not

triggered the jammer up to slot j
pMnk(j) Minimum transmission power of n on k that has

triggered the jammer up to slot j
πnk(j) The history of n on k up to slot j

Eα{Rnk(p)|πnk(j)} Expected achievable rate of n on k for a given πnk(j)
Πnk(j) Feasible transmission power set given πnk(j)
∆nk(j) Lebesque measure of Πnk(j)

pOPT
nk (j) Optimal transmission power level for n on k at slot j
γi Step-size used in (22)

ρn(j) Residual performance variable for n at slot j
ξp Power quantization step

Fig. 1. Channel model.

coefficients between user n and the jammer on channel k, while
hk indicates the channel gain coefficient between the jammer
and the BS on channel k. Finally, gnk indicates the channel gain
between user n and the BS on channel k. Relevant parameters
and variables are summarized in Table I.

We assume block fading, that is, channel gain coefficients
remain constant for a fixed number of slots before they change.
Let H be the number of slots where channel gain coefficients
remain constant. Therefore, the optimal scheduling problem
has to be periodically performed every H slots. We refer to
such time period as the scheduling cycle. Accordingly, H is the
finite-horizon of the optimization problem1.

B. Attack Model

We assume that a malicious user, i.e., the jammer, aims
to disrupt ongoing communications between legitimate users
and the BS. More specifically, in our model we consider a
reactive jamming attacker where the malicious user continu-
ously monitors all channels in K searching for transmission
activities and jams only those channels where the received
signal power is higher than a given threshold. In our study,
we assume that when a transmission activity is detected in a
given slot, the jammer emits a jamming signal whose duration

1Our model also applies to the case of a mobile jammer attacks the network.
Since the jammer wants to be undetectable and unpredictable, it moves and
changes its position everyH slots. It follows that channel gain coefficients vary
in time and the network operator has to periodically find the optimal scheduling
policy every H slots.

is equal to the slot duration2. To switch from the monitoring
to the transmission phases causes a delay also referred to as
the activation time. Such delay has been shown to be small [1],
and are negligible compared to the duration of each slot. Thus,
we assume that the jammer is able to instantaneously switch
between RX and TX front-ends.

Let Pth and PJ denote the triggering threshold and the
transmission power of the jammer, respectively. We assume that
the jammer’s attack strategy is independent of channels and
users; that is, the values of Pth and PJ are constant and equal
for all k ∈ K and n ∈ N . However, it is worth noting that the
approach proposed in this paper also applies to the more general
case where the values of Pth and PJ independently vary accross
users and channels. That is, our model can be also applied to the
case where the triggering threshold and the transmission power
of the jammer for user n ∈ N and channel k ∈ K are P thnk and
P Jnk, respectively.

To model the triggering mechanism that regulates the jam-
mer, we define the triggering function αnk(p) : R→ {0, 1} for
user n transmitting on channel k. More specifically,

αnk(p) =

{
1 if phnk ≥ Pth
0 otherwise

(1)

where p is the transmission power for n on channel k. Intu-
itively, according to eq. (1), an attack is performed only when
the received power at the jammer side (phnk) is greater than or
equal to the triggering threshold Pth. Clearly, αnk(0) = 0. We
consider the worst case scenario where αnk(P ) = 1, i.e., all
nodes are jammed by the jammer when they transmit with full
power. However, the more general case where αnk(P ) = 0 can
be similarly treated by exploiting the same techniques presented
in this paper.

Let us consider the generic channel k ∈ K and let pm and
pM be two feasible transmission power levels for a given user
n ∈ N such that 0 ≤ pm < pM ≤ P . We further assume that
αnk(pm) = 0 and αnk(pM ) = 1, that is, the system knows that
when user n transmits with power pm on channel k it does not
trigger the jammer, while transmitting with power pM on the
same channel activates the jammer and consequently causes a
decrease in the SINR3. Therefore, the probability of triggering
the jammer when transmitting with power p given the values of
both pm and pM can be written as

Fnk(p)=Pr {phnk ≥ Pth|πnk}=Pr

{
Pth
hnk
≤ p|πnk

}
(2)

where πnk =
(
pm, pM

)
is a tuple that represents the history (or

knowledge) of the system. As shown in eq. (2), the probability
of triggering the jammer depends on the ratio Pth/hnk between
the triggering threshold of the jammer and the channel gain

2To consider the case where the duration TJ of the jamming signal is shorter
than the slot duration Tp, the model here proposed has to be slightly modified.
Specifically, the expected rate of the system has to be rewritten as R̃(p) =(
1− TJ

Tp

)
log

(
1 + gp

σ2

)
+ TJ
Tp
Eα {R(p)|π(j)}, whereEα {R(p)|π(j)} is

defined in eq. (7). However, it can be easily shown that the results presented in
this work also apply to this specific case.

3The existence of both pm and pM is always guaranteed by our assumptions
and in Section IV we provide proper mechanisms to identify the values of both
parameters.
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coefficient between the jammer and the transmitter. Although in
reality the position and the triggering threshold of the jammer
are unknown and, thus, the exact value of the ratio Pth/hnk is
unknown to the network operator, the information contained in
the history πnk =

(
pm, pM

)
is still available. Note that given

πnk, the exact value of the ratio Pth/hnk can be any value
in the range (pm, pM ]. Therefore, to model such uncertainty
on the knowledge of such parameters we assume that the
ratio Pth/hnk is modeled as a uniformly distributed random
variable4 over the interval (pm, pM ]. Accordingly, we rewrite
eq. (2) as follows:

Fnk(p) =


0 if p ≤ pm
p−pm
pM−pm if pm < p < pM

1 otherwise
(3)

C. Problem Formulation

As a consequence of the AWGN assumption, for any given
user n ∈ N scheduled on channel k ∈ K, the SINR received at
the BS side is

SNRnk(p) =
gnkp

σ2 + αnk(p)hkPJ
(4)

where p is the transmission power and σ2 is the variance of
the AWGN which we assume to be equal for all n ∈ N and
k ∈ K. We assume that the channel gain coefficients gnk can
be accurately estimated. Since the transmission power of each
user is chosen by the centralized entity and all gnk are known,
the product hkPJ can be accurately obtained by the BS by
comparing the expected received signal with the actual received
signal.

