
On-demand updates after a node failure in a
wireless network

Davide Villa, Chih-Kuang Lin
United Technologies Research Center

Cork, Ireland
{villadav, linck}@utrc.utc.com

Adam Kuenzi, Michael Lang
Carrier Corporation
Salem, Oregon, USA

{adam.kuenzi, michael.lang}@carrier.com

Abstract—Wireless networks are ubiquitous in our modern
world, and we rely more and more on their continuous and
reliable operation for battery-powered devices. Networks that
self-maintain and self-heal are inherently more reliable. We study
efficient and effective network self-healing and update methods
for routing recovery following routing failures in a wireless multi-
hop network. Network update processes are important since they
enable local nodes to maintain the latest and updated neighbor
information for routing given the network changes caused by
failures. Network update also introduces control signals overhead.
In this paper, we investigate the trade-off between routing
performance and overhead cost with different network update
algorithms and we characterize the performance of the proposed
algorithms using network simulations. We show that network
updates have positive impacts on routing. In particular, the on-
demand route update method provides better results among
compared techniques. The improvement is varying depending
on the network topology and failure condition scenario.

Index Terms—Bluetooth Low Energy, self-healing, on-demand
update, wireless network, multi-hop.

I. INTRODUCTION

Wireless communication is prone to error and failure. When
there are failures, a robust network will self-heal and mitigate
the problem by a recovery technique. Recovery techniques
including the failure recovery and network update have been
extensively studied in the past. The packet failure recovery
has been thoroughly investigated, and it could be recovered
in active or reactive way. Next, the network update challenge
is to enable the relevant nodes that share information with
neighbors and maintain accurate routing data. However, there
is still room for an efficient and effective method for wireless
networks with battery-powered devices. The challenge is to
maintain accurate routing tables and update them after a failure
in the network. The updating of routing paths, creation of
new paths, and automatic selection of alternative paths are
important for continuous robust operation of the network.

The routing failure recovery has focused on the finding of
alternative routes in proactive and reactive way [1] [2] [3]
[4] [5] [6]. Afterwards, local network information is updated.
In [7], the controller is notified about the failure node and the
routes are updated in the server. In [8], after a failure, the nodes
broadcast a control packet to the nodes with smaller hop-count.
In [9], P2P network performs failure recovery updates based
on informing k sequential nodes and improves the selection of

nodes to send the notification to. As shown in the state of art
above, some algorithms provide on-demand recursive failure
notification, but there is no method that guarantees at the same
time a configurable, smart and on-demand maintenance and
update of the network in both node and route information.

This paper will focus on the network update following
a failure identification and subsequent recovery [10]. The
network update has two goals: one is to find the latest and
accurate network information for routing operation, while the
other is to minimize the overhead cost of control signal. In the
paper, we first describe the proposed network update meth-
ods in Section II. Then, Section III covers the performance
evaluations through network simulations and discusses its key
findings. Finally, the conclusions are included in Section IV.

II. NETWORK INFORMATION UPDATE

In this section, two on-demand methodologies are proposed
to automatically update the information of the nodes subse-
quent to a failure and a recovery [11]. The system model that
we took into account for the proposed methods is a Bluetooth
Low Energy (BLE) mesh network, but the same approaches
can be extended to all of wireless multi-hop networks.

A. System model

The Bluetooth Low Energy technology exploits an adver-
tisement/scan mechanism for the access control. It operates
with 40 channels within the 2.4-2.4835 GHz ISM radio bands
with 2 MHz channel spacing. The channels are divided
between 3 advertisement channels, which provide the node
discovery and where the handshake for the link establishment
takes place, and 37 data channels, for the bidirectional data
stream flow. A node periodically advertises his presence and
availability by sending an advertisement in each advertisement
channel. The 3 advertisements are sent with a period composed
of a fixed time, called advertising interval (τAI), plus a variable
random delay (δ) to make the sending of advertisements
asynchronous and increasing the chance of reception. On
the other side, when a node has a pending packet to send,
it switches in scan mode where it periodically listens for
advertisements in the 3 advertisement channels. The time spent
in each channel before switching to the next one circularly is
called scan interval (τSI) which consists of an active listening
part, named scan window (τSW), and a low-power state mode.

