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Abstract—Fifth generation (5G) and beyond cellular networks
are vulnerable to security threats, primarily due to the lack
of integrity protection in the Radio Resource Control (RRC)
layer. In order to address this problem, we propose a real-
time anomaly detection framework that leverages the concept of
distributed applications in 5G Open RAN networks. Specifically,
we identify Physical Layer (PHY) features that can generate a
reliable fingerprint, infer in a novel way the time of arrival of
uplink packets lacking integrity protection, and handle cross-
layer features. By identifying legitimate message sources and
detecting suspicious activities through an Artificial Intelligence
(AI) design, we demonstrate that Open RAN-based applications
that run at the edge can be designed to provide additional
security to the network. Our solution is first validated in
extensive emulation environments achieving over 85% accuracy
in predicting potential attacks on unseen test scenarios. We then
integrate our approach into a real-world prototype with a large
channel emulator to assess its real-time performance and costs.
Qur solution meets the low-latency real-time constraints of 2 ms,
making it well-suited for real-world deployments.

I. INTRODUCTION

The deployment of Fifth Generation (5G) cellular networks
promises to revolutionize several industries via more efficient
and agile networking capabilities. However, it comes with
new and unprecedented threats that arise from the increased
attack surface. Among others, the absence of message integrity
protection at the layer 2 of Control Protocol Data Unit (PDU)
in 5G New Radio (NR) technologies is largely an open
issue, and currently available solutions still rely upon outdated
procedures [1] that only partially solve the problem. This
leaves 5G networks exposed to several security threats to the
most important components of 5G systems, such as the RRC
layer [2], [3]. RRC is essential to perform Radio Resource
Management, and any attack to its integrity might severely
disrupt communications and reliability.

This problem is further exacerbated by the effort to reduce
control-plane signaling to the 5G Core Network. In the at-
tempt of balancing between battery efficiency and delivering
low latency, 5G has introduced the Inactive State in the
RRC. Although particularly beneficial in reducing overhead—
especially now that the number of User Equipment (UE)
devices connected to 5G networks steadily increases [4])—
this state has resulted in a new security threat. In fact, every
time the UE transitions to the Inactive state, its low-latency
re-connection procedure might lacks the integrity protection.
As the change of state for each UE occurs frequently to save
energy, the opportunity for an attacker to successfully carry
out an attack increases significantly, posing severe threats

to cellular network security. In the absence of a mitigation
system, users may be disconnected from the network using
Denial-of-Service (DoS) attack [5] [6].

This evolving threat landscape prompts action to design
and implement timely security measures. However, current
state-of-the-art research fails to provide viable solutions to
these vulnerabilities. Existing studies predominantly focus on
demonstrating these vulnerabilities in 4G and 5G protocols,
often through simulations, but offer no reliable and experi-
mentally tested and validated solutions. The 3rd Generation
Partnership Project (3GPP)’s ongoing efforts in Release 17 to
mitigate privacy and security issues, such as protecting broad-
cast and unicast messages, have not yet yielded a definitive
solution [7]. Some messages, including those within the RRC
protocol, occur before the establishment of security measures.
Despite proposals for solutions like the application of asym-
metric cryptography to all RRC messages, there is currently
no work affecting RRC procedure protection standards.

Summary of novel contributions. Given the aforemen-
tioned state of the art, open issues and current network
vulnerabilities, in this paper we introduce an Open Radio
Access Network (RAN)-based real-time framework that en-
hances control plane security by proactively detecting attacks.
The Open RAN paradigm emphasizes openness, virtualization,
programmability, and data-driven control [8]-[10]. Our pro-
posed framework leverages the concept of dApps [11], i.e.,
decentralized applications that extend Open RAN xApps and
rApps executing at the RAN Intelligent Controllers (RICs), to
bring intelligence at the edge of Open RAN systems and per-
form on-the-spot inference of malicious users. Our framework
is designed to counter malicious attacks by addressing the
vulnerabilities in the RRC protocol with specific focus on the
increasing usage of Inactive state in 5G and its vulnerabilities.

The primary scientific contribution of this paper is the
introduction of a real-time framework that aims at detecting
attacks in the RRC messages and procedures of 5G networks.
We leverage openness and software-based principles of Open
RAN to develop a cross-layer approach where we extract het-
erogeneous data from the different layers of the protocol stack
(such as In-phase and Quadrature (IQ) samples, channel state
information, ranging, and temporary user identity) for creating
reliable, dynamic, UE-specific fingerprints that are updated
over time according to user mobility and varying channel
conditions, thus offering a reliable and effective mechanism
to detect attacks even when network condition change. Our
framework extracts Time of Arrival (ToA) measurements that
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offer localization capabilities. The novelty of the approach
is that it works without relying on 5G positioning reference
signals that could be used only after the UE is connected to the
network (hence too late if another UE is a malicious identity
spoofer already connected to the network [12], [13]).