Let H = {1, 2, . . . ,H} be the set of slots in a scheduling
cycle. Accordingly, we define the achievable rateRnk(p) at slot
j ∈ H as follows:

Rnk(p(j)) = log

(
1 +

gnkp(j)

σ2 + αnk(p(j))hkPJ

)
(5)

Let θnk(j) and pnk(j) be the allocation indicator and power
control variable, respectively. If user n is allocated to channel k
at slot j, the allocation indicator is set to one, i.e., θnk(j) = 1,
otherwise it is set to zero, i.e., θnk(j) = 0. Similarly, pnk(j)
denotes the transmission power which must take values in the
range [0, P ] due to the power constraint we have discussed in
Section III-A. Let θ(j) = (θnk(j))n,k and p(j) = (pnk(j))n,k
be the scheduling policy and power control policy at slot j,
respectively. Clearly, if θnk(j) = 0, then we set pnk(j) = 0.
Also, for any n ∈ N and k ∈ K, let πnk(j) =

(
pmnk(j), pMnk(j)

)
be the history up to slot j, where

pmnk(j) = max{pnk(l) ∈ p̃(j) : αnk (pnk(l)) = 0, l < j}
pMnk(j) = min{pnk(l) ∈ p̃(j) : αnk (pnk(l)) = 1, l < j} (6)

and p̃(j) = (pnk(l))n,k,l<j is the set of all the power control
decisions taken up to slot j. By assumption, we have πnk(1) =

4Note that the uniform distribution assumption is well-suited to capture
this worst-case scenario where the actual value of the triggering threshold is
unknown to the network operator and all values in the range (pm, pM ] are
equiprobable.

(0, P ) for all n ∈ N and k ∈ K. Intuitively, at each slot the
system keeps track of the reaction of the jammer to different
policies chosen in the past.

To evaluate (5), we need to know the triggering function
exactly. Unfortunately, the reaction of the jammer, i.e., the
outcome of the triggering function αnk(p(j)), is known only
at the end of each slot. Accordingly, from eqs. (1), (3) and (5),
the expected achievable rate for user n on channel k is

Eα{Rnk(p)|πnk(j)}=
p− pmnk(j)

pMnk(j)− pmnk(j)
log

(
1 +

gnkp

σ2 + hkPJ

)
+

(
1− p− pmnk(j)

pMnk(j)− pmnk(j)

)
log
(

1 +
gnkp

σ2

)
(7)

where the expectation is taken w.r.t. the output of the triggering
function given that the history of the system at slot j is πnk(j).

We define the following finite-horizon joint power control
and scheduling problem with minimum performance guarantee
under jamming attacks (Problem A).

(A) : max
θ,p

Eα

∑
j∈H

∑
k∈K

∑
n∈N

θnk(j)Rnk(pnk(j))


s.t.
∑
k∈K

θnk(j) ≤ 1, ∀n ∈ N , j ∈ H (8)∑
n∈N

θnk(j) ≤ 1, ∀k ∈ K, j ∈ H (9)

Eα

∑
j∈H

∑
k∈K

Rnk(pnk(j))

 ≥ R∗n, ∀n ∈ N (10)

θnk(j) ∈ {0, 1}, ∀n ∈ N , ∀k ∈ K, j ∈ H (11)
pnk(j) ∈ [0, P ], ∀n ∈ N , ∀k ∈ K, j ∈ H (12)

where θ = (θ(1),θ(2), . . . ,θ(H)); p =
(p(1),p(2), . . . ,p(H)) are the decision variables;
α = (αnk(pnk(j)))n,k,j is the set of all outcomes of the
triggering function according to the actual power control policy
p(j) at slot j; and R∗n is the minimum rate requirement of
user n. In Problem (A), constraint (8) guarantees that at any
given time a user can be allocated to only one slot. On the
other hand, constraint (9) ensures that only one user can be
allocated on a given slot, thus avoiding possible collisions
and/or interferences among users. The minimum performance
constraint is imposed by the non-linear constraint (10) which
ensures that the expectation of the rate achieved by any user at
the end of the optimization horizon is higher than or equal to
the performance requirement R∗n. Finally, constraints (11) and
(12) guarantee the feasibility of the decision variables.

D. Hardness of the Problem

(A) is a non-linear (concave) combinatorial optimization
problem with both discrete (i.e., θnk(j)) and continuous (i.e.,
pnk(j)) decision variables. In this section, we prove that (A)
is NP-hard by showing that the Multiprocessor Scheduling is
polynomially reducible to a subproblem of (A). The multipro-
cessor scheduling is known to be NP-complete [29] and it is
stated as follows: given m processors, a deadline D and a set
X of jobs where each job xn ∈ X has length ln, is there a
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m-processor scheduling that schedules all jobs and meets the
overall deadline D?

Theorem 1 (NP-hardness). Problem (A) is NP-hard.

Proof: Let D = H , X = N , xn = n, m = |K|. Let
us assume Pth = 0, i.e., any user transmission triggers the
jammer and αnk(p) = 1 for all p > 0, n ∈ N and k ∈ K. Let
p∗nk(j) be the optimal transmission power level. In this specific
instance of Problem (A), it is straightforward that p∗nk(j) = P
for all n ∈ N , k ∈ K and j ∈ H. Now let us assume
that the minimum performance requirement R∗n is such that
R∗n < mink∈K {Rnk(P )}. Accordingly, we define the length of
job xn as ln =

R∗n
maxk∈K{Rnk(P )}T , where T = 1 is the duration

of a single slot. The above subproblem of (A) requires us to
find the rate-optimal scheduling of users (i.e., the jobs) among
the available channels (i.e., the processors) while satisfying
their minimum performance requirement (i.e., the job’s length)
within the considered horizon (i.e., the deadline). This way, we
have built a reduction of the multiprocessor scheduling to an
instance of a subproblem of (A). Thus, the above instance is
NP-complete by reduction [29]. Also, since this reduction can
be made in polynomial time, it follows that (A) is NP-hard and,
unless P=NP, it cannot be solved in polynomial-time.

IV. OPTIMAL SOLUTION

In Theorem 1, we have shown that (A) is NP-hard. However,
how to find an optimal solution still remains unsolved. In this
section, we show that (A) is a dynamic problem. Moreover,
we show that at each slot the joint power control and user
scheduling problem is decomposable. That is, at each slot it
is possible to separately solve the power control and the user
scheduling problems.

A. Problem Dynamism and Decomposability

In previous sections, we have shown that to maximize the
achievable performance of the system, i.e., the overall transmis-
sion rate, the scheduler has to evaluate the expected achievable
rate for all users at each slot. Eq. (7) shows that the expected
achievable rate for a given user on a given channel depends on
the history parameter πnk(j). In turn, eq. (6) shows that the
history πnk(j) depends on actions taken in the past. Therefore,
the knowledge and the state of the system dynamically evolve
at each slot. Intuitively, a DP approach is well-suited to model
and solve the considered problem.