978-1-7281-9418-9/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on November 23,2020 at 21:29:21 UTC from IEEE Xplore. Restrictions apply.

N1 N2 N3 N4

N5 N6 N7 N8

Head

R

R

TX Range: R

N4 path #1

N4 path #2

N4 Paths:
• N4 N3 N2 N1 Head
• N4 N8 N7 N6 N5 Head

Fig. 1. Multi-path setup algorithm example.

When a proper advertisement is received, the node in scan
mode initiates the link establishment by sending a connection
request message which contains parameters used for the data
delivery. After that, both nodes switch in the data channels
where the data delivery is performed. The scan node (transmit-
ter) starts sending data packets one by one and the advertiser
node (receiver) is going to reply with an acknowledgment after
each packet has been correctly received. When the scan node
has completed to deliver all of the packets, both nodes switch
to advertisement mode to continue their lifecycle and activities.

The network layer used in this study exploits a multi-path
routing approach based on the minimum hop-count distance.
The hop-count of a node is defined as the minimum distance
in terms of number of hops between the node and a head node.
The head node is a data sink in the BLE mesh network. This
value is included inside the advertisement message. During
the preliminary phase, a node retrieves its own hop-count by
listening to the advertisements of its 1-hop neighbors [10].
In the paths creation operations, a node selects the next hop
considering the hop-count of its neighbors and making the de-
cision according to multi-path setup algorithm. This algorithm
is designed to build a series of disjoint paths sequentially based
on the minimum number of hop-count distances [12]. Figure
1 presents an example of the multi-path setup algorithm.

B. On-demand table update

After a multi-path routing is set up in a wireless network,
failures may occur during a data delivery and trigger a failed
path recovery. We next propose an on-demand table update
method following the failure recovery. It aims to inform the 1-
hop neighbors about a change that has occurred in the network
in order to maintain the information of the neighbors up-
to-date for future uses. It might be triggered if a first node
discovers a failed node, or if a first node re-computes its
hop-count and the new value has changed. These triggering
conditions can be activated individually or together. When a
first node triggers the on-demand table update, it generates an
information packet (Table I). This message contains the hop
distance of the first node and the node ID of the failed nodes
discovered. Then, the first node sends the information packet
to each of its 1-hop neighbors. Upon receipt of the information
packet, a second node updates the hop distance of the first node
and re-computes its own hop-count. If the hop distance has

TABLE I
INFORMATION PACKET OVERVIEW

Packet ID ... Failed node ID Sender’s hop-count ...

changed, the on-demand table update is triggered recursively
and a new information message is created and broadcasted.
Additionally, the second node stores the IDs of any failed
nodes and checks if any of the failed nodes are its 1-hop
neighbor. If so, the second node invalidates the affected failed
routes so that they are not selected in future packet deliveries.

The broadcast information message has a lower priority
compared to the data packet that triggered the on-demand
update, therefore it is served after the data message. This is
because the system is configured to push the data packet, with
higher priority, as soon as possible towards its final destination.
Additionally, a node is able to include extra details in the same
information packet if further failed nodes are discovered.
The number of 1-hop neighbors linked to a node mainly
depends on the topology and the network density. In some
situations, this number might be high and the time and energy
required to perform the broadcast of the information packet
may be too much energy consuming. For this reason, the
sender can perform a ranking of its 1-hop neighbors before
sending the message. The ranking can be based upon different
parameters, e.g. minimum hop-count distance or higher re-
ceived signal strength indicator (RSSI). The sender will select
just a subset of nodes to send the message to starting from
the highest ranked. The bigger the selected subset size is, the
higher is the network update, but the higher is the resources
consumed. The ranking aims to retrieve nodes that might have
a higher probability to be interested in the current update. The
on-demand table operations are summarized in Algorithm 1.

