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Abstract—Networking and Artificial Intelligence (AI) are two
of the most transformative information technologies over the last
few decades. Building upon the synergies of these two powerful
technologies, we envision designing next generation of edge
networks to be highly efficient, reliable, robust and secure. To
this end, in this paper, we delve into interesting and fundamental
research challenges and opportunities that span two major broad
and symbiotic areas: AI for Networks and Networks for AI. The
former deals with the development of new AI tools and techniques
that can enable the next generation AI-assisted networks; while
the latter focuses on developing networking techniques and tools
that will facilitate the vision of distributed intelligence, resulting
in a virtuous research cycle where advances in one will help
accelerate advances in the other. A wide range of applications
will be further discussed to illustrate the importance of the
foundational advances developed in these two areas.

I. INTRODUCTION

The astonishing successes of Artificial Intelligence (AI),

especially in Machine Learning (ML), provide an opportunity

to design next generation (XG) networks that are “intelligent”

in many different ways. In particular, the focus will be on the

wireless edge, since most of the growth is expected to happen

with wireless devices in the network edge, and not the network

core. Imagine a network edge that supports diverse devices,

such as robots, mobiles and self-driving cars, and a wide

range of distributed AI applications, such as smart aerospace,

remote healthcare, smart manufacturing, AI-assisted education

and the operation of 6G and beyond (6G+) cellular networks.

We envision such a future network edge, managed by AI,

supporting distributed intelligence. The physical infrastructure

(towers, radios, routers, edge cloud, etc.) of this wireless edge

will be controlled, managed and maintained by AI driven

service robots (connected through the same network). Further,

*Equal contribution; Corresponding authors. Email: lin.4282@osu.edu,
shi.1796@osu.edu.

the virtual infrastructure (link optimization, load balancing,

anomaly/outage detection and self-healing, etc.) of the network

will be maintained by intelligent network agents that continu-

ally learn and evolve, without the need for human intervention.

In the meanwhile, these AI agents and physical devices need

to be robust to failures, extreme loads, weather events, and

adversarial attacks.

However, it is extremely challenging to develop a distributed

intelligent plane in order to control these inherently complex

edge networks, consisting of large numbers of dispersed

network elements, comprising heterogeneous software and

hardware components and modules. Traditional approaches

to managing networks have been based on heuristic designs

derived from domain knowledge or using (simplified) theo-

retical models. Neither of these approaches will be suffice to

control these networks because of their scale and complexity;

their mobility and dynamics; the stringent constraints posed

by their applications; and the expectations of for security,

privacy, and adaptability. Moreover, an AI-centric black box

approach will not work either, because today’s successful

AI algorithms require massive amounts of data co-located

with computation. In stark contrast, the fast time scales and

the decentralized nature of networks and available data force

instead a distributed paradigm for AI in the edge networks that

requires the proper blending of domain knowledge and AI.

In order to address these challenges, we envision promising

research directions from two different perspectives, i.e., AI

for Networks and Networks for AI, where advances in one

will accelerate advances in the other through a virtuous cycle.

To design next generation hyperscalable heterogeneous and

dynamic networks that are highly efficient, reliable, robust,

and secure, new AI tools and techniques will need to be

developed to ensure that these networks are self-healing and

self-optimized. On the other hand, these networks will in turn
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be designed to unleash the power of collaboration to help

solve long-standing AI challenges, making AI more efficient,

interactive, and privacy preserving.

The rest of the paper is organized as follows. In order to

make progress on solving the grand challenges on AI for

networks and Networks for AI, we take a divide and conquer

approach. We first introduce AI for Networks in Section II,

where new AI techniques will be designed to achieve four

goals: (1) re-engineering the physical fabric for 6G+ wireless

communications; (2) designing and controlling next generation

networks by taking into account practical resource constraints;

(3) generalizing for multi-agent, possibly non-cooperative,

network entities; (4) guaranteeing that the network edge is

secure and intrusion-free. In Section III, we focus on Networks

for AI, where the networks will be re-engineered such that

(1) distributed AI adapts its operation seamlessly by taking

into account physical constraints; (2) communication and

computation resources are adaptively allocated to serve the

needs of distributed AI applications; (3) collaborative analysis

of data will be enabled for effective AI; (4) protection from

information leakage and attacks will be achieved. Applications

for these research directions are presented in Section IV,

followed by the conclusions in Section V.