Another important issue is whether or not the problem is
decomposable. To maximize the overall achievable rate of
network, the scheduling problem requires us to first estimate the
achievable performance of each user. On the contrary, as shown
in eq. (7), to maximize the single-slot expected rate, the power
control problem only needs to know the history parameter
πnk(j) for all n and k. Recall that πnk(j) does not depend on
the scheduling policy at the actual slot, but only depends on
the scheduling decisions taken in the past. Hence, at each slot,
the power control problem can be solved independently of the
actual scheduling policy. However, the user scheduling problem
needs the output of the power control problem. Therefore, as
shown in Fig. 2, we first solve the power control problem and

Fig. 2. Structure of the dynamic programming problem.

find the optimal transmission power level for each user on each
channel. Then, we solve the scheduling problem.

It is of extreme importance to remark that the decomposition
of the problem does not invalidate the optimality of the solution.
As we have already pointed out above, to find the optimal power
control policy does not depend on the actual scheduling policy
but only on the decisions taken in the past. The converse is
not true as the scheduling problem preliminarily requires to
calculate the achievable rate of all users, which implies that
the power control problem has to be solved first. Accordingly,
the decomposition of the problem still provides the optimal
solution to the joint power control and user scheduling problem.

Parameters shown in Fig. 2 and their importance will be
described in the two following sections.

B. Optimal Power Control

To solve the single-slot power control problem, we must
find the optimal transmission power level for all users on each
channel. Constraints (8) and (9) imply that no collision may
occur and we can separately solve the power control problem
for any individual user.

For each slot j and channel k ∈ K, we define the single-user
power control problem (Problem B) as follows:

(B) : max

{
max

p∈Πnk(j)
Eα {Rnk(p)|πnk(j)} , Rnk(P )

}
where Πnk(j) = [pmnk(j), pMnk(j)].

The challenges of (B) are twofold as: i) the problem evolves
according to past choices; ii) the reaction of the jammer is ob-
served only at the end of the slot. Therefore, we must consider
all possible realizations of the triggering function αnk(p). Let
p∗nk(j) be defined as follows:

p∗nk(j) = arg max
p∈Πnk(j)

Eα {Rnk(p)|πnk(j)} (13)

From eq. (7), eq. (13) can be rewritten as follows:

p∗nk(j) = arg max
p∈Πnk(j)

p− pmnk(j)

∆nk(j)
log

(
1 +

gnkp

σ2 + hkPJ

)
+

(
1− p− pmnk(j)

∆nk(j)

)
log
(

1 +
gnkp

σ2

)
where ∆nk(j) = pMnk(j) − pmnk(j) is the Lebesgue measure of
Πnk(j). In Proposition 1, we show that (B) admits a unique
optimal solution.

Proposition 1. Problem (B) always admits a unique solution
pOPT
nk (j) defined as

pOPT
nk (j)=

{
p∗nk(j) if Eα{Rnk(p∗nk(j))}≥Rnk(P )

P otherwise
(14)
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(a) (b) (c)

Fig. 3. Comparison between different realizations of the expected achievable rate (solid lines) as a function of the transmission power p. Gray dots represent
optimal transmission power policies: a) conservatory; b) aggressive; and c) exploratory. Dashed-dotted lines show the achievable rate when no attacks are
performed (α(p) = 0). Dashed lines show the achievable rate when the user is under attack (α(p) = 1).

Proof: The proof consists in showing that the function
Eαnk(p) {Rnk(p)|πnk(j)} is strictly concave and, therefore, it
admits a unique maximizer. Let y = hkPJ . By looking at the
second order derivative of Eαnk(p) {Rnk(p)|πnk(j)}, it can be
shown that strict concavity holds if

gy(p− pm)[y + 2(σ2 + gp)]

σ2 + gp+ y
<g(pM − pm)(σ2 + gp+ y)

+ 2y(σ2 + gp) (15)

where, for the sake of simplicity, we have omitted all subscripts
and the slot index. However, if we remove the negative term in
the left hand side of eq. (15), i.e., we consider a maximization
of the first term in eq. (15), and do some algebra, it follows that

gy(p)[y + 2(σ2 + gp)]

σ2 + gp+ y
< g(pM−pm)(σ2+gp+y)+2y(σ2+gp)

yields to y2 < 2y2, which always holds if y 6= 0. Furthermore,
it is straightforward to prove that also y = 0, i.e., no jamming
attack is performed by the attacker, leads to strictly concavity.
To prove the second part of the proposition, it suffices to note
that Eαnk(p) {Rnk(p∗nk(j))|πnk(j)} > Rnk(P ) implies that
the optimal transmission power level is pOPT

nk (j) = p∗nk(j).
Instead, if Eαnk(p) {Rnk(p∗nk(j))|πnk(j)} = Rnk(P ), both
p∗nk(j) and P are optimal. Without losing in generality, if both
policies are optimal, then we assume that pOPT

nk (j) = p∗nk(j).
Finally, if Eαnk(p) {Rnk(p∗nk(j))|πnk(j)} < Rnk(P ), it fol-
lows that pOPT

nk (j) = P .
Proposition 1 suggests that there are some scenarios where

transmitting with the highest power, i.e., P , and triggering the
jammer is the optimal power control solution. For example, if
the jammer is in proximity of a user but far away from the BS,
it is reasonable to assume that even low transmission power
levels can trigger the jammer. Therefore, to transmit with a low
power level to avoid the jammer can be inefficient. It follows
that transmitting with the highest power P and triggering the
jammer can be the only optimal policy. Clearly, pOPT

nk (j) de-
pends on the values of several parameters such as PJ , channel
gain coefficients and πnk(j). Therefore, it is hard to know a
priori the optimal policy chosen by the scheduler. However, to
better understand the dynamics that regulate the power control
problem, we define three different policies:
• conservative: is a policy where pOPT

nk (j) = pmnk(j). Recall

that αnk(pmnk(j)) = 0. Therefore, under such a policy
(Fig. 3(a)), the scheduler chooses to avoid the jammer by
choosing a safe strategy which ensures that the jammer
will not be triggered;

• aggressive: is a policy where the optimal power con-
trol policy consists in transmitting with full power, i.e.,
pOPT
nk (j) = P . In general, such a policy is optimal when

jamming activities does not affect the performance of the
system significantly (Fig. 3(b));

• exploratory: in this case, a transmitting power p ∈
(pmnk(j), pMnk(j)) is optimal (Fig. 3(c)). The scheduler de-
cides to take the risk by exploring new transmitting power
levels to which jammer’s reaction is unknown.

The above policies are in line with the vast body of literature on
the exploration-exploitation trade-off [30], where the decision
maker has to choose between gathering new information by
exploring new actions, or exploit the already explored actions
whose system’s reactions are already known. When an ex-
ploratory policy is chosen, the scheduler takes the risk and
explores new power control policies, even though such decision
could trigger the jammer. When conservative and aggressive
policies are chosen, the reaction of the jammer, together with
the achievable performance under such policies, can be exactly
predicted. Therefore, conservative and aggressive policies are
exploitation decisions. In the rest of the paper, we will refer to
the exploration of new power control policies as the learning
dynamics (or learning process) of the system.