Algorithm 1 On-demand table update
1: procedure NODE DETECTING A FAILURE
2: discover a failed node;
3: re-compute hop-count distance;
4: serve the data packet;
5: if failed node detected or hop distance changed then
6: goto 16;
7:
8: procedure NODE RECEIVING INFORMATION PACKET
9: receive information packet;

10: store failed node ID;
11: invalidate paths with failed node;
12: re-compute hop-count distance;
13: if hop distance changed then
14: goto 16;
15:
16: procedure INFORMATION PACKET OPERATIONS
17: generate an information packet;
18: perform a ranking of the 1-hop neighbors;
19: select a subset of the ranked nodes;
20: send the information packet to the selected nodes;

Authorized licensed use limited to: Northeastern University. Downloaded on November 23,2020 at 21:29:21 UTC from IEEE Xplore. Restrictions apply.

The update of the node structures performed by the infor-
mation message has two main benefits: routing accuracy and
energy saving. For instance, during future alternative route
generations or failure recovery situations for data deliveries,
the nodes are able to select the next hop quickly and correctly
thanks to the up-to-date information stored. It can be inferred
that the real benefits of the on-demand table update may not be
always visible in a short period of time, but it might strongly
help the network in the long term by saving energy and time.
Figure 2 shows an example of the on-demand table update.
At the beginning, N2 wants to send an uplink message to
the head node via its path #1. Because of N1 failure, the
packet is not delivered (2.A). N2 updates its own hop-count
and discovers that it has changed from 2, passing via N1,
to 3, passing via N6 (2.B). At this point, both the triggering
conditions of the on-demand table update are satisfied since
a failed node has been discovered and the hop distance has
changed. Hence, N2 generates an information packet. After
that, it pushes the data packet through its second path #2 via
N6, since the data packet has higher priority. After this delivery
is completed, the information message can be served. Since
the network in this example is small, there is no need of the
ranking operations, and the packet can be sent to all of the
1-hop neighbors, i.e. N3 and N6 (2.C). Upon the reception of
the information message, the nodes update the hop-count of
N2 and re-compute their own distances. The hop-count of N6
is not changed since it relies on N5. On the contrary, N3’s
distance has changed from 3 to 4 (2.D) since it was relying
on N2. At this point, the condition of the on-demand table
update is triggered again. N3 generates another information
message and sends it to its 1-hop neighbors (2.E). The same
process is going to happen with N4 (2.F). Additionally, if N3
has the information regarding all of the intermediate nodes
of its paths, it might decide to invalidate its path #1 since it
contains a failed spot. Same actions can be performed by the
other reached nodes. In this example, the benefits of the update
are immediately visible. Indeed, N3 is able to mark its path #1
failed and to select its #2 as active, saving energy and time.
Additionally, all the nodes have the information regarding the
hop-count distances of their neighbors correctly up-to-date.

N1 N2 N3 N4

N5 N6 N7 N8

Head

Failed Node D: 23 D: 34 D: 45

R

R

TX Range: R

N2 path #1

N2 path #2

N3 path #1

N3 path #2
Information

packet

(A)

(B)

(C)

(D)

(E) (F)

Fig. 2. On-demand table update example.

TABLE II
NOTIFICATION PACKET OVERVIEW

Packet ID ... Failed node ID Path ID failed ...

C. On-demand route update

The on-demand route update is another technique to deal
with node failures in the network. While the on-demand table
focuses on updating the hop-count and neighbor information,
the on-demand route instead aims to provide an update of the
routes containing a failed spot. The on-demand route update
might be triggered after a failed node is discovered. When
a sender discovers a failure, the link sender-failed node is
recorded unavailable at the sending node. Then, the sender
checks its routing tables to determine whether that link is used
by other routes. If so, the on-demand route update is triggered.
The sending node sends a unicast notification packet (Table II)
to the original source of the path comprising the failed link
if that link is part of an uplink route, or to the head node
if that link is part of a downlink path. When the final node
receives the notification message, it invalidates the notified
path so that the path containing the failed link is not used in a
future data delivery. Any intermediary nodes may also record
any path containing the failed link as being invalid. As for the
on-demand table, the notification packets of the on-demand
route update have lower priority than the original data packet,
meaning that they are sent after the current data packet. The
on-demand route operations are summarized in Algorithm 2.
The benefits of this technique are visible when a node skips
the routes comprising a failed link thanks to the notification
updates. This benefit situation may or may not happen in the
future based on the failure locations and the topology structure.
If a failed link is used by the current active path of a node, the
benefit is immediately displayed. However, if the failed link
is used by a non-active path, the on-demand route update will
take more time and more failure nodes to show its benefits.

