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Abstract— Wireless networks are extremely vulnerable to a plethora of security threats, including eavesdropping, jamming, and
spoofing, to name a few. Recently, a number of next-generation cross-layer attacks have been unveiled, which leverage small changes
on one network layer to stealthily and significantly compromise another target layer. Since cross-layer attacks are stealthy, dynamic and
unpredictable in nature, novel security techniques are needed. Since models of the environment and attacker’s behavior may be hard
to obtain in practical scenarios, machine learning techniques become the ideal choice to tackle cross-layer attacks. In this paper we
propose FORMAT, a novel framework to tackle cross-layer security attacks in wireless networks. FORMAT is based on Bayesian learning
and made up by a detection and a mitigation component. On one hand, the attack detection component constructs a model of observed
evidence to identify stealthy attack activities. On the other hand, the mitigation component uses optimization theory to achieve the
desired trade-off between security and performance. The proposed FORMAT framework has been extensively evaluated and compared
with existing work by simulations and experiments obtained with a real-world testbed made up by Ettus Universal Software Radio
Peripheral (USRP) radios. Results demonstrate the effectiveness of the proposed methodology as FORMAT is able to effectively detect
and mitigate the considered cross-layer attacks.
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1 INTRODUCTION

OWING to the broadcast nature of the transmission
medium, wireless networks are extremely vulnera-

ble to a plethora of security threats, including eavesdrop-
ping, denial-of-service (DoS), spoofing, message falsifica-
tion/injection, and jamming, just to name a few [1]. Tra-
ditionally, security threats are tackled with mechanisms
which are implemented at different network layers [2–7]. On
the other hand, this approach does not address the newly
emerging threats of cross-layer attacks [8–16], which jointly
utilize multiple “sub-attacks” on different layers to achieve
a single, well-coordinated target.

Since their introduction, cross-layer attacks have evolved
into ever complex forms (we refer the reader to Section
2 for a detailed literature review). In this paper, we focus
on a new family of cross-layer attacks that leverage cross-layer
interactions in wireless protocols to improve their effectiveness.
Specifically, it is well known that in many network protocols
functionalities such as power allocation, channel selection,
and routing decisions are jointly optimized with a com-
mon objective [17–19], resulting in layers that are closely
coupled with each other. The adversary can then exploit
this weakness by attacking a helping layer using small-scale
activities, having instead a target layer as objective. As long
as the helping and target layers are coupled, the attack
will lead to the defender’s responsive change on the target
layer. With carefully-tuned attack activities and objectives,

• L. Zhang, F. Restuccia, and T. Melodia are with the Department of
Electrical and Computer Engineering, Northeastern University, Boston,
MA, 02215 USA (e-mail: {liyangzh, frestuc, melodia}@ece.neu.edu).

• S.M. Pudlewski is with the Air Force Research Laboratory, RITF, Rome,
NY, 13440 USA (e-mail: scott.pudlewski.1@us.af.mil)

Manuscript received Month X, YYYY; revised Month Y, ZZZZ.

the defender’s reaction will favor the attacker’s objective.
Software-defined radios further facilitate such attacks by
easing the manipulation of physical-layer dynamics [20].

To illustrate this type of cross-layer attacks, we now
provide some examples.

1) MAC Poisoning. Let us suppose a node has two
frequency channels (f0 and f1) dynamically available for
communication. Let us also suppose f0 is experiencing more
interference than f1, thus the node is using frequency f1.
The target of the adversary is decreasing the node’s through-
put. In case of a single-layer attack, the attacker may directly
jam the physical layer on f1. However, in case of cross-layer
attack, the attacker may influence the medium access control
(MAC) layer by jamming the channel reservation messages
or periodically falsifying such messages on frequency f1,
and thus inducing the node to eventually switch to f0. As
a consequence, this strategy will eventually lead the node n
to experience a lower throughput.

2) Hammer-and-Anvil [15]. Let us consider a wireless
multi-hop network as illustrated in Fig. 1, where node n
wants to minimize the end-to-end delay to the sink.

Fig. 1. Illustration of hammer-and-anvil attack.

The attack takes place by using a jammer and a compro-
mised node, which we assume is able to undermine com-
munication with selective forwarding, traffic analysis, or
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decryption, among others. The jammer aims at redirecting
traffic to the compromised node. To this end, it selectively
jams links that do not lead to the compromised node. With
appropriate jamming, the link between n and m will be
degraded so much that m is no longer the best next hop
for n, Thus, n may select another next hop with a higher
utility, which also leads to the compromised node.

3) TCP Timeout [21]. In this attack, the adversary aims at
stealthily disrupting existing TCP flows of a node. To this
end, an attacker can forward a DoS flow intentionally tuned
in accordance with the TCP timeout mechanism. Specif-
ically, the attacker can send high-rate but short-duration
bursts with a round-trip time (RTT) scale length and a
retransmission timeout (RTO) scale period. As a result, the
victim will be forced to enter timeout state repeatedly, and
be throttled to near-zero throughput. It has been shown in
[12, 14, 22] that physical and MAC layer attacks can be used
to create DoS with the same pattern.