II. AI FOR NETWORKS

While networks have evolved over time to incorporate the

latest technological advances and improve fabric capacity, it

is human professionals that determine policies and technical

advances. Instead, we aim to leverage the power of AI

towards designing networks with minimal human interven-

tions for most network operations. We propose to design a

distributed intelligence plane that has two goals to impact

current and future networks. First, current networks could be

renovated by replacing the antiquated management plane with

autonomously interacting AI agents that adaptively optimize

the data and control planes for efficient and robust perfor-

mance. Second, we could re-imagine secure future networks

through the lens of an AI-driven distributed intelligence to

co-design the data, control and management planes.

A. AI for Physical Layer Design

Due to the complex, non-stationary and distributed nature of

current and future networks, it becomes significantly important

to leverage the power of AI to not only better understand the

dynamic physical environment, but also make it controllable.

This points to the need of using AI to leverage the domain

knowledge to develop better networking solutions, and also

designing new AI algorithms to engineer the physical envi-

ronment itself for further improved performance.

1) Leveraging Physical Knowledge: There have been in-

creasing interests in incorporating physics-based models with

neural network architectures to solve complex physics prob-

lems [1]–[4]. Two of the places where AI could play a critical

role are (i) to expedite the estimate or prediction for the

physical environment in the network [5], and (ii) to encode

relevant physical models of interest as a layer within a multi-

layer neural network for faster convergence [6]. For example,

in the mmWave beam alignment problem, non-stationary ker-

nelized bandits under inference constraints have been studied

in the time-varying multi-path environment [7]. By leveraging

the beam correlation information, a constrained UCB-type

of algorithm was proposed with theoretically-guaranteed low

regret and constraint violations. It is also of great interests

to design physical-based learning techniques so as to improve

the network performance in various scenarios, e.g., beam-scan

time and beam-selection performance.

2) Engineering the Physical Environment: In the edge net-

works, each sub-system could contain heterogeneous resource-

constrained edge devices in order to satisfy different service

requirements. As a result, it becomes more important to adap-

tively engineer the network topology based on the mobility of

the edge nodes and actively change the physical environment

for communication [8], [9]. For example, an over-the-air

federated learning algorithm was proposed in [10] with joint

adaptive computation and power adjustment. This algorithm

adaptively chooses device local iterations and scales power at

both the device and server levels. Moreover, [11] developed

a channel-quality-aware over-the-air learning algorithm with

theoretical convergence rate performance guarantees. This

algorithm leverages channel state information estimation and

adaptively scales channel inversion to mitigate the impacts

of wireless channel fading. An important future direction is

to adapt these algorithms to higher level network dynamics,

e.g., network mobility, node density, number and type of

applications, flows, and highly-dynamic edge demand.

3) Discovering Communication Algorithms via Deep
Learning: Traditional efforts mainly focus on improving linear

codes, e.g., turbo [12], low-density parity check [13], and

polar codes [14], for reliable communication by individ-

ual human ingenuity. However, as ML has been playing a

more and more important role in networking, utilizing ML

to design more efficient codes, e.g., search for non-linear

codes, becomes an essential idea. Although using ML could

expedite discovery and expand the searching space of codes,

it is required to design neural architectures that can handle

many unique challenges, e.g., large number of code words,

varying channel conditions and large block length. Promising

gains have been shown in existing work [15], [16]. Recently,

Kronecker Operation (KO) codes that outperform the state-

of-the-art reliability performance on the standardized additive

white Gaussian noise channel was proposed in [17]. KO codes

are a family of computationally efficient deep-learning driven

pairs of encoders and decoders. The design of KO codes

verifies the ideas of utilizing ML in better exploring codes,

and motivates great interests in further discovering a much

richer class of new nonlinear algebraic structures to increase

the capacity region of the network.

B. AI-based Network Resource Allocation and Control

Control and allocation of network resources lie at the core of

every network. Compared with classical convex-optimization-

17

Authorized licensed use limited to: Northeastern University. Downloaded on January 25,2024 at 04:06:09 UTC from IEEE Xplore.  Restrictions apply. 



based network utility optimization, leveraging online learning

and reinforcement learning techniques to develop efficient,

fair, and safe data-driven AI-empowered mechanisms has

received considerable attention. However, due to the various

new challenges, including non-stationary dynamics at multi-

ple timescales, non-convex objectives and combinatorial con-

straints on resource availability, new methods and algorithms

need to be developed.