Algorithm 2 On-demand route update
1: procedure NODE DETECTING A FAILURE
2: discover a failed node;
3: mark link with failed node unavailable;
4: serve the data packet;
5: check routing tables for failed link;
6: for each upstream failed link found do
7: send a notification packet downstream;
8: for each downstream failed link found do
9: send a notification packet upstream;

10:
11: procedure NODE RECEIVING NOTIFICATION PACKET
12: receive notification packet;
13: store failed node ID;
14: if notification has reached final destination then
15: invalidate paths with failed link;
16: else
17: forward notification;

Authorized licensed use limited to: Northeastern University. Downloaded on November 23,2020 at 21:29:21 UTC from IEEE Xplore. Restrictions apply.

N1 N2 N3 N4

N5 N6 N7 N8

Head

Failed Node

R

R

TX Range: R

Notification
packet

(A) (D)(C)

N2 path #1

N3 path #1

N4 path #1

(B)

N2 path #2

N3 path #2

N4 path #2

Fig. 3. On-demand route update example.

The on-demand updates can be used individually or combined
together in order to update the network in a more comprehen-
sive way in a failure event at the expense of time and resources.
This allows the network to be more adaptable in response to
failed node situations and able to self-heal to ensure effective
and efficient data delivery through the network without need-
ing for an external operator to continually maintain the system.
On the other hand, if the failed nodes are quickly recovered
by introducing a high maintenance cost thanks to a prompt
technician intervention, no benefits might be provided to the
system by the on-demand table and route update techniques.
Figure 3 shows an example of the on-demand route update

methodology. Initially, N2 wants to send an uplink packet
via its path #1. Upon attempting to do so, N2 discovers that
node N1 has failed and the data packet cannot be properly
received (3.A). At this point, N2 updates the information
of node N1 marking the link N1-N2 as being unavailable.
Because a failed node has been discovered, the condition for
the on-demand route update might be triggered. First of all,
N2 sends the current data packet through its path #2 via N6
(3.B). Then, N2 checks the routing tables to see if the link
N1-N2 is used by other paths. It discovers that the link N1-
N2 is used by N3 and N4 in their upstream routes. This is
the proper condition that triggers the on-demand route update.
N2 generates two notification messages, one with destination
N3 and one with destination N4, and forwards these messages
by following their correspondent downlink routes (3.C). After
N3 has received the notifications, it invalidates its path #1
and forwards the second notification to N4 (3.D). Upon the
notification reception, similarly N4 invalidates its path #1.
In this example, the on-demand route update provides immedi-
ate benefits, since the routes involved in the notification were
the current active paths #1 of the notified nodes. The nodes
select as active their paths #2 and they will use directly those
for the future data deliveries by saving time and resources.

III. PERFORMANCE EVALUATION

This section presents network simulation models and results
performed using the Matlab [13] software environment to
evaluate the proposed methods discussed in previous sections.

TABLE III
SIMULATION PARAMETERS.

Parameter Value
τAI for head node 100 ms
τAI for BLE nodes 1 second
τSW equal to τSI 10 ms
Packet size 240 bits

A. Simulation setup

The network in this study is shown in Figure 4. It consists
of a 3-floors topology which would simulate an indoor office
or a student dormitory environment. Each floor is 4 meters
high and contains 10 nodes arranged in a 2x5 grid for a total
of 30 nodes. Each node has a distance of 2 meters from the
other line, 12 meters within a node in the same line, and
1.2 meters from the ground. One head node is located in the
central floor at a height of 3.9 meters, i.e. on the ceiling.
The channel modeling exploits the BLE physical signal with

Gaussian Frequency Shift Keying (GFSK) modulation. The
International Telecommunication Union (ITU) indoor propa-
gation model [14] used takes into account the transmission
frequency (f), the distance between transmitter and receiver
(d) with a power loss coefficient (N) equal to 22, typical value
for a commercial area in 2GHz, and a floor penetration loss
(Pf) of 6 dB per crossed floor (n) based on the nodes location.
The resulting path loss (PL) equation is shown in (1).