The examples above highlight the unique characteris-
tics of cross-layer attacks. Most importantly, they leverage
small-scale activities at the helping layer to achieve signifi-
cant damage at the target layer. This implies that the attacker
can achieve the same goal with relatively small-scale activ-
ities, and therefore remain undetected. On the other hand,
existing attack detection methods often assume that attacks
are conducted always in the same manner and always have
the same objective, and that large-scale attacks have to be
conducted in order to get significant results [1]. As we have
pointed out, this is not necessarily true in cross-layer attacks.
Therefore, developing a detection and mitigation algorithm
able to detect and counteract small-scale, dynamic cross-
layer attack activities becomes paramount.

This paper makes the following novel contributions:
• We propose a FramewORk to learn and Mitigate cross-

layer security ATtacks (in short, FORMAT) in wireless net-
works. FORMAT uses a novel detection scheme based on a
particular kind of machine learning [23] technique called
Bayesian learning [24], which we use to train classifiers
based on multi-layer features to detect and mitigate small-
scale malicious activities in the helping layer [25, 26]. Since
cross-layer attacks are stealthy, dynamic and unpredictable
in nature, machine learning addresses these challenges by
detecting and mitigating the attack “on the fly” without
requiring a model of the attacker’s behavior.
• To evaluate the framework on practical use-case sce-

narios, we apply the framework to solve the MAC poisoning
attack as well as the hammer-and-anvil attack and the TCP
timeout attack. Experimental results obtained with simula-
tions and a practical testbed implemented with Ettus USRP
software-defined radios [20] show that our framework im-
proves significantly with respect to the state of the art and
is able to detect and mitigate such attacks effectively.

2 RELATED WORK

Cross-layer attacks in networks have been the subject of
extensive study over the last few years [8, 10–16, 22].

Compared to traditional single-layer attacks, cross-layer
attacks jointly utilize multiple “sub-attacks” at different
network layers. They can be broadly categorized into two

types, depending how the sub-attacks are utilized. In the
first type of cross-layer attacks, sub-attacks work in parallel
towards a common goal. Thamilarasu et al. [8] argue that
an adversary can jointly use collision on link layer, packet
dropping and misdirection on network layer to perform a
Denial of Service (DoS) attack. Two cross-layer attacks for
cognitive radio networks are considered by Wang et al. [13].
In the first one, the objective of reducing channel utilization
is achieved by using Report False Sensing Data (RFSD)
attack on physical layer and Small Backoff Window (SBW)
attacks on MAC layer. The second one aims at creating
interference to the primary users (PU). To this end, an RFSD
attack is performed to prevent the secondary users (SU)
from detecting the PUs, then a routing manipulation attack
is used to redirect packets to the SUs close to the PU. Djahel
et al. [11] investigate an attack aiming at establishing fake
symmetric links in MANETs.

Other cross-layer attacks leverage actions on different
layers in a more intertwined way. In [10], the authors unveil
an attack against MANET monitoring. The attacker can
spoof MAC layer ACK frames to reduce the reputation of
some nodes at the MANET monitoring tool. In this way,
the attacker can manipulate the routing in the network,
which is based on the reputation of the nodes. Hasan et al.
[16] consider an attack in GSM networks, where the control
messages are eavesdropped to extract the information use-
ful for launching other attacks such as jamming and Base
Transceiver Station (BTS) cloning. TCP’s congestion control
mechanism is well-known to be vulnerable to DoS attacks,
as discussed in Section 1 example (3). In [12] and [14], the
authors consider cognitive radio networks and argue that
the objective of forcing TCP timeout can be achieved with
physical/link layer attacks such as Primary User Emulation
(PUE) and Objective Function Attack (OFA).

The benefit of considering multi-layer information in
attack detection has attracted significant attention. There
is a series of works on Intrusion Detection System (IDS)
using cross-layer features [13, 27–31], for both single-layer
attacks and the first type of cross-layer attacks. The idea
is to monitor features on multiple layers so that different
single-layer attacks (or parallel sub-attacks for a cross-layer
attack) can be detected with a higher accuracy. The unique
characteristics of the second type of cross-layer attacks, i.e.,
the interactions between layers are not considered, therefore
they cannot be applied directly to these cross-layer attacks.
Bayesian learning has also been widely used for attack
detection in network security [32–34]. However, conversely
from ours, previous work has focused on single-layer at-
tacks and parallel cross-layer attacks.

3 THE FORMAT FRAMEWORK

In this section, we describe in detail our the FORMAT frame-
work. We first provide some necessary background notions
on Bayesian learning, then, we illustrate an overview of
the framework. Next, we discuss the threat model and the
components of FORMAT in Section 3.3 and 3.4.