1) Low-complexity and Sample-efficient AI-network Algo-
rithms: AI has been an important tool to address the uncertain

and complex network conditions in the operation of network

services. Although new challenges arise due to the non-

stationary, distributed and heterogeneous nature of the net-

work systems, and uncertain network constraints, some recent

results have already shown significant gains that can be reaped

from employing advanced AI strategies for network optimiza-

tion [6], [18]–[23]. For example, to improve the performance

of vehicle detection in autonomous driving, [24] proposed

several deep-learning-based frameworks for multi-modality

fusing, which considerably outperform uni-modal detection.

Moreover, safety constraints emerge as a critical obstacle when

applying existing AI algorithms to practical network operation.

For such a constrained Markov Decision process (MDP),

model-free reinforcement learning (RL) approaches have been

developed with theoretically-guaranteed low regret and con-

straint violation in [25]–[27]. Nonetheless, there still remain

open problems on how to develop performance-guaranteed

scalable AI algorithms for the dynamic and distributed network

systems (under realistic hard and soft constraints [28]–[34]).

2) Algorithms with Mis-specified Models: Networks are

highly complex systems, and classical control heuristics based

on simplified theoretical models do not scale to hyper-scale

networks due to model simplicity. Fortunately, [21] has shown

that when the true environment model is realizable by a

feature-based linear combination of base models, learning a

near-optimal policy has polynomial sample complexity. How-

ever, significant challenges still exist when considering the

real-worlds settings, due to the fact that a linear combination

of base models may not accurately represent the dynamics of

the complex networks. Thus, it is important to leverage non-

linear function approximators (such as neural networks), in

order to handle model mis-specifications and provide agnostic

learning guarantees. To this end, a model-free RL algorithm

was proposed in [35] for a mis-specified model where not

only the average regret scales only polynomially with the mis-

specification parameter, but also the space and per-episode

time complexities are bounded when the number of episodes

increases to infinitely large. Notably, to address the challenges

from the real-world settings, there is still an urgent need to

generalize the existing AI algorithms to more general MDP

settings and fundamentally understand the power of deep

learning in this direction.

3) Learning from Historical Data and Incomplete Network
State: A practical challenge in network control is the lack of

complete or sufficient data at runtime (e.g., in a multi-sensor

scenario, LiDAR point clouds are not available to provide

global information, even though camera images are available

in a timely manner), so the network has to operate with limited

knowledge of the network state. Because of this and the highly

non-stationary network datasets, the promised performance

guarantees using the traditional approaches may not be achiev-

able. One promising remedy is to use local data for real-time

control and also historical global data to determine policy. To

this end, a new off-policy temporal difference learning method

has been developed in [36], which improves upon the emphatic

temporal difference learning [37] to conduct the off-policy

value function evaluation with function approximation.

C. Multi-Agent Network Resource Allocation and Control

Sharing resources is central in networks that comprise

a large and dynamic population of often competing, self-

interested users. In addition to this, different parts of the

global network may be subject to different local conditions and

different organizational control and regulation. It is therefore

crucial to develop AI-aided non-cooperative and distributed

networks where resources are shared efficiently and fairly

amongst self-interested users with dynamic demands.

1) Network as a Multi-Agent System: Sharing of resources

and collaboration among agents have been prominent in cur-

rent and future networks. In practice, each user can choose

its own policy search algorithms, rather than a same type

of algorithms that is studied in existing multi-agent learning

method. This type of algorithmic heterogeneity requires us to

start to seek new network stability and scalability [38], and

the fundamental understanding of the underlying connections

among different policy search algorithms [39]–[42]. It is also

interesting to consider constraints in the multi-agent settings

and to extend existing RL algorithms by taking the stability

and scalability into account.