PLd0→d = 20log(f) +Nlog(d) + Pf (n)− 28 (1)

A path loss threshold of 70 dB is used taking into consider-
ation the BLE radio’s receiver sensitivity and channel fading
effect. This determines if two nodes are considered neighbors
and are able to communicate directly and reliably. Additional
parameters for the simulations are summarized in Table III.
We make the assumptions that each node has 5 disjoint paths
already stored in the routing tables towards the head node
together with the hop-count values of its 1-hop neighbors [10]
[12]. Each simulation cycle consists of the first phase with 1
second long where all the nodes wake up randomly and start
the advertisement cycle. After that, the traffic is generated.
Two main use cases are considered. The first tests the on-
demand table update, while the second the on-demand route.

11

0

2

21

10

4

6

9

31

20

20

8

M
et

er
s

10

19

8

30

12

14

7

29

1817

6

28

15

5

27

60

1615

4

26

50

3

25

Meters

14

10

13

2

24

40

23

Meters

12

30

22
1

5 20100 0

Fig. 4. Network topology used for the simulations in this study. In red the
head node and in blue the other BLE nodes.

Authorized licensed use limited to: Northeastern University. Downloaded on November 23,2020 at 21:29:21 UTC from IEEE Xplore. Restrictions apply.

The background traffic for the first use case consists of one
uplink packet generated by one node at random in the network
with a distant of at least 2 hops towards the head. During
each cycle, a node failure is injected along the path that the
packet should follow to reach the head node in order to trigger
the failure conditions to activate the on-demand table update
process. The number of 1-hop neighbors to reach after the
ranking process is fixed and varies between 1, 3, 5, 7 and 9.
The system handles the delivery of a message to multiple 1-
hop destination nodes in a sequentially unicast way creating
the connections one at a time [15]. The sending node follows
the following operations: connect to nearby MAC address;
send an instance of the message; terminate the link; switch
again in scan mode to establish another connection till all of
the destination nodes have received the message correctly.
The second use case tests the on-demand route update. The
background traffic consists of one packet uplink, while the
failed node hop-count distance is fixed and varies between 1,
2, 3 and 4, the minimum and maximum values allowed in
the network considered in this study. The source node, i.e. the
node that generates the uplink message, is chosen between the
nodes with a hop-count distance greater than the failed node
in order to be able to inject the failure along the path that the
packet should follow and thus trigger the on-demand route.
The main Key Performance Indicators (KPI) taken into con-

siderations are latency and current consumption. The latency
considers the average time needed by the system to complete
all of the on-demand update activities from the time they are
triggered. On the other hand, the current consumption takes
into account the average instantaneous current needed by a
node to perform the current operations. The energy model
considers only the power consumption of the radio operations
of transmitting/receiving, which are the most expensive in
terms of energy in a wireless device. Their values are based
on the Texas Instrument Bluetooth chipset CC2642 [16] and
are summarized in Table IV. In the first case only the current
consumption of the node that discovers the failure is consid-
ered, since it is the only node more involved in the operations.
On the other hand, in the second case the average of all of
nodes current consumption is presented since more nodes in
the network are involved in the on-demand route activities.

TABLE IV
ENERGY MODEL

State Time [µs] Consumption [mA]
Low-Power / 0.0107
Preprocessing 1261 3.34
Postprocessing 685 2.45
Rx 184 6.47
Tx 150 7.47
Rx2Rx (change ch) 372 3.56
Rx2Tx (change ch) 370 3.43
Tx2Rx (change ch) 370 3.43
Tx2Tx (change ch) 372 3.56
Rx2Tx (no change ch) 150 5.49
Tx2Rx (no change ch) 112 4.66