Since the system is able to detect the presence or the absence
of a jamming attack only when a slot ends, the achievable rate
and the jammer’s reaction to a given policy are known only
at the end of each slot. Therefore, the history of the system is
updated at the beginning of each slot according to the reaction
of the jammer to decisions taken in the previous slot. Note
that the history of the system is updated only when a user is
scheduled on a given channel. That is, if

∑
k∈K θnk(j) = 0 for

a given j ∈ H and n ∈ N , we have that πnk(j + 1) = πnk(j).
Instead, when a user is scheduled on a given channel and j > 1,
the history of the system is updated according to the history
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δCnk(πnk(j)) =
σ2 + pmnk(j)gnk

gnk
·
[
log

(
1 +

hkPJ
σ2

)
− log

(
1 +

hkPJ
σ2 + pmnk(j)gnk

)]
(16)

δ̂Cnk(πnk(j)) = pMnk(j)− Pσ2/(σ2 + hkPJ) (17)

δAnk(πnk(j)) =
σ2 + pMnk(j)gnk + hkPJ

gnk
·
[
log

(
1 +

hkPJ
σ2

)
− log

(
1 +

hkPJ
σ2 + pMnk(j)gnk

)]
(18)

δ̂Ank(πnk(j)) = (p∗nk(j)− pmnk(j)) ·
log
(
1 + hkPJ

σ2

)
− log

(
1 + hkPJ

σ2+gnkp∗nk(j)

)
log
(
1 + hkPJ

σ2

)
− log

(
σ2+hkPJ+gnkP
σ2+gnkp∗nk(j)

) (19)

update dynamics in eq. (20).

πnk(j + 1) =
(
pmnk(j), pOPTnk (j)

)
if αnk(pOPTnk (j)) = 1 ∧ pOPTnk (j) 6= P(

pmnk(j), pMnk(j)
)

if αnk(pOPTnk (j)) = 1 ∧ pOPTnk (j) = P(
pOPTnk (j), pMnk(j)

)
otherwise

(20)

where "∧" is the logical AND operator and we recall that
πnk(1) = (0, P ).

For any πnk(j), let ∆nk(πnk(j)) = pMnk(j)− pmnk(j) denote
the measure of the interval [pmnk(j), pMnk(j)] generated by the
history πnk(j). Furthermore, let δCnk(πnk(j)), δ̂Cnk(πnk(j)),
δAnk(πnk(j)) and δ̂Ank(πnk(j)) be defined as in eqs. (16)-(19).
In Proposition 2, we illustrate how system’s learning dynamics
impact the choice of the optimal power control policy.

Proposition 2. For each n ∈ N , k ∈ K and j, l ∈ H, let
δCnk(j) = min

{
δCnk(πnk(j)), δ̂Cnk(πnk(j))

}
, and δAnk(j) =

min
{
δAnk(πnk(j)), δ̂Ank(πnk(j))

}
. We have that 1) if ∆nk(j) ≤

δCnk(j) a conservative policy is optimal, 2) if ∆nk(j) ≥ δAnk(j)
an aggressive policy is optimal, and 3) if either conservative or
aggressive policies are optimal at slot j, these policies will be
optimal for any l > j.

Proof: To prove the first part of this proposition, we
look at the first order derivative, say rnk(p), of the function
Eαnk(p) {Rnk(p)} w.r.t. the variable p ∈ [pmnk(j), pMnk(j)]. For
a conservative strategy to be optimal, i.e., pOPTnk (j) = pmnk(j),
it must hold that i) rnk(pmnk(j)) ≤ 0; and ii) Rnk(pmnk(j)) ≥
Rnk(P ). It can be easily shown that i) holds if ∆nk(πnk(j)) ≤
δCnk(πnk(j)), and ii) holds if ∆nk(πnk(j)) ≤ δ̂Cnk(πnk(j)).
Therefore, a conservative policy for user n on channel k at slot
j is optimal if ∆nk(πnk(j)) ≤ δCnk(j).
On the contrary, an aggressive policy is optimal if a)
rnk(pMnk(j)) ≥ 0; or b) Eαnk(p∗nk(j)) {Rnk(p∗nk(j))} <
Rnk(P ). It is possible to show that a) holds if ∆nk(πnk(j)) ≥
δAnk(πnk(j)), while b) holds if ∆nk(πnk(j)) ≥ δ̂Ank(πnk(j)).
Thus, an aggressive policy is optimal if ∆nk(πnk(j)) ≥ δCnk(j).
Clearly, an exploratory policy is optimal if neither conservative
nor aggressive policies are optimal.
The third and last part of the proof is a direct consequence of
the history update mechanism in eq. (20). When pOPT

nk (j) is
conservative (pOPTnk (j) = pmnk(j)) or aggressive (pOPTnk (j) =
P ), it follows that πnk(j + 1) = πnk(j). Thus, the same policy
will be still optimal for all l > j, i.e., πnk(j) = πnk(l) = · · · =

πnk(H).
Proposition 2 gives us an important insight on the learning

dynamics of the system. We have shown that πnk(j) = πnk(j′)
for all j > j′ if either conservative or aggressive policies are
chosen at slot j′. That is, anytime that either conservative or
aggressive policies are optimal for a given user on a given
channel, the learning process for that user on that considered
channel is stopped.

Although we proved that the optimal power control policy
is always unique and we have shown the dynamics regulating
the choice of the optimal policy, how to obtain the value of
pOPT
nk (j) still remains unsolved. A closed-form for pOPT

nk (j),
can be derived only by solving eq. (13), which is not possible
for our problem. To find the solution of eq. (13), we exploit
techniques from stochastic approximation theory and exponen-
tial mappings. For the sake of simplicity, in the following of
this section we omit the subscripts n, k and the slot index j. Let
us define R̃(p) = Eα(p) {R(p)}, and let r(p) denote the first
derivative of R̃(p) w.r.t. p. From eq. (13), r(p) can be written as

r(p) =
dR̃(p)

dp
=

g

σ2 + gp
+

1

pM − pm

[
log

(
1 +

hPJ
σ2 + gp

)
− log

(
1 +

hPJ
σ2

)]
− p− pm

pM − pm
· ghPJ

(σ2 + gp)(σ2 + gp+ hPJ)
(21)

We also assume pm=0 and pM=P . However, the more general
case where 0 < pm < pM < P can be treated similarly5.