All these cross-layer measurements are part of our full-
stack features which are processed by our AI design. Our
key findings indicate that, upon comparison with relevant
Al-based solutions, our framework can accurately predict
potential attacks with an accuracy exceeding 85%. Moreover,
we show via experimental results that our approach is also
general and delivers high accuracy even in the case of unseen
channel conditions, topologies and mobility patterns, thus
making it a good candidate to be deployed and used in real-
world cellular deployments. Our model exhibits high precision
in predicting attacks, substantially minimizing the incidence
of false negatives. Our solution’s efficacy is validated through
testing in large-scale emulation environments, reflecting real-
world scenarios. Furthermore, we have deployed and tested
an integrated prototype for real-time inference that adheres to
the network’s operational time constraints, ensuring seamless
integration and secure operation. As part of our contribution,
we also release the dataset for further research, fostering
broader innovation in telecommunications security.

II. CHALLENGES

In this section, we discuss the main challenges related to
designing, developing and prototyping our system.

Challenge A: identifying PHY features that can generate
a reliable fingerprint. Existing vulnerabilities of 5G systems
primarily stem from the messages in the RRC layer where
an adversary can impersonate UE either to gain access to the
network, or to force the disconnection of a target UE (see
Section III-C). We aim to design a framework that can instan-
taneously scan these messages and verify their legitimacy to
ensure they have not originated from potential attackers. Thus,
understanding which PHY features are relevant and which are
redundant or not representative to identify attacks is necessary.

Challenge B: integrating cross-layer features. We detect
anomalous messages by combining PHY features with PDU-
related data extracted at the RRC layer, thus coupling informa-
tion to be used as inputs for our AI models. This cross-layer
mechanism introduces a technical challenge related to syn-
chronization and management where data from the different
layers has different formats and is generated at different times.

Challenge C: developing AI capabilities at the edge.
As discussed in Section III-C, some RRC attacks can in-
stantaneously cause the detachment of a UE targeted by a
malicious user. This exposes the network to severe threats that
call for real-time attack and anomaly detection. The flexibility
offered by Open RAN could help in addressing these security
concerns. However, current efforts have not shown how Open
RAN can effectively mitigate these vulnerabilities and help
in identifying anomalies that could suggest the occurrence
of attacks. Most importantly, Open RAN-based solutions for
security applications are still in their infancy and have been
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Fig. 1: Physical layer and Resource Grid of uplink data.

not tested in realistic, large-scale, experimental environments.
The real-time constraint and the need for robust and precise Al
inference is a technical hurdle demanding interplay of system
design and computational efficiency.

Challenge D: experimental dataset and system testing.
Aiming to ensure the reliability and robustness of our Al,
we require a rich and extensive dataset replicating real-
world network environments. The generation of this dataset,
encompassing various network conditions, user behaviors, and
potential security threats, becomes a substantial challenge.

III. BACKGROUND AND ATTACKER MODEL

This section provides an overview of the 5G NR architecture
focusing on PHY and RRC procedures relevant to this study,
and introduce the attacker model.

A. 5G System architecture

The architecture of 5G systems comprises three main com-
ponents: UE, the 5G Radio Access Network (5G-RAN), and
the 5G Core Network (5G-CN). A UE is a device, e.g., a
smartphone or Internet of Things (IoT) device, equipped with
a Universal Subscriber Identity Module (USIM). Each USIM
possesses a unique Subscription Permanent Identifier (SuPI),
akin to how International Mobile Subscriber Identity (IMSI) is
used to identify users in previous 3G/4G generations. In 5G,
to protect the SuPI, the UE sends its correspondent Subscriber
Concealed Identifier (SuCI) to the 5G-CN for authentication.
Upon authentication, the Access and Mobility Management
Function (AMF) assigns a 5G Temporary Mobile Subscriber
Identity (5G-TMSI) to the UE. This 5G-TMSI is used in all
communication between the UE and the network, in order to
protect the SuCI from potential eavesdroppers.

The 5G-RAN is represented by the fabric of base stations
(i.e., Next Generation NodeB (gNB)s) that use 5G radio
technology for providing high-speed, low-latency coverage
to UEs. Finally, the 5G-CN offers services necessary to
control and monitor the network, handle billing and mobility,
authentication, paging, and manage user and data planes.

B. Physical layer and resource grid

At the PHY layer, uplink data from the UE to the gNB
is transmitted using the Physical Uplink Shared CHannel



(PUSCH), a logical channel that contains user and signaling
data. UE’s transmissions on PUSCH are transmitted over ded-
icated resources in the Resource Grid (RG). The RG consists
of a time-frequency matrix of slots that contains Orthogonal
Frequency-Division Multiplexing (OFDM) symbols as shown
on the left of Fig. 1. A single Radio Frame in OFDM has a
duration of 10 ms, and contains 10 sub-frames of 1 ms each. In
the simplest configuration, we have two slots per sub-frames.
One slot consists of 14 small blocks called symbols in time
domain transmitted over the 12 sub-carriers. The Resource
Block (RB) consists of 12 sub-carriers and 14 OFDM symbols
and it divides the RG. Finally, the single Resource Element
(RE) is the smallest block in the RB which is the single sub-
carrier for a symbol, and it represents one value in the IQ
constellation. The gNB uses a scheduler to assign RBs, in
uplink, to each UE that needs to send data through the PUSCH.

C. RRC states and procedures

The RRC layer hosts several processes designed to facili-
tate communication, manage resources, and ensure seamless
mobility while UEs move throughout the 5G network.