2) Fair Network Operations Among (Non-Cooperating)
Users: A key challenge in network operation is the fair sharing

of stochastic and heterogeneous resources under dynamic ser-

vice requirements and network conditions. Fortunately, com-

pared with the classical network utility optimization method,

e.g., online convex optimization, AI is much more powerful

in handling the non-convexity, unknown statistics and high

dimensions. Thus, unique opportunities arise for designing

new AI strategies to optimize the trade-off between efficiency

and fairness in shared networks. A mini-batch Markovian

sampled fully decentralized actor-critic algorithm was devel-

oped in [43] for fully decentralized multi-agent reinforcement

learning problems. Even though there is no knowledge of

joint actions, the sample complexity of this algorithm only

scales polynomially with the number of agents. There are

many other interesting future directions, including achieving

theoretical performance guarantees under shared constraints,

RL-based fair algorithm among non-cooperating users, and

reducing communication overhead among agents.

3) Data Sharing and Augmented Learning for Distributed
Network Operation and Resource Utilization: It is well-known

that data sharing can lead to better system-level outcomes,

e.g., the spectral efficiency gain in a distributed multi-user
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spectrum sensing when users are allowed to communicate

and exchange information [44], [45]. Thus, an important open

question when designing AI for network is to understand how

much we can potentially gain by leveraging the shared data

in the learning algorithms, while taking the adversarial inputs,

delayed feedback and privacy into consideration. To this end,

a distributed online algorithm has been developed in [46] for

content allocation in networks of caches that attains a low

regret under adversarial topology. Moreover, [47] investigated

the HSIC (Hilbert-Schmidt independence criterion) bottleneck

as a regularizer for learning an adversarially robust deep neural

network classifier. It has been shown that the HSIC bottleneck

enhances robustness to adversarial attacks both theoretically

and experimentally. Besides exploring the fundamental power

of data sharing, it is also an interesting future direction to

design frameworks to incentivize data sharing mechanisms

that not only improve performance but also satisfy the privacy

requirements.

D. AI for Network Security

Resourceful adversaries (e.g., nation-states, terrorists, cy-

ber criminals) can create havoc in network ecosystems and

carry out malicious activities by exploiting network vulner-

abilities. New wireless networks, like 5G, WiFi 6 and the

envisioned 6G, bring certain security advantages. For example,

in mmWave communications, directionality can help mitigate

spoofing and eavesdropping attacks. However, securing next-

generation networks is a formidable challenge because of

inherent security requirements, increased network complexity,

huge numbers of connected devices, and low latency require-

ments. Security must cover network design, operation, and

evolution across both anticipated uses (common cases) and

unanticipated-yet-possible uses (corner cases). To this end,

AI tools can be leveraged to build a comprehensive network

security framework that provides secure foundations for the

networks, protects the networks through a security life-cycle

and enhances security mechanisms.

1) Systematic Analysis of Network Protocol Specification:
A major issue with protocol specifications, especially for

the ones expressed in natural language as in the case of

standardization documents, is the underspecification of steps

in protocols. As shown in [48], underspecifications can lead

to a number of vulnerabilities in protocol implementations,

for which the develops do not always take the most secure

solutions. As a formal verification, a systematic framework

named as VMAnalyzer was proposed in [49] to perform

security analysis on the Voice over WiFi (VoWiFi) protocol.

By modeling the VoWiFi protocol as finite state machines

(FSMs), VMAnalyzer can generate model variants to remove

the underspecifications. However, extracting FSMs requires

huge manual effort, especially for natural language specifica-

tions as in standardization documents. By leveraging domain-

specific patterns, sentence-level natural language processing

(NLP) techniques can be developed as a promising solution to

this problem.

2) Systematic Analysis of Network Protocol Implementa-
tions: Network protocol implementations often have various

bugs [50]–[52], which makes the analysis of these imple-

mentations, e.g., model checking, clearly more important to

guarantee the network security. Particularly, several imple-

mentation flaws have been identified in cellular protocols

by analyzing the security and noncompliant behaviors with

the cellular standard [48], [53]–[55]. However, traditional

approaches hinge heavily upon manual analysis and the quality

of the properties being tested, which can be error-prone and

time-consuming. To address this, [56] developed a testing

framework to enable automated noncompliance checking for

commercial 4G LTE device implementations, by utilizing

black-box automata learning to extract input-output FSMs.

Besides, since most implementations are proprietary and the

corresponding source codes not completely open, causality

inference can be leveraged to examine hidden implementations

and policies behind the observed consequences.