3.1 Background
Let us now introduce some definitions and terminology that
will be used throughout the paper. Let us define x as a data
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point and θ as the parameter of the data point’s distribution,
i.e., x ∼ p(x | θ). We also define α as the hyper-parameter
of the θ parameter distribution, i.e., θ ∼ p(θ | α). We define
X as the sample, which is composed by a set of n observed
data points, i.e., x1, . . . , xn. Finally, we define x̃ as a new
data point whose distribution is to be predicted.

Bayesian inference [35] works as follows. Let us define
as prior the distribution of the parameter θ before any data
is observed, i.e. p(θ | α). The prior distribution might not be
easily determined. In this case, we can use the Jeffrey’s prior
to obtain the posterior distribution before updating them
with newer observations. Let us define L(θ | X) = p(X | θ)
as the likelihood (also called sampling distribution). The
marginal likelihood (also called the “evidence”) is the distri-
bution of the observed data marginalized over the parame-
ter(s), which is derived as follows:

marg.likelihood︷ ︸︸ ︷
p(X | α) =

∫
θ

likelihood︷ ︸︸ ︷
p(X | θ) ·

prior︷ ︸︸ ︷
p(θ | α) dθ.

The posterior is the distribution of the parameter(s) after
taking into account the observed data. This is determined
by Bayes’ rule, which forms the heart of Bayesian inference:

posterior︷ ︸︸ ︷
p(θ | X, α) =

likelihood︷ ︸︸ ︷
p(X | θ) ·

prior︷ ︸︸ ︷
p(θ | α)

p(X | α)︸ ︷︷ ︸
marg.likelihood

∝ p(X | θ) · p(θ | α).

Bayesian learning predicts the posterior predictive distri-
bution of a new data point marginalized over the posterior,
as follows:

prediction︷ ︸︸ ︷
p(x̃ | X, α) =

∫
θ

likelihood︷ ︸︸ ︷
p(x̃ | θ) ·

posterior︷ ︸︸ ︷
p(θ | X, α) dθ.

We point out that proposing new Bayesian learning
methodologies is out of the scope of this paper. Instead, the
focus of this paper is to develop a theoretical framework
based on Bayesian learning able to detect and mitigate
multiple cross-layer attacks.

3.2 An Overview of FORMAT
We describe the proposed FORMAT framework in the fol-
lowing subsections. The main symbols that will be used in
the following discussions are summarized in Table 1.

TABLE 1
Summary of main symbols.

Symbol Description
V network state vector
O observations vector
S legitimate node strategy vector
A attacker strategy vector
U(·) defender’s utility
G(·) attacker’s gain
C(·) classifier
B a priori knowledge on the attack features
α, β weights of security and performance

Fig. 2 provides a high-level overview of the proposed
FORMAT framework, which aims to enable legitimate wire-
less network nodes to detect and mitigate cross-layer secu-
rity attacks. To achieve this goal, FORMAT implements a

detection and mitigation scheme based on Bayesian learn-
ing, described as follows.

Fig. 2. Attack detection and mitigation framework.
3.2.1 System and Threat Model
We consider a wireless network with a set of legitimate
users (i.e., the defenders) and an adversary (i.e., the attacker).
We represent the network state as a set of variables that
are referred to multiple network layers, which may include
signal-to-interference-plus-noise ratio (SINR) of a link, the
channel access probability of a node, the quality of a route,
and so on. Let us define V as the vector holding the network
state. The state vector V may be affected by the strategies of
the defenders and the attacker, including power allocation,
scheduling, and next hop selection, among others. By denot-
ing the strategies for a defender and an attacker as S and A,
respectively, the vector V can be expressed as V = g(S,A),
with g(·) representing a certain functional relationship.

As in [36–38], we assume that both the attacker and
the defender(s) are rational and decide their strategies iter-
atively.1 We define the interval between two updates of the
attacker’s strategy as one strategy updating period. The strat-
egy updating iteration is shown in Fig. 3, where subscripts
such as i and i + 1 are used to distinguish different time
periods.

Fig. 3. Attacker-defender iteration.

We assume the defender implements a strategy involv-
ing multiple network layers, in which networking variables

1. As a more sophisticated model, the two parties may make their
decisions simultaneously. From the perspective of game theory, a mini-
max rule should be adopted in decision making in this case. However,
since minimax rule requires that a player has the knowledge of the
possible strategies of the other, it is difficult to adopt it in our model,
in which the strategy of the attacker is assumed to be unknown and
difficult to detect. Therefore, we will limit the discussion to iterative
decision making, and leave the simultaneous decision making scenario
to future work.
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are jointly optimized by considering a utility function U(V).
The defender’s next strategy is thus decided by solving a
cross-layer optimization problem, which takes as input the
current network state. More formally,

Si+1 = arg max
S

U(Vi) = arg max
S

U(g(S,Ai)). (1)

Note that the defender does not need to know the attacker’s
strategy A. All it needs is the network state V, which is a
function of A. The detection of V is one of the objectives of
the framework, and will be shown in detail in the following
subsections.