In 5G, there are three possible RRC states, namely RRC
Idle, RRC Connected, and RRC Inactive. A UE is in RRC
Idle when there is no active radio connection toward the
network. The RRC Connected state indicates that a secure
radio connection has been established between the UE and
the network. The RRC Inactive state is an intermediate state
introduced in 5G where the UE maintains a context within the
network, but without establishing an active dedicated radio
connection with the goal of facilitating faster reconnection
times while reducing power consumption. The management
of the above states is performed via a set of RRC procedures.
The most relevant for our work are briefly described below.

RRC Setup. This procedure is initiated by a UE to establish
a connection with the network. The UE sends the gNB an RRC
Setup Request (RRCSetupRequest) that includes its 5SG-TMSI.

RRC Release. The network can release the radio resources
allocated to the UE and suspend its established RRC connec-
tion through the RRC Release (RRCRelease) message. This
procedure effectively transitions the UE into an Inactive state.

RRC Resume. The transition from Inactive to Connected
state can be initiated by the UE through the RRC Resume pro-
cedure, involving a subset of the messages of the RRC Setup
procedure, like RRC Resume Request (RRCResumeRequest),
and RRC Resume Complete (RRCResumeComplete).

D. Attacker model

In this section, we describe the attacker model, and illustrate
how the attacker can wreak havoc of 5G systems if proper
defense mechanisms (such as the one we propose) are not
in place. A high-level attacker model is illustrated in Fig. 2,
and details are provided in the following. The SG-TMSI takes
a crucial role in protecting the UE’s identity(Sec. III-A). The
low 5G-TMSI refresh rates in commercial 5G networks enable
the spoofing of identities by malicious users [14], [15], posing
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Fig. 2: The absence of message integrity protection at the layer 2 leaves
5G networks exposed to several security threats such as the Radio Resource
Control (RRC) layer. We propose an O-RAN-based real-time framework
aimed at enhancing control plane security by proactively detecting attacks.

threats to legitimate UEs, leading to disconnection or identifier
compromise. Indeed, integrity protection mechanisms used for
some RRC control messages are not applicable at Layer 2 [1],
thus enabling an adversary to build and carry out attacks [16].

These vulnerabilities can be exploited in several ways. For
instance, upon completion of the registration procedure the
UE goes into RRC Inactive state if no traffic is exchanged.
If the attacker is able to eavesdrop victim’s 5G-TMSI, it
can generate an RRCSetupRequest containing the spoofed
5G-TMSI and trigger a DoS because the 5G-CN removes the
UE’s security context. An alternative version of this attack
can be performed via RRCResumeRequest by sending them
over the initial signaling [3]. It is worth mentioning that such
attacks are possible due to procedures included in standard’s
specifications. For example, the recently introduced Short Data
Transmission (SDT) procedure introduced in the 3GPP [17]
is designed to further reduce signaling with the 5G-CN in
case of small and infrequent data transmission while the UE
remains in RRC Inactive. We find that this procedure employs
RRCResumeRequest messages, which are the same that can be
exploited by an attacker to perform DoS. Additionally, despite
RRCResumeRequest over the initial signaling being unusual,
but demonstrated in [3], we emphasize the importance of
considering these messages within the system design in order
to alert an ongoing attack attempts.

Another family of uplink messages without integrity pro-
tection that can be used to expose the victim’s identifier. Here
the attacker can act as a Man-in-the-Middle relay and exploit
RRCSecurityModeFailure, then in case of limited service the
UE may even expose its SuPI in plaintext, which can be
captured by fake base stations [3].

All of the above attacks have not yet found an effective
solution, and countermeasures to discern the legitimacy of the
UE and proactively avoid these attacks in real-time are still
greatly needed at the gNB.



IV. CROSS-LAYER FEATURES FOR ATTACK DETECTION

To provide an effective solution against the vulnerabilities
and attacks illustrated in the previous section, we describe the
set of cross-layer features that are at the basis of our solution
and discuss why they are important in addressing Challenges
A and B. The summary of the features is presented in Tab. I.

A. 1Q, Channel Features and UE Identity

IQ Features. Every RRC message, including those without
integrity protection (Sec. III-D), consists of PUSCH-related
IQs transmitted at specific symbols in the RGs (Sec. III-B).
We collect these IQ samples to create a PHY layer fingerprint
of the transmitting UE. Note that while 1Qs before channel
equalization provide essential information about the status
of the channel, this information alone is not sufficient to
distinguish between different UEs due to the large impact that
ambient noise and mobility (e.g., phase rotation, Doppler’s
effect, interference) has on received IQs. For this reason,
we use 1Q samples collected after channel equalization as
they contain constellations where the majority of channel
impairments have been removed by the equalization process.

Channel Features. In order to not lose channel state
information, together with the PUSCH IQ samples after equal-
ization, we also collect channel features for every received
packets. Channel state information is calculated by the gNB
for every received packet, with the list provided in Tab. I.
These PHY layer characteristics jointly with the PUSCH-1Q
after equalization, are fundamental to identify the singularity
of the RRC messages from different UEs. In fact, as we will
show in Section VIII, they increase detection accuracy and can
effectively be used to determine if a transmission has been
originated by a legitimate UE or an attacker.