3) Learning and Adapting Network Security Policies: Fine-

grained policies, such as policies for firewalls, access control,

security service chaining, and dynamic definitions of virtual

networks, are critical defense mechanisms. Correspondingly,

the generation of those policies is a key security life-cycle

activity, where manual specifications however are often in-

feasible because the policies are attribute-based and complex.

AI techniques can be used to learn the security policies from

logs of data and other information sources. Take the learning

of attribute-based access control (ABAC) policies [57] as an

example. An evolutionary approach was proposed in [58] to

learn a single rule per group of decision examples based

on a divide-and-conquer algorithm. [59] learned a Restricted

Boltzmann Machine using logs in order to generate candidate

rules. However, the learning process should be able to carefully

balance between overfitting and safe policy generalization.

Towards this end, [60] proposed a generic framework that in-

corporates available context information with logs to improve

accuracy, while generating ABAC rules that can be expressed

in propositional logs. Beyond learning security policies from

scratch, how to quickly adapt the policies with limited logs is

an interesting direction, where transfer learning can play an

important role.

III. NETWORKS FOR AI

In the current and future large-scale distributed AI prob-

lems we envision, data is private and not colocated with

learners, computation is distributed, applications are real-time,

and interactions occur between both human and AI agents.

Mechanisms that enable distributed AI have the added benefit

of AI-democratization, making it accessible to all rather than

only large corporations. This section lays the foundation of

new AI algorithms that are robust to immutable network

and computing constraints, are adaptive to heterogeneity, and

robust to failures. New network architectures and algorithms

could be developed for AI, accounting for human-AI-network

interactions, privacy, security, and fairness.
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A. Network-Aware AI Operation
Distributed ML algorithms presently run on centrally par-

titioned datasets over high-performance, reliable data centers,

connected by fast communication links. In the edge networks,

edge nodes have limited computational resources with po-

tential straggler problems, communication links are slow and

unreliable, and data is imbalanced, highly heterogeneous, and

comes with privacy constraints. These new challenges point

to the need of scalable and network-aware distributed ML

algorithms, accounting for computation, communication, and

data constraints at the edge.
1) Communication-Efficient and Network-Aware

Distributed Optimization: Traditional distributed ML

algorithms assume reliable communication between a

central aggregating server and worker nodes. In contrast,

in edge networks, edge nodes are usually communication-

constrained, resource-constrained, and with heterogeneous

computing speeds. Therefore, it is important to achieve good

performance comparable to the traditional methods while

simultaneously reducing the communication overhead [61]–

[63]. Although fundamental and practical work are still

missing, there have been some studies in this direction. For

example, [64] developed a federated learning algorithm,

which can leverage the spatial and temporal correlations

in the data to reduce communication costs, to improve

the efficiency and accuracy of distributed mean estimation.

Moreover, a novel server-based variance-reduced algorithm

was proposed in [65], which simply uses the most recent

update for each client, to achieve reduced convergence error.

Besides the trade-off between the utility performance and

the communication overhead, (extreme) mobility, privacy and

security are other three important factors that need to be

taken into consideration.
2) Scalable, Network-Aware Distributed Inference: Future

edge networks tend to be distributed and with large scale. In

the literature for dealing with such a network, scalability has

received considerable attention. This requires us to address the

challenges resulted by stragglers [66], non-linear or even more

complex settings [67], heterogeneous constraints like security

requirements [68]. An efficient parallel resource allocation

method has been proposed in [69] that can not only learn a

highly-accurate complex neural architectures, but also satisfy

underlying systems constraints. Nonetheless, it is still open

how to leverage network information to (i) design coding

schemes that use partial computations by slow nodes to

handle stragglers, (ii) make coded computation secure and

adaptive to the heterogeneous, dynamic, and malicious nature

of edge computing systems and resources, and (iii) reduce

communication overheads and improve inference and energy

efficiency at the edge.
3) Meta-Learning and Active Learning: Meta-learning sig-

nificantly increases training efficiency by leveraging pre-

trained models to perform only light-weight fine-tuning for

new tasks [70], [71]. However, existing meta-learning al-

gorithms cannot resolve the challenges due to constrained

resources at the edge and the limited supervision. The latter

is also the reason that active learning emerges as an another

important learning idea. Active learning is a method-agnostic

approach to extend meta-learning with active data selection

at training time to yield improved performance. An active

learning algorithm has been shown in [72] to achieve improved

accuracy and reduced annotation cost in various settings with

extreme class-imbalance.