The measure of the feasible power level set is ∆ = pM −
pm = P . Finally, in (22) we consider the discrete-time stochas-
tic approximation algorithm with exponential mappings{

z[i+ 1] = z[i] + γir(p[i])

p[i+ 1] = ∆ ez[i+1]

1+ez[i+1]

(22)

where i is the iteration index and γi is a variable step-size [31].
It is worth remarking that, at any iteration of (22), the value of
p[i] is always bounded in [0,∆]. That is, the proposed algorithm
in (22) always generates feasible transmission power updates6.
Let p∗ be the optimal solution of eq. (13). Now, we first derive
the continuous-time version of (22). Then, in Proposition 3, we
prove that (22) converges to p∗ for any possible feasible initial
condition.

5Note that we can define an auxiliary variable p′= p − pm, p′ ∈ [0, pM −
pm]. Our results still hold as r(p)= dR̃(p)

dp
=
dR̃(p′+pm)

dp′ =r(p′).
6The same result also holds for the general case where p[i] ∈ [pm, pM ].
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Let us define the continuous-time dynamics of (22) as{
ż = r(p)

p = ∆ ez

1+ez

(23)

Proposition 3. Let the step-size γi be defined such that∑
i γ

2
i <

∑
i γi = +∞. Then, for any feasible initial condi-

tion, the discrete-time algorithm (22) always converges to the
optimal solution of eq. (13).

Proof: Let p(t) be a solution orbit of (23). Our proof con-
sists in 1) showing that p(t) converges to p∗ as t → +∞, and
2) showing that (22) is an asymptotic pseudo-trajectory (APT)
[32] for (23) which converges to p∗ when some conditions on
the step-size are satisfied. From Proposition 1, we have that
R(p) is strictly concave, therefore r(p)(p − p∗) < 0 for all
p ∈ [0,∆] by definition. Thus, we can exploit the latter result to
build a Lyapunov-candidate-function for (23). It is easy to show
that the function V (p) defined as

V (p) = ∆ log

(
∆− p∗

∆− p

)
+ p∗ log

(
p∗

p
· ∆− p

∆− p∗

)
(24)

is a strict Lyapunov function for (23). One can show that this
statement is true by observing that V̇ = dV (p)/dt = r(p)(p−
p∗) < 0, V (p∗) = 0 and V (p) > 0 for all p 6= p∗. Furthermore,
by decoupling z and p, we obtain z = log

(
p

∆−p

)
; and by

rewriting V (p) in terms of z, we obtain V (z) which can be
proved to be radially unbounded. Therefore, we can assert that
the optimal solution p∗ is also globally asymptotically stable
(GAS), which leads to the conclusion that p(t) converges to
p∗ as t → +∞. Now, we prove the second part of the propo-
sition. That is, we prove that also the discrete-time algorithm
converges to the optimal solution as i → +∞. By decoupling
(23), we get

ṗ = dp/dt = p(1− p

∆
)r(p) (25)

This result will be useful to show that the discrete-time algo-
rithm tracks the continuous-time system up to a bounded error
that asymptotically tends to 0 as i increases.

A second-order Taylor expansion of (22) leads to

p[i+ 1] = p[i] + γip[i]

(
1− p[i]

∆

)
r(p[i]) +

1

2
Mγ2

i (26)

for some bounded M . Note that M is bounded as d
dpr(p)

is bounded by definition. Intuitively, eq. (26) is the discrete
version of eq. (25) up to a bounded error. Since, by assumption,∑
i γ

2
i <

∑
i γi = +∞, results contained in [32] show that

p[n] is an APT for (23).
It still remains to prove that p[n] → p∗. By considering a

Taylor expansion of V (z), we obtain

V (z[i+ 1]) = V (z[i]) + γi(p[i]− p∗)r(p[i]) +
1

2
M ′γ2

i (27)

for some boundedM ′ > 0. Recall that (p[i]−p∗)r(p[i]) < 0 by
definition and p∗ is GAS. It follows thatW = [0,∆] is a basin
of attraction for p∗. Therefore, there must exist a compact set
L ⊂ W containing p∗. If we prove that there also exists a large
enough i′ such that p[i′] ∈ L, then, the proof is concluded.

Assume ad absurdum that such i′ does not exists. Therefore,
some β > 0 must exist such that (p[i] − p∗)r(p[i]) ≤ −β for
all i. It follows that

V (z[i+ 1]) ≤ V (z[i])− γiβ +
1

2
M ′γ2

i (28)

which, by telescoping, yields to

V (z[i+ 1]) ≤ V (z[0])− β
∑
i

γi +
1

2
M ′
∑
i

γ2
i (29)

Since we assumed that
∑
i γ

2
i <

∑
i γi = +∞, the latter

equation leads to V (z[i + 1]) ≤ −∞, which is a contradiction
as V (z) is lower bounded by construction. Therefore, [32]
ensures that there must exist a large i′ such that p[i′] ∈ L and
limi→+∞ p[i] = p∗, which concludes our proof.

C. Optimal User Scheduling

In this section, we define the finite-horizon DP-based al-
gorithm to solve (A). To properly define the DP framework,
we must take into account the uncertainty introduced by the
jammer’s behavior and its impact on the dynamics of the
problem. Thus, in the language of DP, we define:
• System state: we define the system state at slot j as the

tuple (π(j),ρ(j)), where π(j) = (πnk(j))n,k denotes the
history vector at slot j. At each slot, πnk(j) is updated
according to eq. (20). On the other hand, ρ(j) = (ρn(j))n
denotes the residual performance vector. Each ρn(j) spec-
ifies the remaining amount of performance that has to be
allocated to user n from slot j to the horizon H to satisfy
its minimum performance request R∗n. At each slot, ρn(j)
is updated as follows:

ρn(j + 1) ={
R∗n if j = 1

ρn(j)−
∑
k∈K θnk(j)Eα

{
Rnk(pOPT

nk (j))
}

otherwise
(30)

• Action: at each slot j, the actions of the scheduler are
the optimal scheduling and power control policies, i.e.,
θ(j) and p(j), respectively. For any scheduling policy
θnk(j) ∈ θ(j), it must hold that θnk(j) = {0, 1}.
Instead, p(j) contains the optimal power control policies
chosen when the history of the system isπ(j). The generic
element pnk(j) ∈ p(j) is trivially defined as pnk(j) = 0 if
θnk(j) = 0 and pnk(j) = pOPT

nk (j) if θnk(j) = 1, where
each pOPT

nk (j) is given in eq. (14);
• Single-Slot Reward: we define the function

Φ (π(j),ρ(j),θ(j),p(j), j) as the reward, i.e., the
total transmission rate, that the system achieves at slot
j when policy (θ(j),p(j)) is chosen and the state is
(ρ(j),π(j)). Therefore,

Φ(π(j),ρ(j),θ(j),p(j), j) =
∑
k∈K

∑
n∈N

θnk(j)Γnk(π(j),p(j), j)

where Γnk(π(j),p(j), j) = Eα
{
Rnk(pOPTnk (j))