UE Identity. Lastly, we store both 5G-TMSI and the current
Radio Network Temporary Identifier (RNTI) which we use to
map received message’s features with its estimated UE.

B. Fast Ranging Estimation

Assuming that the legitimate user is a distance d;, and the
attacker at do # dj, the network could discern a potential
attacker from a legitimate user of the network through accurate
ranging. The Ranging estimation leverages ToA information
of radio frequency signals to compute the distance between
devices. 5G systems heavily rely on the Sounding Reference
Signal (SRS) reference signal for ToA estimate, which are sent

TABLE I: Summary of features used in this work.

Name

Type Layer

1Q Features PUSCH-IQ Samples PHY
Received DMRS-IQ Samples
Expected DMRS-IQ Samples
Signal-to-Noise Ratio
Channel Frequency Offset
Energy per Resource Element
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Noise Estimate in dB Full Scale
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Temporary Mobile Subscriber Identity
Radio Network Temporary Identifier
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Fig. 3: We leverage Demodulation Reference Signal (DMRS) pilot sequences
in subframe 2 of RRC packets for fast estimation of the range between the
transmitting UE and the gNB.

over the full bandwidth of the signal to provide the highest
accuracy in estimating such distance [18]. However, the critical
problem is that it requires the UE to be in RRC Connected
state, which is not suitable for early detection of threats.

In contrast, we find that the DMRS is a known pilot
sequence that is embedded in transmitted data such as RRC
packets, and it does not need the UE to be in RRC Con-
nected state. Therefore, it is essential to achieve reliable
communication, and each UE (even the attackers) must use
DMRS to guarantee that its messages are decoded correctly.
Although DMRS is a pilot sequence, it is typically not used
for localization purposes. However, as shown in Fig. 3, we find
that some sequence of DMRS in the RRC packets, in particular
those related to subframe 2 (”#2 Subf” in Fig. 3) are sent
over the full bandwidth, as the SRS for localization does. Our
goal is to explore this subset of Received DMRS sequences for
fine ToA estimation. We also consider the Expected DMRS 1Q
samples, which are known and available at the gNB as they are
used to provide ground truth to perform channel equalization.

More formally, in the frequency domain, the gNB receives
the DMRS Y[j], which can be expressed as:

Y[jl = HjIX[5] + Wj] (D

where H|[j], X[j], and W{j] represent the j-th sample of the
channel, the Expected DMRS (transmitted by the UE), and
white Gaussian noise, respectively. Note that as we use DMRS
in subframe of RRC packets, where samples are computed
with the resolution of the full bandwidth (Fig. 3). The observed
cross-correlation between the Received DMRS and Expected
DMRS, denoted as rparrs[n], is given by

rpmrs[n] = IDFT{Y[J]X"[J]} 2)

where n represents the discrete time sample, (-)* is the con-
jugate operator, and I DF'T{-} represents the Inverse Discrete
Fourier Transform. The gNB estimates the ToA by identifying
the argument that maximizes the absolute value of the cross-

correlation between Received DMRS and Expected DMRS:

i = argmax |rparrs[n]| 3)
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Fig. 4: Al module of the proposed framework.

The computed i-th sample in Eq. 3 represents the ToA delay
computed in number of discrete time samples. This metric
provides an estimate of the distance between the UE and the
gNB. Estimating range involves errors that create uncertainty
in identifying the user or attacker’s distance. Using a threshold
for binary decisions may increase false positives or negatives.

We then propose to use a soft decision that relates to
the probability distribution of distance estimates, employed
by our framework (cf. Sec. V) to identify potential attacks.
However, the multipath channel between the UE and the gNB
is unknown. To overcome this issue, we use the formula from
the Chebyshev’s inequality [19]:

P.(IX — p| > ao) < 1/a*. 4)

It provides an upper bound over a random variable X deviating
from its mean p by a factor of « standard deviations o for a
wide class of distributions. The procedure involves calculating
1 and o for a specific data window and determines the absolute
deviation of a distance from u, expressed in terms of ¢ units,
referred to as «. For instance, with a=2, the probability that
it deviates more than 20 must be equal or smaller than 25%,
or that at least 75% of the data must be within 20.

For the analysis, we first compute o = (X — p)/o over
the rolling window of the latest K messages. A large «
indicates that the estimated ToA delay X is far from the mean
(potentially an outlier). Conversely, a small « indicates that
X is close to the mean. Inversely, 1/ o? reflects the deviation
from the mean: small values of 1/a? suggest large deviations
(potential outliers), and large values of 1/a? suggest small
deviations (closer to the mean). We then use 1/ a? as input
feature of our Al module, as this soft decision better relates
to probabilities, and in particular, Chebyshev’s inequality (cf.
eq. 4). In the next section, we describe how the above cross-
layer features can be combined and used to develop an Al-
based module that can detect attacks.