B. Network Operation for Distributed AI-Applications

Networks have traditionally been designed for the purposes

of communication, and the main functionality is to be reliable

“bit pipelines”. Yet, future networks, need to be re-engineered

to better serve the new needs of distributed AI. Thus, an

important question is how networks should adaptively allocate

communication, computing, and storage resources to optimize

information freshness, diversity, fidelity, etc., for distributed

and diverse AI applications.

1) Network Operation for Managing AI-Side Uncertainty
and Dynamic: AI services for processing edge networks

can vary drastically in size, scale, and urgency. One of the

crucial questions in the design of networks for AI is how

to address the partial observations in the design of online

algorithms for distributed AI processing. To partially resolve

this question, an RL algorithm that achieves a sub-linear

regret by considering latent (unobserved) variables in the case

with short time horizon was developed in [73]. In [73], it is

shown that how many episodes a general instance of LMDPs

requires to approximate the optimal policy. Beyond this, it

is also important to understand how to schedule and process

dynamically arriving AI services with varying and typically

unknown service requirements.

2) Network Operation for Managing Network-Side Uncer-
tainty and Dynamics: In addition to the uncertainty from the

AI-side, another important issue is to address the network-side

uncertainty and dynamics, especially when the network size

grows. For example, efficient computing resource allocation

and scheduling algorithms were developed in [74] for minimiz-

ing training job completion time. Moreover, a rate allocation

strategy was proposed in [75] to distribute data for distributed

learners with provable performance guarantee under realistic

network constraints. However, more comprehensive work for

addressing the key issues, such as various sources of the

network uncertainty, time scales of the network uncertainty,

and the heterogeneity in the interaction and collaboration of

network nodes, is still needed.

3) Unified, Distributed Network Operation for AI Applica-
tions: A key challenge here is that many distributed ML and

AI jobs, including both training and inference, have a complex

structure and are iterative in nature. For example, the training

time of ML/AI models, if not managed carefully, could be or-

ders of magnitude higher than traditional computing jobs. As a

result, AI-aware network operation is necessary and important

for achieving good performance. For example, [76] proposed

a feasible distributed algorithm with convergence guarantees

for resource allocation when the utility function is unknown

in a distributed AI network. The proposed algorithm solves
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a distributed resource allocation lower-level problem, together

with a user-specific quantity tuning upper-level problem.

C. Human, AI and Networks: Research at the Interface

A core function of the Internet is to connect people and

the data they produce/ observe. Increasingly, AI mediates

these interactions in ways ranging from AI content/product-

recommendation engines to semi-automatic AI systems that

help operators manage networks. Current AI systems have two

serious limitations: 1) AI services do not dynamically scale

capabilities in response to client/user network resources; 2)

AI systems are black-boxes to humans and vice-versa. These

issues can be addressed at the interface of humans, AI, and

networks.

1) Human-AI Interface: To support highly interactive AI

systems that learn on-the-fly, the AI models need to be both

observable (experts understanding AI agents) and directable

(AI agents revising themselves based on explicit commands

and implicit intent of human partners). Towards this end, the

mining and learning algorithms should be aware of the archi-

tectural capabilities of the networked system of interest (e.g.,

immersive sensing, unmanned aerial systems), while being

cognizant of humans in the loop. Specifically, a right balance

should be achieved between the sample rate, communication

costs, decision and modeling needs, and data storage and

processing requirements [77]. The representations and algo-

rithms may also need to be adaptive, auto-tuned and resource-

cognizant for applications at the network edge [78], [79]. In the

meanwhile, new theory, methods, and applications should be

developed for allowing people to provide explanations, feature

relevance, and feedback to AI systems [80]–[82].