}
and

pOPTnk (j) ∈ p(j) and it is calculated in eq. (14). Thus, the
dependence of Γnk(π(j),p(j), j) from π(j) is implicit in
the definition of pOPTnk (j).
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To solve (B), we write the Bellman’s equation [33]:

J (π(j),ρ(j), j) = max
θ(j),p(j)

Φ(π(j),ρ(j),θ(j),p(j), j)

+ E {J (π(j + 1),ρ(j + 1), j + 1) |π(j),ρ(j)} (31)

s.t.
H∑
i=j

∑
k∈K

θnk(j)Eα
{
Rnk

(
pOPTnk (i)

)}
≥ ρn(j) (32)∑

k∈K

θnk(j) ≤ 1, ∀n ∈ N (33)∑
n∈N

θnk(j) ≤ 1, ∀k ∈ K (34)

θnk(j) ∈ {0, 1}, pnk(j) ∈ [0, P ], ∀n ∈ n, ∀k ∈ K (35)

where we set J(π(j),ρ(j), H + 1) = 0 for all π(j) and ρ(j).
At each slot, the Bellman’s equation consists in a (binary)

integer linear programming (ILP) problem. ILP problems are
known to be NP-Complete and their exact solution can be com-
puted through standard Branch-and-Bound methods. Finally,
by using backwards induction [33], we solve the Bellman’s
equation and find the optimal solution to (B).

In Fig. 2, we show the building blocks of our proposed
solution. Backward induction implies that we start from slot
j = H and go backwards in time. At each slot, we first solve the
power control problem by exploiting the system state parameter
π(j). The solution of the power control problem consists in the
power control vector p(j). To solve the scheduling problem,
the system requires p(j) and ρ(j). The scheduler solves the
single-slot reward maximization problem and provides the op-
timal scheduling policy θ(j). Finally, each element in p(j) is
modified such that each pnk(j) ∈ p(j) is set to pnk(j) = 0
if θnk(j) = 0 and the optimal joint power control and user
scheduling policy (θ(j),p(j)) is found.

V. APPROXIMATION OF THE OPTIMAL SOLUTION

In the previous sections, we have shown that DP can solve
our considered problem optimally. However, it is well known
that DP suffers from the "curse of dimensionality" [33]. That
is, when the state space and the number of variables increase,
the number of possible combinations that we need to solve
considerably increases. As an example, the power control vari-
ables p(j) are defined over the continuous set [0, P ]. It follows
that the number of possible combinations of both the system
state and the feasible actions is infinite. Furthermore, both the
history π(j) and the residual performance vector ρ(j) depend
on p(j), which contributes to further increase the dimension of
the problem.

DP can theoretically still provide an optimal solution to such
continuous space problem. However, from a practical point of
view, it is unrealistic to implement the Bellman’s equation on
discrete-time systems.

To avoid the "curse of dimensionality", we show that an
approximation of the optimal solution can be obtained by
discretizing the power control variable. Specifically, we exploit
state aggregation techniques [33] which allow to aggregate one
or more spaces of the original problem to create several lower
dimension abstract spaces. Thus, we can aggregate spaces by

quantizing the power control action space to create a discretized
version of it.

In the following of this section, we show that by discretizing
both the power control variable and the residual performance
vector it is possible to significantly reduce the complexity of
the problem while guaranteeing user QoS requirements.

A. State Aggregation Approach

Let ξp be the power quantization step. Without losing in
generality, we assume that the power quantization step is chosen
such that ξp is a divisor for P .

Let d·e and b·c be the ceiling and floor operators, respectively.
For any p∈ [0, P ], let p=

⌈
p
ξp

⌉
ξp and p=

⌊
p
ξp

⌋
ξp be the higher

and lower quantized power level values, respectively.
In the discretized version of the problem, we use the pro-

posed quantization-based state aggregation to discretize p∗nk(j).
That is, we calculate its quantized equivalents p∗nk and p∗nk. Let
p̂∗nk(j) be defined as follows:

p̂∗nk(j) =

{
p∗nk(j) if p∗nk = p∗nk
arg maxp={p∗nk,p∗nk}

Eα(p) {Rnk(p)} otherwise

Thus, p̂OPT
nk (j) = arg maxp={p̂∗nk(j),P} Eα(p) {Rnk(p)} is

the solution to the discretized version of eq. (14) 7.
Let p(j) and θ(j) be the optimal power control and schedul-

ing policy at slot j, respectively. Similarly to the continuous
space problem, for any pnk ∈ p(j) we have pnk = p̂OPT

nk (j) iff
θnk(j) = 1. Otherwise, p̂OPT

nk (j) = 0. At each slot, the history
of the system πnk(j) is updated according to eq. (20).

So far, we have discretized the state of power control vari-
able. However, from eqs. (5) and (30), it is clear that both
the achievable rate and the residual performance vector have
a continuous state space.

Let ξr be the performance quantization step. We assume that
the network operator forces each user to submit a minimum
performance requirement, R∗n, such that the latter is an integer
multiple of ξr. To overcome the high-dimensionality caused by
the definition of the residual performance vector, we modify the
update dynamic of ρ(j) as follows:

ρn(j+1) =

{
R∗n if j = 1⌊
ρn(j)
ξr
−

∑
k∈K θnkEα{Rnk(pnk)}

ξr

⌋
ξr otherwise

(36)
where pnk ∈ p(j).

Let Np and Nr denote the maximum number of power
and transmission rate quantized levels, respectively. Trivially,
Np = (P/ξp + 1) and Nr = (Rmax/ξr + 1), where Rmax =

max
{
R∗1, R

∗
2, . . . , R

∗
|N|

}
.

Now, we apply the Bellman’s equation to the discretized
problem and find its optimal solution.

At each slot j, the number of possible combinations of
ρ(j) and π(j) are Nr |N | and (

Np(Np−1)
2 )|N ||K|, respectively.

Finding the maximum of the single-slot reward maximization

7Note that even though p̂∗nk(j) is optimal for the discretized version of eq.
(13), it is sub-optimal for the continuous space problem, unless that p∗nk(j) =
p̂∗nk(j).
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problem has complexity O
(
(max{|K|, |N |})min{|K|,|N |}). Fi-

nally, the number of possible combinations in eq. (31) is
O(|K||N |H). Therefore, the overall complexity of the Bell-

man’s equation is O

(
ω|K||N |

(
Nr

N |K|p (Np−1)|K|

2|K|

)|N |
H

)
where ω = (max{|K|, |N |})min{|K|,|N |}. However, if
|K| < |N |, by exploiting constraints (33) and (34) we
can reduce the complexity of the single-slot maximization
problem to O

(
|N |!

(|N |−|K|)!

)
. Thus, the complexity becomes

O

(
|K||N | |N |!