In the considered threat model, the attacker launches a
cross-layer attack in the following way, as shown in Fig.
3. Suppose the network is at a state Vi = {v1i , . . . , vKi },
resulting in an attack gain of G(Vi). The attacker aims
at changing some state vt, 1 ≤ t ≤ K on a target layer
so that the new state Vi+1 = {v1i+1, . . . , v

K
i+1} yields a

higher attack gain G(Vi+1). This objective can be done
by directly changing the state component vti to vti+1 by
attacking with strategy Asingle (single-layer attack), but it
may be costly. Cross-layer attack strategy Across, on the other
hand, chooses a helping layer that is closely coupled with
the target layer in the underlying wireless protocol, but
much easier to attack, and changes the network state vh

on it. An intermediate state V′i = {v′i1, . . . , v′iK} with a
changed v′i

h is resulted, lowering the utility U(V′) of the
defender. The defender always tries to optimize its utility U
according to the underlying protocol. Therefore, it chooses
a new strategy Si based on (1) for the new state V′ in
response. The coupling between layers implies that the state
vt will be changed along with vh. Therefore, as long as the
helping layer is carefully chosen, the resultant new state
Vi+1 may increase both the defender’s utility U and the
attacker’s gain A.

The indirect attack approach that exploits cross-layer in-
teractions in the underlying wireless protocols distinguishes
cross-layer attacks from single-layer (and the “parallel”
cross-layer attacks, see Section 2 for details), and poses
unique challenges. First, by choosing a helping layer with
drastic interactions with the target layer, the attacker may
only need to change vhi by a small scale to create an
intermediate state V′, in which the defender has to change
v′i
t significantly and results in a state Vi+1 in favor of

the attacker. In other words, the attack objective can be
achieved with small-scale attack activities at a different
layer, therefore the attack is exceptionally stealthy. Second,
in the second stage of the attack, the responsive action of
the defender optimizes its own utility while also increasing
the attack gain inadvertently. This suggests simple defense
mechanisms diverting from the attacked state (e.g., Vi+1 in
Fig. 3) may also introduce degradation in utility. Therefore,
the security performance trade-off becomes imperative for
these attacks.

FORMAT is composed of two parts, the attack detection
component and the attack mitigation component. We will
introduce them in detail in the following subsections.

3.3 Attack Detection
The attack detection component faces the challenge of
stealthy attack activities, and needs to detect slight changes

in network states. To this end, we use Bayesian learning
to compute the belief that a specific attack is taking place.
Specifically, it first estimates the network states resulted
by the attack activities based on observed events; then,
the result is mapped to possible attacks according to their
features by using a set of classifiers that have been trained
to recognize the attacks. For the sake of simplicity, in the
following we will omit subscripts such as i and i+1 since the
following discussion only involves one strategy updating
period.

The attack activities are directly reflected by the network
state changed by the attacker. However, since V′ is only
slightly different from V, the defender must be able to
detect slight changes in the network state. According to
Bayesian learning, the more evidences about an event are
accumulated, the closer the result is to the real distribution
of the variable. Therefore, the attack detection component
will be able to construct a hypothesis with high confidence
based on consecutive but not decisive evidences, which per-
fectly suits the scenario we are considering. Specifically, V is
viewed as a random variable with an unknown distribution.
This assumption is valid, since the strategy of the attacker
is static in one strategy updating period. Note that some
environmental variables may also affect V, but they can
be generally assumed to be either constant (e.g., network
topology), or a random variable with a static distribution
(e.g., channel fading) during one strategy updating period.

To learn the distribution of V, the defender records a
set of observable events during a time period. Such events
may include a successful (or failed) reception of a bit (or
packet), the result of a channel contention, and the end-to-
end delay of a message, among others. We denote an event
as a random variable (r.v.) Ok. These events reveal different
states such as SINR of a link, channel access probability, and
quality of a route, but in a probabilistic way. That is, an
event Ok = ok happens for a given network state V = v
with a probability equal to

P{Ok = ok|V = v} = f(ok,v). (2)

We assume the function f(ok,v) is available to the defender,
by either theoretical formulation (e.g., bit error probability),
or training. By assuming that a sequence of independent
events {ok}k=1,...,K have happened, it follows that

P{{Ok}k=1,...,K = {ok}k=1,...,K |V = v} =
K∏
k=1

f(ok,v),

(3)
which leads to the following a posteriori distribution
P{V = v|{Ok} = {ok}} =

=
P{{Ok} = {ok}|V = v}∫

v P{{Ok} = {ok}|V = v} · P{V = v} dv
· P{V = v},

(4)
where P{V = v} is some a priori distribution of V, which
represents the ideal network state (i.e., without attacks).
Note that such quantity is often available – for example,
the distribution of SINR on a link can be derived from
the fading model, the channel access probability for any
node in a network running CSMA/CA is approximately the
same, and so on. If accurate knowledge is not available, it is
often possible to know some information on it, such as the
functional form, and the range of its values [24].