V. Al MODULE

The AI module is the core of our framework and it is
designed to consider the following aspects:

« Given the complexity and heterogeneity of features, estab-
lishing a linear relationship is challenging. As an example,
it is hard to determine a clear relationship between 1Qs of
a UE and the distance probability soft-metric defined in
IV. For this reason, the use of Al, which can extract such
relationships from the data and provide a non-linear link
between such metrics, becomes crucial;

o The input relies on recent RRC messages, and Al distin-
guishes between legitimate UE and potential attackers in
real time, detecting attacks before they become effective.

Starting with the simplest design, our investigation progres-
sively integrates more complex and well-established models
like 2DCNN-model, ResNET, and Xception [20]. The final
design is inspired by the work of [21] that explores atten-
tion mechanisms to augment the representational power of
the model by focusing on salient features and suppressing
superfluous ones, which is critical to address Challenge A.
Attention is particularly beneficial in our context. The Ranging
Estimation as an input feature could be important for the
model’s decision, but suffers from noise in practical deploy-
ments due to quantization errors in the measurement that
depend on the bandwidth used by the UE also because it could
move to different locations with different spatial characteristics
and multipath. The attention mechanism, considering UE’s
mobility, addresses this issue by adjusting the importance of
RRC message fingerprinting based on data quality and its
relationship with other features.

As depicted in Fig. 4, the foundation of the design of the
Al module is the Xception architecture [20], [22], which we
extend with the spatial attention mechanisms to learn which
features extracted by Xception are more important for the final
output, and under which conditions.

The Xception module operates on the premise of depth-wise
separable convolutions, enabling it to learn cross-channel cor-
relations and spatial correlations independently. Then, the at-
tention mechanism is deployed on top of the high-dimensional
feature map returned by the Xception module. The spatial
attention aggregates information using both average-pooling
and max-pooling operations over the convolution, yielding the
attention score feature map. The output of the attention block
is integrated with the initial Xception module via element-
wise multiplication in the training phase. Then network’s final
output is the SoftMax layer that outputs the probability of the
latest RRC message belonging to the same UE.

VI. DET-RAN FRAMEWORK

We present a high-level overview of the proposed frame-
work and its components in Fig. 5. The goal of Det—RAN is
to extract the cross-layer features identified in Section IV from
the incoming messages, and use the Al module introduced in
Section V to identify the occurrence/absence of attacks. Upon
detection of an attack (e.g., a RRCSetupRequest generated
to disconnect a target UE as discussed in Section III-D),
the system automatically reacts by rejecting the request and
notifies the 5G-CN that an attack might be ongoing.

We also describe how the proposed Al solution can be
developed and integrated within a 5G system by leveraging
the concept of dApps, i.e., intelligent applications that extend
xApps and rApps hosted at the RICs by bringing Al capabil-
ities to CUs and DUs directly, therefore addressing Challenge
C. We then illustrate how cross-layer data can be extracted
from the protocol stack of messages received by the gNB,
and processed together to create a unified data structure, e.g.
a buffer, that can be fed to our Al module.
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Fig. 5: High-level illustration of dApp design, where we highlight the three
main modules and how they interact.

A. dApp Design in Open RAN

As mentioned in Section III-D, a successful attack to RRC
procedures can be accomplished with a single message. For
this reason, an effective solution must be able to detect such
attacks in real time and upon receiving such messages. This
requires being able to host the defense mechanism directly at
the gNB. The combination of the O-RAN architecture with
dApps offer the ideal platform to meet the above requirement
and perform early attack detection at gNB in real-time. We
design a Det —RAN to be hosted directly at the gNB where all
of the Features (Section IV) are collected and made available.

The main components of our dApp are: a Buffer Pool
storing features collected over time for each UE; a Controller
taking decisions on the occurrence of attacks; and the Al
Module introduced in Section V, that compares past and
present features of received packets to detect anomalies. The
Controller also hosts a Ranging Estimation that computes
attack probability with Eq.4 described in Section IV-B.

Walk Through. The gNB-node communicates with mul-
tiple UEs. Following 3GPP and O-RAN specifications, the
gNB is split into Radio Unit (RU), Distributed Unit (DU) and
Centralized Unit (CU). The dApp runs on the gNB-DU. The
uplink signals from all UEs are stored into a receiver buffer,
referred to as RxBuffer, located at PHY-Low layer. The steps
executed by our solution are described below (cf. Fig. 5):

(1) 1Qs collected at the PHY layer are converted from time
to frequency domain and equalized. The features in Tab. I are
extracted and forwarded to the higher layer via the already
existing 5G interfaces between PHY, MAC, and RRC.

(2) The Controller, upon receiving an RRC message, ex-
tracts the features generated in the previous step together with
UE’s identity! and feeds them to the AI module to inspect a
possible attack before the RRC message is decoded.

LAt this layer, the decoded PDU has the User-ID information, e.g. the
5G-TMSI in the RRCSetupRequest (TS 38.331).

(3) The Ranging Estimation Module in the Controller pro-
cesses the DMRS-IQ of the RRC message to compute ToA
and Chebyshev’s probability (cf. Secion. IV).

(4) Using the User-ID, the Controller pulls the correspond-
ing buffer from the Buffer Pool and appends the new features.
Each buffer of the pool is identified by the SG-TMSI. Although
one could potentially maintain features for any UE that visited
the gNB, a more scalable solution maintains only those that
recently visited the gNB.