2) AI-Network Interface: To optimize the AI models such

that it can scale seamlessly while reflecting current distribu-

tions and services, the network must provide information to AI

systems to facilitate latency tradeoffs between servicing clients

and updating data freshness [83], [84]. Simultaneously, AI

agents, possibly in consultation with humans-in-the loop, must

provide hints to the systems layers on near-term quality of

service requirements (e.g., communication and data freshness

requirements) across the different phases of the complex AI

learning cycle. One promising solution to achieve this is to

develop a secure, low-overhead, bi-direction, cross-layer mon-

itoring and introspection interface to support a range of next

generation AI technologies. A key requirement of this interface

layer is that it must require minimal changes to the underlying

physical and transport layers of the networking fabric to ensure

compatibility with existing network protocols. This dictates

the need to develop specialized AI-centric application layer

protocols to support such an interface.

D. Security and Privacy in AI

In distributed learning in edge networks, information about

the models being learned flows across the network. For exam-

ple, in a federated learning algorithm, network users receive

intermediate versions of a model and perform local updates to

the model based on their own, possibly sensitive, data, before

the result is forwarded to the parameter server. This opens the

door to a host of attacks that aim at inferring users’ private

and sensitive data from the observed (intermediate) model. The

last decade has witnessed the rise of a rich theory to deal with

privacy threats. This theory is centered around a sound and

rigorous definition for privacy, known as differential privacy

(DP) [85]. Intuitively, a differentially private computation is

one where no individual’s data has significant influence on the

outcome. However, there are several major challenges facing

the design and implementation of differentially private AI

algorithms in edge networks. Some of these challenges require

developing new concepts, some require new algorithmic and

networking techniques, and others require building secure and

trusted execution environments (TEEs) to perform differen-

tially private computations.

1) Handling the Absense of Trusted Curators: A funda-

mental challenge herein stems from whether a secure and

trusted computationally capable curator (server) is available

to perform differentially private computations on sensitive

data collected from the network users. Depending on the

state of the network and the users’ privacy preferences and

trust model, such a curator might not always be available.

The decentralized (a.k.a., local) model of differential privacy

[86], [87] offers a way to address this challenge. This model

does not require a trusted curator as it is up to the users to

locally apply a privatizing mechanism to their raw data before

sending the result across the network. However, compared to

the centralized model of differential privacy (that assumes

the presence of a trusted curator), this model has several

fundamental limitations on the attainable accuracy and com-

munication efficiency [87], [88]. Recently, it was shown that

such limitations can be circumvented if the user’s identity is

masked via a shuffling mechanism. Particularly, [89] initiated

the analytic study of the shuffled model as an augmentation of

the standard local differentially private model, by leveraging an

anonymous channel to collect, premute and forward messages

to data collectors. [90] showed that random shuffling of data

reports can be utilized to achieve strong central differential

privacy guarantees from weak privacy guarantees in the local

model. To eventually leverage the power of the shuffling

mechanism in distributed AI systems, one critical question

here is how to use existing network infrastructure to provide

the functionality of the shuffling mechanism.

2) Protecting Data-in-Computing via Trusted Execution
Environments: While data-intransit and data-in-storage can

be protected through well-developed cryptographic techniques

(e.g., AES), protecting data-in-computing still faces enormous

challenges. In addition to differential privacy, there have been

explorations of other fundamental techniques such as multi-

party computation, homomorphic encryption, and recently

confidential computing via Trusted Execution Environments

(TEEs), e.g., ARM TrustZone, Intel SGX, and AMD SEV, to

protect data-in-computing. Therefore, it is of great interests to

develop practical and efficient mechanisms based on those fun-

damental techniques so as to secure data-in-computing in both

the edge and the cloud. Take the application of connected and
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autonomous vehicles (CAVs) as an example. One key security

challenge therein is how to efficiently authenticate a vehicle

in the ad-hoc CAV network and ensure its accountability and

non-repudiation. To address this challenge, certificate-based

authentication has been leveraged in [91], [92], which however

requires frequent asymmetric key encryption and decryption

and hence is not practical. Recently, a new Vehicle-to-Vehicle

(V2V) protocal was proposed in [93] based on the TEE of in-

vehicle processors, where many security demands can be sat-

isfied naturally by using the Daily Symmetric keys protected

by TEE. Considering the promising advantages of TEE, how

to provide integrity validation of the run-time execution states

of AI models by using TEE is also an interesting direction.

IV. APPLICATIONS

The research directions that we discussed in Section II and

Section III are closely related to many practical applications.

In this section, we provide three critical use cases with existing

or promising future applications.