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. Y, MONTH ZZZZ 5

With the a posteriori distribution in Equation (4) avail-
able, the defender is now aware of the attack activities
of the attacker. However, the defender needs information
regarding the type of attack that is taking place. To this end,
we employ a classifier taking as input both the a posteriori
distribution of the network state, and features of attacks that
the network is prone to. Let us define B as the features of
an alleged attack, which represents a priori knowledge on
typical network state under this attack. Thus, we formally
define an attack classifier as follows:

Attacked
C(P{V = v|{Ok} = {ok}}, B) ≶ Cth,

Not attacked
(5)

where Cth is a threshold that is set based on an a priori train-
ing of the system (e.g., by using supervised learning). We
would like to point out here that, as a general framework,
FORMAT does not, and is unable to specify the kind of
classifier to be used or how to train it. When implementing
the wireless system, the designer should choose experiment
with different classifier (e.g., K Nearest Neighbor (KNN,
Support Vector Machine (SVM), Logistic Regression) and
choose the best one according to experimental data. The
choice of threshold Cth depends on the attack and the
classifier. For example, if SVM is used, then the classifier is
a linear function of V in the form of wTV, i.e., a weighted
sum of each network state in the vector V with a weight
vector w. In this case, the threshold is just a vector b such
that wTV = b is a hyperplane separating most points with
the considered attack from most points without the attack.

3.4 Attack Mitigation

Since multiple sub-attacks may be jointly utilized, the miti-
gation component faces the challenge of a smaller space for
strategy. Simple defense mechanisms aiming at one of the
sub-attacks may fall to the pocket of another, and therefore
suffers in either security or performance. To address this, we
let the attack mitigation component to decide a strategy Sk
that optimizes the trade-off between the effort that must be
put forth by the defender (which includes the incurred cost
of such effort), and the desired security level. To this end,
we define a security-performance function:

h(Sk,Ak) = α · E[U(Vk)]− β · E[G(Vk)]

= α · E[U(g(Sk,Ak))]− β · E[G(g(Sk,Ak))],
(6)

where E[·] is the expectation of a random variable. The
expected utility E[U(Vk)] represents performance and neg-
ative attack gain −E[G(Vk)] represents security. Note
E[U(Vk)] is available since a defender is able to evaluate
the performance of its own strategy. The exact value of
attack gain E[G(Vk)] may not be directly measurable, but
an estimation is usually available for a specific attack, as
long as the pattern in attack activities is acquired. We have
shown in Section 4 and 5 how it can be estimated for the
two use cases. The mitigation engine decides the optimal
strategy by solving

maximize
Sk

h(Sk,Ak) (7)

subject to E[U(Vk)] ≤ Uth (8)
E[G(Vk)] ≤ Gth, (9)

where α and β are control variables set by the network oper-
ator. By adjusting their values, the defender can regulate the
desired trade-off point between performance and security.
Constraints (8) and (9) represent the desired performance
and security levels.

The values of α and β largely depend on the considered
application. For example, video streaming applications usu-
ally require high performance on data rate but low security
level, whereas a wireless sensor network collecting scientific
data usually requires high security level but may tolerate
low data rate.

4 USE-CASE EXAMPLE: MAC POISONING

To demonstrate the practical use of the FORMAT frame-
work, we consider two examples of cross-layer attacks.
Specifically, the analysis is aimed at illustrating how the
framework works in practical scenarios and analyzing its
performance. The first example is the MAC poisoning at-
tack, which was briefly introduced in Section 1 and formally
defined as follows.

MAC poisoning attacks take place in multi-channel cog-
nitive networks, where the set of available channels is
defined as F . There is a set N of secondary users (SU) that
need to access the medium. To this end, an SU n ∈ N needs
to decide the channel and transmission power to use, which
are denoted as vectors δn = {δfn}f∈F and Pn = {P fn }n∈F ,
where

δfn =

{
1 n chooses channel f
0 otherwise.

(10)

We assume that to access the channel the SUs leverage a con-
tention based MAC protocol. Thus, SU n needs to compete
with other SUs for the access of a channel f once it is chosen.
Let us define πfn(δfn, δ

f
−n) as the channel access probability.

By considering the average SINR as utility function, the
strategy of n can be formulated as the optimization problem
(11) - (14).