(5) The Chebyshev’s probabilities of ranging measurements
(see Eq. 4) are stored in the pool together with the other
features. We only store the last K features so that the buffer
represents the short history of the UE’s RRC messages. How
to compute the value of K will be discussed in Section VIII-B.

(6) The AI Module processes the evolution of the features
and infers if the latest message is an attempt of attack.

(7) The inference output is returned to the RRC layer which
rejects the RRC request in case of detected attack.

B. Cross-layer Feature Link: from Layer I to Layer 2

In the software stack, a Worker thread decodes the RxBuffer
by processing signals over the RG within a Radio Frame. To
differentiate among UEs and accurately decode transmissions,
the Worker relies on a grant mechanism, iterating over all
users’ RNTIs to identify the RBs assigned to each UE, which
are logically transmitted over the PUSCHs (Sec.III-B). Firstly,
channel equalization utilizing the DMRS calculates Channel
Features for the current UE. At this point, pointers with copies
of the Received and Expected DMRS along with Channel
Features values are stored as the first part of the system. After
channel equalization, the software proceeds to decode the asso-
ciated PUSCH symbols. To limit resource consumption, only a
vector of 128 IQ-PUSCH is maintained. After completing the
decoding process at the PHY, these pointers are transferred to
the RRC layer, so that the dApp can access the memory area
where PHY features are stored, thus addressing Challenge B.

A parallel thread handles the above operations to guarantee
that communication procedures proceed uninterrupted while
Det—RAN processes data and the dApp performs inference.

C. Capture UE’s Messages evolution with the Al

The Buffer Pool is designed so that each connected UE has
a dedicated buffer, known as UE-ID-X-Buffer. Upon a new
UE connects to the gNB, a new buffer is instantiated, using
the UE-5G-TMSI to identify and access the buffer. The k-th
entry in the buffer is a data structure that incorporates the
IQ-PUSCH, Channel Features, and the Distance probability
computed by the Range Estimation. We use a First-Input-Fist-
Output policy to maintain the latest K entries only.

As the Al model has to run in the gNB and in real-time, the
Buffer Pool is fundamental to capture the history of the mes-
sage and jointly foster the Al capability at the edge, addressing
the Challenge C. Larger values of K imply increased inference
latency, but also provide more information for the model’s
decision. In this sense, the parameter K must be selected
carefully to strike a balance between resource consumption,



accuracy and real-time responsiveness (i.e., <10ms). These
aspects will be studied in detail in Sec. VIIIL.

VII. DATA COLLECTION

To address Challenge D, the experiments conducted for this
research utilize the Colosseum testbed [23], a high-fidelity RF
emulation environment with software-defined radios (SDRs)
in-the-loop. Central to Colosseum is MCHEM, a massive
channel emulation system, capable of emulating wireless chan-
nels (including effects such as fading, mobility and obstacles)
with high accuracy and in a reproducible way between any
pair of its 128 SDR-based radio nodes. Such a testbed ensures
the reproducibility and repeatability of our experiments.

Colosseum offers Scenarios emulating real-world deploy-
ments of various cities world-wide with gNBs (whose co-
ordinates are extracted from OpenCelllD) serving UEs. We
consider three Colosseum scenarios—Rome (Italy), Boston
(USA), and Powder (USA)—simulating various urban cellular
deployments across 0.5km?2, 0.95km?2, and 3.6km? areas.
Each scenario involves a gNB serving five UEs using RF con-
figuration operating at IGHz frequency and 20MHz bandwidth
in Frequency Division Multiplexing (FDD) using the open-
source srSRAN project [24]. Noteworthy, in these scenarios
UE mobility is also emulated by the MCHEM, a the user
mobility is crucial for the evaluation.

We have designed the following pipeline to collect a dataset
that is representative of potential RRC messages lacking
integrity protection. First, the UE is turned on and proceeds
through initial registration with the RAN and 5G-CN. Upon
completing registration, we do not exchange any traffic so
that the Inactivity Timer* expires and UE’s state changes to
Inactive. At this point, the UE exchanges traffic with the gNB
with the sole purpose to resume the connection using an RRC
message which will reset the Inactivity Timer. During all these
interactions, Det —RAN captures the Features (cf. Section IV)
related to the uplink RRC messages. In this way, we can at
the same time generate a dataset that contains only specific
RRC messages and accounts for varying typologies, channel
conditions and mobility, thus addressing Challenge D.

We generate a binary label for each K-long sequence of
RRC messages we capture. If all K RRC messages are
generated by a legitimate UE, we set the label to 0. If the
K-th message is instead generated by an attacker (but the
previous K-I messages are from the same legitimate UE) the
label is 1 to describe an ongoing attack. We also shuffle the
K-1 messages’ temporal order to introduce uncertainty and
facilitate AI model’s generalization, making it robust against
time-varying channel conditions. The final AI model is trained
over a dataset of 4720 balanced sample instances of attacks
and legitimate RRC messages. Lastly, acknowledging that real-
world scenarios often involve more than five UEs per gNB,
the study aims to evaluate the feasibility of our methodology

in_initial model development and testing.