B. Results analysis

The simulation results for the first case are shown in Figure
5. The latency increases linearly with the increasing of the
number of 1-hop neighbors to reach. Its value starts with an
initial offset since the node has to first send the data packet
that has generated the failure discovery before serving the
on-demand table information message. The 5.b shows the
average current consumption during 1 minute of simulation
of the node that discovers the failure and sends the information
packet. These values follow the same trend as the latency
ones. However, these increments lead to an enhancement of
the accuracy that ranges from 11% to 77%. The accuracy
(5.c) is computed as the percentage of the average active 1-
hop neighbors per node to whom the information message is
sent to. It shows the fraction of 1-hop neighbors that have
the information up-to-date at the end of the on-demand table.
In this study the number of 1-hop neighbors per node range
from 9 to 17 based on the location with an average of 12.6
neighbors. The accuracy is a good indicator of the network
maintenance rate. The more resources are spent in the on-
demand table process, the higher is the maintenance achieved.
Figure 6 presents the simulation results for the second use

case. The increasing of the failed node’s hop distance leads
to a decreasing of all of the three KPIs taken into account:
latency (6.a), current consumption (6.b) and total number
of notification packets generated (6.c). As the failed node
moves away from the head node, it is used by less nodes
in their routes. This leads to a less number of on-demand

1 3 5 7 9
1-hop neighbors reached

0

1

2

3

La
te

nc
y

(s
)

a)

Latency

1 3 5 7 9
1-hop neighbors reached

0.7

0.8

0.9

1

C
ur

re
nt

co
ns

um
pt

io
n

(m
A

) b)

Current consumption

1 3 5 7 9
1-hop neighbors reached

0

25

50

75

100

A
cc

ur
ac

y
(%

)

c)

Accuracy

Fig. 5. First case with on-demand table update results: a) average latency
for the completion of the on-demand table activities from the time they are
triggered; b) average current consumption in 1 minute of simulation for the
node that has discovered the failure and has triggered the on-demand table
update; c) accuracy of the on-demand table update given by the number of
1-hop neighbors reached over the average active 1-hop neighbors per node.

Authorized licensed use limited to: Northeastern University. Downloaded on November 23,2020 at 21:29:21 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4
Hop distance of failed node

0

1

2

3

La
te

nc
y

(s
)

a)

Latency

1 2 3 4
Hop distance of failed node

0.05

0.06

0.07

C
ur

re
nt

co
ns

um
pt

io
n

(m
A

) b)

Current consumption

1 2 3 4
Hop distance of failed node

0

2.5

5

7.5

10

N
ot

ifi
ca

tio
n

pa
ck

et
s

(#
)

c)

Notification packets

Fig. 6. Second case with on-demand route update results: a) average latency
for the completion of the on-demand route activities from the time it is
triggered; b) average node current consumption in 1 minute of simulation
for all the nodes in the network; c) average number of notification packets
generated by the network when the on-demand route update is triggered.

route notification packets generated since fewer nodes have
to be informed. The overall latency and power consumption
decrease accordingly. The current consumption in 6.b shows
the average values for all the nodes in the network in 1 minute
of simulation, in contrast with 5.b that presents only the current
consumption of the node that triggered the on-demand update.
It can be noticed that with a failed node’s hop distance equal to
4 the number of notification packets is zero. This is because the
node that discovers the failure has no paths stored in its routing
tables that exploit the failed link, therefore no notification
packets are required. This doesn’t imply that the failed node
is not used in other routes, but it only means that the specific
link discovered is not used. The failed node could still be
used by other surrounding nodes through other links. In this
situation, the on-demand table update might be very useful.
In fact, the information packet might be able to inform the
neighbors about the node failure and they could invalidate any
routes comprising the failed spot. Compared to the on-demand
table, the on-demand route needs more information to generate
its notifications, but, on the other hand, the notification packets
have a more specific scope and destination nodes to reach.

The use of the on-demand updates means that with a smaller
amount of resources spent in advance, the system is able to
save energy and latency in future deliveries. Since the routing
tables and information of the neighbors are already up-to-date,
the senders are capable of selecting the next hop properly,
without needing to spend time on discovering the failures.
On the other hand, if the failed node is not used in future
deliveries, or it is quickly repaired, there is no clear benefit

in using the on-demand updates, since they are a mechanism
of network self-maintenance. The real savings may also vary
based on the network topology and density and how the system
handles broadcast deliveries, failure discovery and recovery.