In Equation (14), quantity γfn denotes the achieved SINR
on channel f , which is affected by P fn as well as the ambient
noise Wf . Due to the heterogeneity in primary users (PUs),
the noise level and maximum allowed transmitting power
may differ from channel to channel, resulting in different
achievable SINR. We also assume flat fading, so the average
channel gain is the same for each f ∈ F .

maximize
δf ,Pf

∑
f∈F δ

f
n · πfn(δfn, δ

f
−n) · γf (P fn ,Wf ) (11)

subject to δfn ∈ {0, 1} (12)∑
f∈F δ

f
n = 1 (13)

P fn ≤ Pmax
n (14)

The objective function is optimized by selecting the
channel with maximum πfn(δfn, δ

f
−n) · γfn(P fmax,Wf ). As a

consequence, an attacker may degrade the defender’s SINR
by either raising the interference plus noise level directly,
or by lowering the access probability of channels with high
achievable SINR so that the defender selects a channel with
low achievable SINR. We define the second strategy as a
MAC poisoning attack.

A feasible way to lower the channel access probability
is to purposely jam the RTS/CTS of the defender. In such
case, a failed attempt of an RTS/CTS exchange is con-
sidered a collision, and the defender needs to attempt to
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access the channel with a doubled-size contention windows.
Therefore, the channel access probability of all other nodes
will increase, whereas the one of the defender decreases.
Compared to directly raising the interference plus noise
level, this method costs much less energy of the attacker.

4.1 Attack Detection
The problem of unfair channel access detection has been
analyzed in literature. A scenario with selfish nodes that
deliberately lower their contention window size is studied
in [39], where the authors propose a detection scheme that
compares the throughput of different nodes. Under the
assumption that the throughput is proportional to channel
access probability, if the ratio of two nodes exceeds 1 for
some margin ε during an observation time window, the
node with the higher throughput is considered a selfish one.
However, this approach is based on short-time observations
that ultimately fail to reveal a statistical characteristic of the
malicious behavior. Indeed, the very reason to introduce
a time window and a tolerance is to tackle short-time
unfairness. Even with this assumption, the method is still
not able to detect a selfish node with slightly deviated
behavior, as discussed in the paper. Therefore, the method
does not fit our scenario, as the attacker may achieve its
goal by creating a channel access probability slightly under
the fair share for the defender. In [40], the authors use a
sequential probability ratio test (SPRT) to establish a null or
an alternative hypothesis. However, the simple hypotheses
assumption cannot be applied to our case, where the domain
of the estimated parameter, i.e., channel access probability,
is a continuous set, and it is hard to establish the likelihood
for observations of a simple binary hypothesis.

These issues are successfully tackled by our FORMAT
framework, which aims at establishing the probability dis-
tribution of the network states on a continuous set, rather
than probability ratio of simple hypotheses. Moreover, con-
secutive observations can be utilized recursively to improve
the accuracy of the distribution. Applied to the MAC poi-
soning attack, we have the channel access probabilities πfn
as the network states, and the objective is to construct a
posteriori distribution for it based on a series of observable
events. For readability, we will eliminate the subscripts and
superscripts n and f .

Since the channel access probability affects channel con-
tentions directly, the outcomes can be used as observable
events. Let us denote the k-th event as

ek =

{
1, node n wins channel f in k−th competition,
0, otherwise.

(15)
For a sequence of channel competition {ek}k=1,...,K , we

derive the a posteriori distribution of π as follows:
P{π = x|{ek}k=1,...,K} =

P{{ek}k=1,...,K |π = x}∫
y P{{ek}k=1,...,K |π = y}dy

· P{π = x}. (16)

Since the contention results are independent, the likelihoods
in (16) can be computed recursively as follows:

P{{ek}k=1,...,K |π = x} =
∏

k=1,...,K

P{ek|π = x}. (17)

Note the conditional probability for an individual event is
given by

P{ek|π = x} =

{
x, ek = 1,
1− x, ek = 0.

(18)

The a priori distribution can be initialized with a high peak
at p = 1/|N |f , with Nf ⊂ N as the set of nodes contending
for channel f . Since RTS/CTS can be overheard, the node is
able to estimate them.

The probability for a node n to be attacked is revealed
by the a posteriori distribution. Similar to [39], the underlying
fact that all contending nodes should have the same share
of channel access implies a classifier can be designed as
follows:

Not Attacked
P{πfn ≤ 1

|Nf | − ε} ≶ Pth.

Attacked
(19)

The proposed method is able to detect any π < 1/|N |.
On the other hand, for the sake of simplicity, there is a
minimum granularity on the domain of πfn, and the margin
ε is introduced to represent it. Algorithm 1 summarizes the
proposed detection algorithm.