This timer is generally set to values in the order of a few couple tens of
seconds. When it expires, the gNB places the UE into INACTIVE/IDLE state
as defined in 3GPP TS 38.331.
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Fig. 6: Performance evaluation of the different models.
VIII. EXPERIMENTAL EVALUATION

This section benchmarks various Al designs—2DCNN,
ResNet50, Xception, and our extended Xception with attention
mechanism (Sec. V). We report accuracy as a metric due to a
balanced dataset and paper’s space constraints.

A. Model and feature comparison

In this study, we aim at understanding what features are
the most effective in detecting attacks. Fig. 6a shows the
test accuracy of the different models trained with different
combinations of features. For this evaluation, we only consider
data from the Rome scenario. The model trained with only 1Qs
demonstrates roughly equivalent performances across different
architectures, with none exceeding 70% accuracy on test data.
A notable performance decrease is observed when models are
trained exclusively with only the Channel Features. Consider-
ing the fact that our datasets are balanced, the failure to surpass
60% accuracy suggests these models are struggling to learn. As
the training scenario involves user mobility, Channel Features
alone may not be adequate to discern consistent patterns due
to their dynamic nature. However, training models with all
the features, improves their capability in identifying patterns
corresponding to the UEs achieving an accuracy close to 90%.
This suggests a precise detection of the message’s fingerprint
sent by the UE, which makes it possible to accurately identify
attacks. Specifically, our custom architecture, referred to as
XceptAtt, surpasses other models in terms of accuracy due to
the inclusion of an attention mechanism atop the Xception base
model. It is important to note that, for this study, the buffer
capacity K for every UE is set to 5 messages.

B. Selecting the value of the K parameter

A study on the parameter K is presented, i.e., the capacity
of the feature buffer. This evaluation is essential to strike a bal-
ance between minimal buffer capacity and maximal accuracy
as increasing the buffer size inherently requires more storage
and computational resources, impacting inference time.

With Rome scenario as a reference, we compare perfor-
mance for different values of K, ranging from 4 to 10. In Fig.
6b, we report the test accuracy as a function of K. While the
results across different models exhibit slight variations, the
highest overall accuracy is attained with K=10. However, we
notice that our XceptAtt model attains very close results with
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only K=5, which is 50% smaller and thus offers a better trade-
off in terms of accuracy, memory utilization and fast inference
time. We use K=5 as a reference value hereafter.

C. Generalization

In the previous evaluations, all the models are trained
and tested with data collected from the same scenario. This
study attempts to evaluate the models’ ability to generalize
across unseen scenarios by mixing training and testing sets.
This is a crucial factor for real-world applications where, for
instance, a network operator may deploy the model in an area
never encountered during training. With this study, we aim
to identify an AI model that can generalize across unseen
scenarios and channel conditions.

The methodology is the following: in the training NNs are
fed with data from a scenario, e.g. Rome, then the accuracy is
calculated on test data from an unseen scenario, e.g., Boston.
The results are summarized in Fig. 7. Each cell represents the
accuracy of the corresponding model when trained on a sce-
nario (left label) and tested on another (bottom label). Fig. 7-
(a) shows that the baseline 2DCNN architecture is unable to
surpass 70% accuracy under unseen conditions. Overall, all
the models studied show good performance when tested in
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Fig. 9: Chebyshev’s probability to discern if an RRC message is received at
the gNB from the same UE.

the same training scenario, but lack performance when tested
over unseen scenario. Moreover, the custom architecture in
Fig 7-(d) shows that, despite a loss in accuracy when tested
on unseen data, our XceptAtt is best at generalizing.

We also consider the case where we train our Al models
using data from multiple scenarios and testing it on an unseen
one. The results are reported in Fig. 8 where the legend shows
the name of the city used in the testing phase only and not
included in the training set. If compared to Fig. 7, they show
that all models benefit from being trained on diverse scenarios.
For example, XceptAtt attains the best performance with a
testing accuracy of 85% over unseen scenarios.

D. Using fast ranging feature alone

The analysis of the Ranging component is presented in
this section. The test set of the Boston scenario is used. The
main objective is to evaluate the robustness of this method to
differentiate between the same or different UEs. Fig. 9 depicts
Chebyshev’s probability P, computed with the RRC messages
received over time for a single UE according to Eq. 4. In
the test dataset, the red dots represent the injected DMRS
from an attacker located at different distances. As described
in Sec. IV-B, the P, is computed over the rolling window of
the latest K messages, with a higher P, indicating that it is
likely a different UE. The results show that out of six attacks,
half results in low probability, indicating False Negative (FN).
For instance, an attacker could be at the same distance from
the gNB, but at a different location. Additionally, a few False
Positive (FP) occur for the same UE with high P,., which could
occur in presence of large multipath in the channel or high
mobility. This suggests that ranging alone is insufficient for
the final decision. However, the results presented above show
that they can highly enrich all other features (cf. Sec. IV-A)
to attain a higher accuracy in the attack detection.