(|N |−|K|)!

(
Nr

N |K|p (Np−1)|K|

2|K|

)|N |
H

)
. In the spe-

cial case where |N | = O(logH), the proposed algorithm
has polynomial complexity. That is, to solve the problem in
polynomial time, we should consider either a low number of
users that scales as the logarithm of the horizon H , or a large
value of H . In all other cases, the complexity of the algorithm
exponentially increases with the number of users in the system.

VI. PERFORMANCE-AWARE ONLINE GREEDY ALGORITHM
(POGA)

In previous sections, we have proposed both optimal and
approximated solutions to the joint power control and schedul-
ing problem. Unfortunately, due to complexity issues, those
solutions may not find application to those scenarios where the
number of users and channels are large. Furthermore, solutions
proposed in Sections IV and V require a priori knowledge of
the users in the network. However, there are some scenarios
where users dynamically access and leave the network, i.e.,
the number of users in the network vary in time. Under the
above assumptions, to apply both our optimal or approximated
solutions is not possible. Accordingly, to account for the above
issues, in this section we focus on the design of a low-
complexity online algorithm.

Let N (j) be the set of users at slot j ∈ H and K = |K|
be the number of wireless channels. Accordingly, NU (j) =
{n ∈ N (j) : ρn(j) = 0} indicates the set of unsatisfied users
whose minimum QoS requirement has not been satisfied yet.
Consequently, N S(j) = N (j) \ NU (j) represents the set of
satisfied users up to slot j.

Since no information about future user arrival is available,
and to reduce the complexity of the problem, in Algorithm
1 we propose a Performance-aware Online Greedy Algorithm
(POGA) to schedule user transmissions. We exploit the decom-
posability of the problem that we have introduced in Section
IV-A. Specifically, we first calculate the power control policy
p(j) as in eq. (14) by exploiting the discrete-time stochastic
approximation algorithm with exponential mappings that we
have introduced in eq. (22).

Then, to account for minimum QoS requirements, we give
priority to unsatisfied users in NU (j) and we schedule their
transmissions by finding the greedy scheduling policy θU (j).
If all channels have been assigned to unsatisfied users, i.e.,∑
n∈NU (j)

∑
k∈K θnk(j) = K, we set θ(j) = θS and p(j) =

θ(j) ◦ p(j), where "◦" is the Hadamard product operator.
Otherwise, if some channels have not been allocated in θU (j),
i.e.,

∑
n∈NU (j)

∑
k∈K θnk(j) < K, we exploit those unused

Algorithm 1 Performance-aware Online Greedy Algorithm
(POGA)
Input: System state (π(j),ρ(j)), Satisfied users NS(j), Unsat-
isfied users NU (j).
Output: A greedy power control and scheduling policy
(θ(j),p(j)).

Calculate power control policy p(j) from eq. (22)
Find the greedy scheduling θU (j) among unsatisfied users in
NU (j)
if There are unscheduled channels then

Find the greedy scheduling θS(j) among satisfied users in
NS(j)
end

θ(j)← θU (j) ∨ θS(j)

p(j)← θ(j) ◦ p(j)
Update (π(j + 1),ρ(j + 1))

return (θ(j),p(j))

channels to schedule transmissions of already satisfied users
in N S(j) and calculate the greedy scheduling policy θS(j).
Thus, we set θ(j) = θU (j) ∨ θS(j) and p(j) = θ(j) ◦ p(j),
where "∨" is the logical OR operator. Finally, we update
(π(j+1),ρ(j+1)) according to eqs. (20) and (30) and POGA
returns the sub-optimal scheduling solution (θ(j),p(j)).

Let N = maxj∈H{N (j)} be the maximum number of users
in the system. It can be shown that the complexity of the power
control algorithm isO(NK) [34]. By exploiting results derived
in V-A, it can be shown that to find the greedy scheduling
policies θS(j) and θU (j) has complexity O( |N |!

(|N |−|K|)! ) =

O(NK−1). Therefore, the complexity of executing Algorithm
1 for H slots is O(HNK). That is, the overall complexity of
POGA is polynomial in the number N of users in the system.

VII. NUMERICAL RESULTS

In this section, we evaluate the achievable performance of the
solutions above proposed through extensive numerical simula-
tions. Specifically, in Section VII-A we assess the performance
of the approximated solution to the joint power control and
user scheduling problem. Instead, the achievable performance
of POGA and its comparison with other traditional scheduling
policies are discussed in Section VII-B.

A. Performance Assessment of the approximated solution

We consider a wireless network consisting of N = 3
legitimate users. Unless otherwise stated, we consider K = 2
channels whose gain coefficients gnk, hnk and hk are generated
according to the path-loss model. As depicted in Fig. 4, we con-
sider a 1-dimensional scenario where users (i.e., U1, U2, U3),
the BS and the jammer (i.e., J) are located along the same
axis8. Other relevant simulation parameters are reported in
Table II. Finally, unless otherwise stated, we set the maximum
transmission power for the jammer to PJ = 0.6W , which is a
common setting of many commercial mobile jammers.

8This is just an illustrative example. However, our approach is independent
of the actual wireless network topology.



11

TABLE II
SIMULATION SETTING

Parameter Value
Carrier frequency fc = 2.4GHz

Channel bandwidth B = 10.93KHz
Noise spectral density σ2 = 584µW

Maximum transmission power of users P = 0.6W
Triggering threshold Pth = 0.5µW

Edge of the simulated square area L = 200m
Horizon duration H = 10

Fig. 4. Topology of the simulated 1-dimensional scenario.
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Fig. 6. Expected rate of the system as a function of the position of the jammer
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We start by illustrating how the learning process on a single
channel evolves over time. In Fig. 5, we show the evolution of
the learning process, i.e., the calculation of pOPT

nk over time, as a
function of PJ . For all users, dotted lines represents the lowest
transmission power that triggers the jammer. The exploratory
policy chosen by U1 at j = 2 causes the triggering of the
jammer. Thus, U1 reduces its transmitting power but it again
triggers the jammer. This is because the triggering threshold
for user U1 (dotted-starred lines) is low. Hence, U1 chooses an

aggressive policy even though it triggers the jammer. Similarly,
the exploratory policy of U2 at j = 2 does trigger the jammer.
Therefore, U2 reduces its transmission power and explores a
new transmission power policy. The new explored policy is
found to not trigger the jammer. Accordingly, U2 evaluates eq.
(14) and realizes that no further improvements are needed, a
conservative policy is chosen and the learning process for U2

is stopped. On the other hand, U3 is far away from the jammer.
Therefore, as shown in Fig. 5, the triggering threshold for this
user is high. As a consequence, the first exploratory policy
does not trigger the jammer. However, the risk of triggering the
jammer is high. It follows that eq. (14) suggests to choose a
conservative policy.