IV. CONCLUSION

In this paper we present and demonstrate an effective and
efficient self-healing method for network routing. The method
includes two on-demand update techniques. One method tar-
gets all of neighboring nodes with a ranking function while
the other method provides a more focused update using early
routing information. The methods are demonstrated to be
efficient based upon KPIs for latency, current consumption
and overall network self-maintenance percentage. In particular,
when the updates reach nodes directly affected by the failure,
as it has been shown in Section II, the methods provide
strong and robust mechanisms of self-healing. On the other
hand, the methods are weak when a technician intervention is
actuated quickly or when the updates are not able to reach
interested nodes. Their cost difference and effectiveness is
varying depending on the selected system parameters, topol-
ogy, failure and maintenance scenarios. The authors believe
that the methods presented can help networks self-heal and
robustly route around failed nodes with minimal effort and
energy cost compared to previously published methods.

REFERENCES

[1] H.-S. Kim, J. Lee, and J. Jang, “Blemesh: A wireless mesh network
protocol for bluetooth low energy device,” International Conference on
Future Internet of Things and Cloud, Rome, 2015.

[2] A. Scaglione, M. Coates, M. Gastpar, J. Tsitsiklis, and M. Vetterli, “In-
troduction to the issue on gossiping algorithms design and applications,”
IEEE J. Sel. Topics Signal Processing, August 2011.

[3] B. K. Maharjan, U. Witkowski, and R. Zandian, “Tree network based
on bluetooth 4.0 for wireless sensor network applications,” Embedded
Design in Education and Research Conf. (EDERC), September 2014.

[4] K. Mikhaylov and J. Tervonen, “Multihop data transfer service for
bluetooth low energy,” 13rd ITS Telecomm., Finland, November 2013.

[5] Z. Guo, I. G. Harris, L. Tsaur, and X. Chen, “An on-demand scatternet
formation and multi-hop routing protocol for ble-based wireless sensor
networks,” IEEE Wireless Com. and Netw. Conf. (WCNC), March 2015.

[6] C.-K. Lin and O. Kure, “Energy-aware path selection in mobile wireless
sensor networks: A dynamic bayesian game approach,” IEEE PIMRC
Conference, Tokyo, 2009.

[7] H. B. Nakil, P. R. Marques, H. Ajay, A. Ranjan, and A. Singla, “Re-
routing network traffic after link failure,” US8953441B2, 2013.

[8] Y. Nishimura, H. Sakauchi, and S. Hasegawa, “Self-healing network
with distributed failure restoration capabilities,” US5235599, 1990.

[9] G. Shi, J. Chen, and H. Gong, “Method, device and system for updating
routes after node fails in p2p network,” US8248919, 2009.

[10] C.-K. Lin, D. Villa, A. Kuenzi, M. Lang, and A. Tiwari, “Method
and system for data transfer in a bluetooth low energy network,”
107431EP01, 2019.

[11] D. Villa, C.-K. Lin, A. Kuenzi, and M. Lang, “On-demand table and
route update after a node failure in a wireless network,” 123926EP01,
2019.

[12] C.-K. Lin, D. Villa, A. Kuenzi, and M. Lang, “Adaptive multipath
routing failure recovery in a wireless network,” 124326EP01, 2019.

[13] MATLAB, version 9.1.0.441655 (R2016b). Natick, Massachusetts: The
MathWorks Inc., 2016.

[14] V. Sucasas, G. Mantas, and S. Althunibat, Broadband Communications,
Networks, and Systems. Springer, 1st ed., January 2019.

[15] D. Villa, C.-K. Lin, A. Kuenzi, and M. Lang, “Broadcast delivery
techniques in a wireless network,” 123931EP01, 2019.

[16] T. Instruments, CC2642R SimpleLink™ Bluetooth® 5 low energy Wire-
less MCU, swrs 194 ed., January 2018.

Authorized licensed use limited to: Northeastern University. Downloaded on November 23,2020 at 21:29:21 UTC from IEEE Xplore. Restrictions apply.