Algorithm 1 Bayesian Learning Based MAC Poisoning Attack
Detection

1: Given a node n and a channel f , a priori distribution P{πn =
x};

2: while the K-th contention completes do
3: Update P{πn|{ek}k=1,...,K}, according to (16) and eKn ;
4: if The classifier (19) decides that node n is attacked then
5: Break;
6: end if
7: end while

4.2 Attack Mitigation

To tackle an existing attack, the defender nmay choose from
the following strategies:

1) Switch to another channel f ′ with a lower achiev-
able SINR;

2) Transmit overlapping other nodes’ transmissions
with probability π̂fn = 1/|Nf | − πfn, in such a way
that the real channel access probability is compen-
sated to the fair share of 1/|Nf |.

We will denote them as Sf ′ and Sf . Note that Sf does
not harm fairness, as long as the detection result is correct.
However, depending on the tuning of the classifier, the
accuracy of detection result may change. Therefore, there
is a possibility that the defender will disrupt a legitimate
transmission. Meanwhile, the transmission of other nodes
degrades the SINR of the overlapping transmission, too.
Therefore, the defender should optimize along a trade-off
line of both performance (the achievable SINR) and security
(collision with others). Denoting the achievable SINR for an
overlapping transmission as γ̂fn , the performance function
can be formulated as

U(S) =

{
πfnγ

f
n + π̂fnγ̂

f
n, S = Sf ,

πf
′

n γ
f ′

n , S = Sf ′ .
(20)

The security function describes the probability of col-
lisions with legitimate transmissions resulted from a false
positive. Obviously, there is no risk of collision if Sf ′ is used,
and we may normalize the security value for this strategy
as 1. For a posteriori distribution P{πfn|{ek}k}, we derive
that 1 − P{πfn ≤ 1/|Nf | − ε} is the probability that node
n is not attacked, or, in other words, the probability that
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TABLE 2
Simulation scenario.

channel f1 f2
power limit (dBm) 10 15
channel gain (dB) -75 -75
noise level (dBm) -85 -75

number of other nodes 4 3
achievable SINR (dB) 20 15

fair channel access probability 0.2 0.25

the “defensive” action is unjustified. Therefore, the security
function is

G(S) =

{
P{πfn ≤ 1/|Nf | − ε}, S = Sf ,
1, S = Sf ′ .

(21)

The node can then mitigate the attack by solving
maximize
S∈{Sf ,Sf′}

α · U(S) + β ·G(S), (22)

with weights α and β representing the preference on secu-
rity or performance.

This mitigation scheme can be integrated with the detec-
tion and results in an improved Algorithm 2.

Algorithm 2 Joint Detection and Mitigation Algorithm for
MAC Poisoning Attack

1: Given a node n and a channel f , a priori distribution P{πn =
x};

2: while The K-th contention completes do
3: Based on eKn , update P{πn|{ek}k=1,...,K}, according to

(16);
4: if α · U(Sf ) + β · G(Sf ) < α · U(Sf ′) + β · G(Sf ′) , for

f ′ 6= f ∈ F that maximizes α · U(Sf ′) + β ·G(Sf ′) then
5: Switch to channel f ′;
6: Break;
7: end if
8: end while

4.3 Performance Evaluation
We evaluate the efficacy of the framework on the MAC
poisoning attack by simulating the following scenario. There
are 2 channels, denoted as F = {f1, f2}. The parameters
for each channel are listed in Table 2. Apparently, without
the attack, the optimal strategy is to use channel f1, since
it gives the utility value of 4 dB, compared to 3.75 dB for
channel f2. To launch a MAC poisoning attack, the attacker
needs to lower the channel access probability π1 to a value
less than 0.1875.

Detection Results. For the sake of simplicity, we show
the detection results for the MAC poisoning attack on
channel f1. We simulate the channel contention process by
assigning the channel f1 to each contending nodes accord-
ing to its channel access probability. To be specific, with K
contentions, πmK contentions are won by node m ∈ Nf1 .
For the sake of simplicity, the domain of the random variable
πn is set to a discrete set starting from 0 to 1 with a step of
0.001. To leverage the advantage of small granularity, the
margin in the classifier is also set to ε = 0.001. For the a
priori distribution, we use a Gaussian distribution centered
around the ground truth value of 0.2, with a variance 0.052

to account for the error, i. e., π ∼ N(0.2, 0.052).
Fig. 4 (a) depicts the a posteriori distribution as a function

of the number of events. The results conclude that the a
posteriori distribution converges to the actual distribution
as the number of observed events increasing. When the
number of observed events reaches 5000, the curve lies
mostly to the left of the discrimination line x = 1/|N |−ε. To

further illustrate this point, we compare the discrimination
functions of the proposed detection method and that of [39],
which is considered the state of the art. Specifically, for the
proposed detection, it is the left-hand side of (19); for [39], it
is πn/πm, for m 6= n ∈ Nf1 . Results are shown in Fig. 4 (b)
and conclude that the discrimination function of [39] does
not improve with more available observations, conversely
from the proposed one. Note the absolute value of the
two discrimination functions are not directly comparable,
since different classifiers are used. Therefore, the proposed
detection method provides more and more accurate result
with evidences accumulated.