To investigate the impact of the position xJ of the jammer
on the achievable performance of the network, in Fig. 6 we
evaluate the expected transmission rate as a function of xJ
under two different minimum QoS requirements. Specifically,
we consider the case where all users request an identical
minimum QoS level R∗n = 10.93 Kbit/s (Case A), and the
case where no requirements are submitted by users (Case B).
Fig. 6 shows that when the jammer is at the border of the
considered scenario, its attacks have limited effect on network
performance. Instead, when the jammer approaches the BS
and the users, the achievable rate of the network considerably
decreases. Also, when no QoS constraints are considered and
rate maximization is the only objective of the network operator,
system performance are higher than those achieved in Case A.

In Figs. 7 and 8 we compare the performance of the system
when different scheduling policies are considered. Specifically,
we compare the proposed approximated solution to random,
round-robin and greedy scheduling policies without minimum
QoS requirements. Note that the greedy scheduling policy
without QoS requirements we consider in Figs. 7 and 8 is
different from POGA. POGA is performance-aware and aims
at satisfying user QoS requirements. On the contrary, a greedy
scheduling policy without QoS requirements only schedules
those users whose transmission rate is the highest. A compar-
ison between POGA and a greedy scheduling policy without
QoS requirements is in Section VII-B.

Fig. 7 shows that our proposed solution reaches high trans-
mission rates and it outperforms random and round robin
policies. The achievable performance of the network under
the proposed approximated solution and the greedy without
QoS requirements are comparable. However, in Fig. 8 we plot
the per-user normalized residual performance variable ρ̄ at the
horizon H defined as

ρ̄ =
1

N

∑
n∈N

ρn(H)

R∗n
(37)

ρ̄ represents the QoS-gap, i.e., the per-user amount of perfor-
mance that has not been provided to users at the end of the
scheduling cycle. Thus, the desirable value is ρ̄ = 0, while
ρ̄ > 0 indicates infeasible solutions. Our solution is the only
one that guarantees ρ̄ = 0, i.e., all minimum QoS requirements
are satisfied. Therefore, even though a greedy approach without
QoS requirements allows to achieve high performance, it does
not guarantee minimum QoS levels. In the considered simu-
lation setting, Fig. 8 also shows that ρ̄ for the greedy approach
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Fig. 7. Expected rate of the system under different scheduling policies as a
function of PJ .
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Fig. 8. Average per-user normalized residual performance at the end of the
joint power control and user scheduling cycle as a function of PJ .

without QoS requirements is constant and high. On the contrary,
the value of ρ̄ under random and round robin policies is low for
small values of the transmission power of the jammer, but it
increases when the value of PJ increases as well.

B. Performance Assessment of POGA

In this section, we assess the performance of the online
algorithm POGA. The results being presented are averaged over
200 simulations. At each simulation run, the positions of the
users and the jammer are randomly generated within a square
area of edge L = 200 according to a uniform distribution.

In Fig. 9, we assume H = 5 and we show the per-user
expected rate of the system under POGA as a function of the
number N of users when K = 4 (solid lines) and K = 8
(dashed lines). POGA first aims at satisfying all users. Then,
it greedily maximizes the rate of the system by scheduling
the users that have been already satisfied. Therefore, as N
increases, the per-user expected rate under POGA decreases.
Also, it is worth noting that the per-user expected rate when
K = 8 approaches that of K = 4 as the number of users
increases as well. Such a result stems from the fact that when
the available channels are shared by a large number of users, the
improvement provided by increasing the numberK of channels
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Fig. 9. Per-user expected rate of the system under POGA as a function of the
number N of users (Solid lines: K = 4; Dashed lines: K = 8).
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Fig. 10. Average per-user normalized residual performance under POGA as a
function of the numberN of users (Solid lines:K = 4; Dashed lines:K = 8).

reduces. It is worth noting that by increasing the number K
of channels it is possible to considerably improve the rate of
the system. Instead, worse performance are achieved when the
jammer attacks with higher transmission power PJ .

In Fig. 10, we show the average per-user normalized residual
performance variable defined in eq. (37) under POGA as a
function of the number N of users when K = 4 (solid lines)
and K = 8 (dashed lines). It is shown that, as N increases,
the average per-user normalized residual performance increases
as well. Such a result is due to the fact that it is hard to
accommodate all minimum QoS requirements when a large
number of users is under attack. It is worth noting that, by
increasing the number of channels, it is possible to improve
the performance of POGA and reduce the average per-user
normalized residual performance. As expected, smaller values
of PJ result in better performance of the system.

To investigate the impact of the horizon duration H on the
achievable performance of the system, in Figs. 11 and 12 we
consider N = 20 users and we show the per-user expected
rate of the system and the average per-user normalized residual
performance, respectively.

Fig. 11 shows that higher rates are achieved when the hori-
zon duration is large. Analogously, Fig. 12 illustrates how
the average per-user normalized residual performance variable
decreases, and asymptotically tends to zero, as H increases.
That is, large values of the horizon durationH allow to schedule
and accommodate more users, which eventually results in better
performance.
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Fig. 11. Per-user expected rate of the system under POGA as a function of the
horizon duration H (Solid lines: K = 4; Dashed lines: K = 8).
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Finally, in Figs. 13 and 14 we compare POGA to other
scheduling policies. We assume an horizon duration of H =
10 and we consider N = 20 users. Similarly to what has
been shown in Figs. 7 and 8, a greedy policy without QoS
requirements achieves the highest transmission rate. However,
it poorly performs in terms of guaranteeing a minimum QoS
level to users. Instead, Fig. 13 shows that POGA outperforms
random and round-robin policies in terms of per-user expected
rate. And, as illustrated in Fig. 14, POGA achieves the lowest
per-user normalized residual performance. That is, among the
considered scheduling policies, POGA is the best suited to
achieve high transmission rate while guaranteeing user QoS
requirements. Furthermore, both Figs. 13 and 14 show that by
increasing the number K of channels, all scheduling policies
achieve higher performance.

VIII. CONCLUSIONS

In this paper, we studied the joint power control and schedul-
ing problem in jammed networks under minimum QoS con-
straints. By assuming that no information on jammer’s behavior
and position is available, we proved that the problem is NP-
Hard. However, we showed that it can be decomposed and
modeled as a dynamic problem whose complexity is further
reduced by exploiting state aggregation techniques. Learning
through observation of jammer’s reactions to transmission de-
cisions taken in the past has been exploited to identify optimal
transmission policies at future slots and maximize network per-
formance. We also proposed and discussed a low-complexity
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Performance-aware Online Greedy Algorithm (POGA). Simu-
lation comparison showed that the approaches proposed in this
paper outperform other traditional scheduling policies.
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