A. Ubiquitous and Immersive Sensing and Networking in 6G+
Systems

The modern wireless-network platforms [94], [95] tend to

serve various types of end-users, including sensors, human

beings, distributed antennas, edge compute clouds, and base

stations associated with automated devices, etc. To provide AI-

driven sensing and networking in these and future platforms

for 6G+ systems, we encounter a pressing need to develop new

AI methods. This type of ubiquitous and immersive sensing

and networking can immediately benefit from new results in

most of the above-mentioned directions, e.g., advancing deep-

learning-based communication algorithms (see Section II-A3),

providing systematic understanding of protocol specifications

(see Section II-D1), performing network-aware distributed op-

timization (see Section III-A1), and considering both network-

side and AI-side uncertainties (see Section III-B1 and Sec-

tion III-B2). For example, to achieve better inference per-

formance and data processing in autonomous driving, a key

step is to design new efficient bandit and federated learning

algorithms for selecting beams, fusing multi-modal data from

different sources (e.g., vehicle-mounted LiDAR, camera im-

ages and GPS units), and collaborating with edge compute

clouds [96], [97]. These rely on the advances for problems

in multiple directions, e.g., designing sample-efficient AI

algorithms in Section II-B1 and learning from incomplete data

set in Section II-B3.

B. Connecting Machines and Humans Under Extreme Mobil-
ity

Due to the involvement of moving edge nodes, e.g., human-

related devices, and sensors on either the terrestrial or aerial

vehicles, (extreme) mobility would become an essential factor

that needs to be handled. For example, for the terrestrial ve-

hicular and unmanned aerial system (UAS) mounted systems,

mobile elements complement resource provisioning by fixed

towers. In a system with such (extreme) mobility, as we dis-

cussed in Section II-A1 and Section II-A3, it would be helpful

and important to leverage deep learning and physical knowl-

edge to develop new communication algorithms. Moreover, it

is also important to extend the multi-agent learning theories

and algorithms for handling the mobility (see Section II-C1),

to consider mobility when leveraging the shared data from

mobile edge devices (see Section II-C3), and to understand

fundamentally how the mobility affects when dealing with

uncertainties (see Section III-B1 and Section III-B2). For

example, [98] has shown the importance of 5G mmWave

mobility support, e.g., ML-based policy reconfiguration for

performance-centric mobility management, in practical prob-

lems on radio access control and mobility management. In

addition, it is of great importance to take into consideration the

mobility when designing reinforcement learning algorithms for

frequency selection in wireless sensor deployments [99].

C. End-to-End Programmable and Virtualized 6G+ Cellular
Networks

Softwarization, virtualization, interoperability, and separat-

ing the data plane from control functionalities have been

widely considered in current cellular networks [100]–[103].

These principles would also be important for 6G+ cellular net-

works, e.g., to accommodate diverse network services, tenants,

traffic on-demand, interoperability of different components,

and full programmatic control of the network fabric. How-

ever, these features require fundamental improvements in re-

engineering the physical environment (see Section II-A2), de-

signing networks as a multi-agent system (see Section II-C1),

systematic analysis of network protocol implementations (see

Section II-D2), and a unified distributed network operation

for AI applications (see Section III-B3). To facilitate research

in these directions, an OpenRAN Gym platform has been

provided in [104]. This toolbox can be used for end-to-

end design, data collection, testing workflows for intelligent

control, and testing applications on a softwarized RAN.

V. CONCLUSIONS

In this paper, we set the stage for leveraging the synergies

between AI and Networking research to design future edge

networks and distributed intelligence. To resolve such a grand

challenge, we propose a divide and conquer approach that

involves research across meta challenges in developing AI

for Networks and Networks for AI. To further the research

in AI for networks, we proposed four important research

directions (each with several more specific open problems)

on designing AI for re-engineering the physical layer of the

wireless edge network, single-agent and multi-agent learning

methods for resource allocation and control, and security

against adversaries in edge networks. Similarly, to further

research in networks for AI, we also proposed four important

research directions on leveraging the feedback (such as dy-

namic conditions and constraints) from networks, addressing

uncertainties from networks, AI and human, and protect the

privacy. This paper is a ”call to arms” for developing new AI
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theories and solutions to spur the development of intelligent

XG edge networks and new adaptive network designs for

bringing to life new and exciting distributed intelligence based

services.
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