E. Offline Test Attacks

Det-RAN is tested by emulating a real attack scenario.
Colosseum scenario is set up involving two legitimate UEs,
one gNB and one attacker. During the experiment, the UE
connects to the gNB, exchange 5s of traffic, and goes in
RRC Inactive state until a random time when it resumes the
connection. The attacker, having procured the 5G-TMSIs of
both UEs attempts to launch six attacks within the Inactive
window time, for each of the victims. To emulate this behavior,
the RRC messages of the attacker are injected into the test
dataset and Det-RAN infers over all the received messages.



TABLE II: Benchmark of Prototype on Different Machines

Setup Virtualization CPU Mem GPU GPU
(GB) Model (GB)

S1 GPU; No Virtualization 15 32 RTX2080 2

S2 GPU; Docker+TfServing 5 32 RTX2080 2

S3 GPUz  Docker+TfServing i7 1000 A100 4

S4 GPUy Docker+TensorRT 17 1000 A100 4
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Fig. 10: The confusion matrices for
two UEs demonstrates the ability of
Det—-RAN to detect the attacks.

Fig. 11: Inference time for differ-
ent setups. In Setup 4 Det-RAN
meets the real-time requirements

In Fig. 10a and 10b, we report the confusion matrices for the
two UEs. Despite some FP, the model demonstrates a high
degree of precision in detecting the attacks. In this context,
absence of FN ensures that the framework does not miss any
attack. On the other hand, rejecting a few RRC requests from
legitimate UEs may only require to establish a reconnection
procedure involving the 5SG-CN.

FE. Inference time analysis on hardware

The key impact on performance stems from the Al com-
ponent, where inference time is critical. The AI’s model
complexity may necessitate robust computational capabilities,
typically provided by high power-consuming GPUs. For in-
stance, network operators may need to scale the Model Pool to
guarantee reliability and security. Hence, we analyze different
deployment Setups (S1,.52,53,54) with two different GPUs
and virtualization environments, summarized in Table II, to
test the inference time and provide insight into deployment
costs. Fig. 11 illustrates the inference time distribution for a
single prediction, repeated 50 times over a 180s experiment.
S1 and S2 do not yield satisfactory results: an inference time
of 20 ms exceeds the Radio Frame target, rendering the system
unable to respond timely enough to mitigate an attack. Despite
switching to a more powerful GPU in 53, we only achieve a
slightly improved inference time leading us to reconsider our
deployment strategy to improve system performance. In 54,
we utilize TensorRT, the SDK with its model optimization
capabilities. This solution provides remarkable results: we
achieve an inference time of 2 ms, reducing the latency factor
of 8x and meeting the real-time Radio Frame requirements.

IX. RELATED WORK

Despite the 3GPP 5G standard has significantly enhanced
the protection of subscribers, vulnerability for these procedures
remains. Existing work has shown that an attacker can map the
5G-TMSI with RNTI and impersonate the victim, triggering
various attacks, e.g., DoS, Man-In-The-Middle (MitM), due to
the absence of message integrity protection at the lower layers
of the network protocol [2] [3]. The potential for UE identity
spoofing is a significant concern, as the RNTI and 5G-TMSI
can be matched during the connection establishment process
and could be exploited to identify victims [3] [16].

IMSI-catching attacks have been a persistent concern since
the early days of cellular networks. In literature there are
plenty of studies about privacy related to tracking users,
with a significant emphasis on exploiting the linkability of

identifiers such as the IMSI, TMSI, SUPI [25]-[32]. For
instance, [15] has demonstrated the feasibility of stealing the
IMSI in 4G networks. Moreover, recent research [33] has
unveiled a method to extract the SuPI in 5G networks.
Rupprecht et al. [34] and Chlosta et al. [35] have indepen-
dently investigated and demonstrated the existence of potential
Man-in-the-Middle (MitM) and impersonation attacks, respec-
tively. Rupprecht et al. focused on exploiting implementation
bugs in an LTE dongle, while Chlosta et al. explored vul-
nerabilities present in operational LTE networks. In separate
studies, researchers [36]-[40] have examined various methods
to launch Denial-of-Service (DoS) attacks targeting 3G and
4G subscribers. Specifically, Kim et al. [16] have unveiled
novel DoS attacks that can be directed towards specific users
or entire base stations, leveraging vulnerabilities inherent in
4G networks. The authors in [3] have conducted an extensive
study on a distinct class of vulnerabilities present in the initial
messages of the NAS and RRC layers within the 5G protocol
stack, their work does not provide any explicit defenses against
the investigated attacks, nor were their findings validated
within the context of the complete 4G/5G protocol stack. In
contrast, our research focuses on the same class of attacks
and offers effective mitigation strategies to counter such
threats. Finally, overshadowing technique, explored in cellular
network vulnerability assessments [41]-[43], has evolved in
recent simulated studies. Unlike simulation-based approaches,
this work goes beyond reproducing attacks and introduces
countermeasures for diverse implementation scenarios.

X. CONCLUSION

In this work, we have shown that Open RAN can be
leveraged for designing novel Al solutions at the edge of
the network that can swiftly detect the presence of attackers,
significantly contributing to enhancing the security of 5G
networks. Our proposed Det—RAN framework is designed to
process cross-layer features and proactively detect the attacks
generated with RRC messages, while achieving strict real-time
constraints in 5G systems. We provide public access to code
and data here: https://doi.org/10.5281/zenodo.10473882.
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