Mitigation results. Let us now show how the mitiga-
tion scheme achieves performance-security trade-off with
different detection results. The previous detection results
are used to compute the security function (21). For the
performance function (20), we use the same settings as in
Table 2. The achievable SINR with concurrent transmission
is set to γ̂f1n = 16.99 dB, i,e., half the SINR achievable
without overlapping transmission. Since the value of the
security function is between 0 and 1, we also normalize the
performance function with the maximum achievable value
without the attack so that they are comparable. The values
are shown in Fig. 4 (c) with different settings of α and β.

With the weight of security β 6= 0, the performance-
security function for S1 increases with number of observable
events, and exceeds that of strategy S2 at some point.
The explanation is that, with more and more evidences
accumulated, the detection accuracy increases, and thus the
strategy of overlapping transmission becomes more and
more convenient. This implies that, when it is unclear if an
attack is taking place, a defender can either choose to stay on
the channel with the risk of harming other legitimate trans-
missions, while accumulating more evidence, or migrate to
another channel.

5 USE-CASE EXAMPLE: HAMMER-AND-ANVIL

In this section, we consider another specific cross-layer
attack, called the hammer-and-anvil attack [15]. Although
the attack has been briefly discussed here, due to space
limitations the reader can refer to [15] for details.

5.1 Brief Introduction

As shown in Fig. 1, the considered wireless multi-hop
network consists of a set N of nodes. Data is generated at
source nodes and forwarded to the sink z ∈ N in a hop-by-
hop manner. A node n ∈ N must decide its power allocation
Pn = {P 1

n , . . . , P
|F|
n } on the set F of channels, as well as

the next hop m̂n. Therefore, its strategy can be written as
Sn = {Pn, m̂n}.

The objective of node n ∈ N is to minimize the expected
end-to-end delay from itself to the sink, represented as
Tn(Pn, m̂n). To this end, a joint optimization of Pn on
physical layer, and m̂n on network layer is performed, with
the optimal strategy

{P∗n, m̂∗n} = arg max
Pn∈Pn,m̂∈Vn

−Tn(Pn, m̂n), (23)

where Pn and Vn are the set of possible power allocation,
and the neighbor set of n, respectively.

As a remark, the queuing model in [15] states that the
average delay of link n → m̂n is a decreasing function of
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(a) (b) (c)
Fig. 4. MAC poisoning attack: (a) a priori and a posteriori distributions of the channel access probability for f1, ground truth: π = 0.1875; (b)
discrimination function output with different numbers of observed events; (c) performance-security function values for the two strategies with different
α and β.

the achievable throughput of the link, which is expressed as

µn(m̂n) =
∑
f∈F

log2

(
1 +

P fnH
f
n(m̂n)

Ifn(m̂n) + ηfn(m̂n)

)
, (24)

with Hf
n(m̂n), Ifn(m̂n), and ηfn(m̂n) denoting the channel

coefficient of link n → m̂n, the interference and noise at
m̂n, respectively.

Equation (24) establishes the ground for hammer-and-
anvil attack to work. The attacker is made up by a jammer j
and a compromised node c ∈ N . The compromised node
can undermine communication in various ways. For the
sake of generality, we assume the activities are not observ-
able by an outsider, meaning there is no way to distinguish
it from legitimate nodes.

The jammer aims to redirect traffic to the compromised
node. To this end, it selectively jams links that do not lead
to the compromised node. For example, if j jams the link
n→ m, the achievable throughput µn(m) will be degraded,
resulting an increased Tn(m). With appropriate jamming,
the utility is degraded so that, for ∀Pn ∈ Pn,−Tn(Pn,m) <
−Tn(P′n, l), for l and some P′n. Then n will choose l instead
of m as the next hop.

The strategy of the attacker is simply the power alloca-
tion of the jammer, Pj , and its attack gain is the input data
rate of the compromised node.
5.2 Attack Detection
It is shown in [15] that the attack objective can be achieved
by small-scale jamming. Therefore, it is difficult to accu-
rately detect the attack using traditional jamming detection
methods based on packet delivery ratio (PDR). We will
adopt the detection method in the framework to address
this challenge.

In the following, we will focus on link n→ m, and thus
eliminate the subscripts n and m. Moreover, since all the
channels are i.i.d., we will also eliminate f . We still retain
the subscript j to denote the power and channel coefficients
involving the jammer j. Therefore, we use P, Pj to denote
the power allocation of n and j on f . Furthermore, H,Hj

represent the channel coefficients from n and j to m, on
channel f , respectively.

To detect the attack, we focus on the network state of the
interference I = PjHj , as it is the direct variable affected by
jamming. For the observable events, we choose the reception
of bits at the receiver, since it reveals the interference. We
denote an event as ek and formally define it as

ek =

{
1, bit k is received correctly,
0, bit k is not received correctly.

(25)

The conditional probability for an event ek given an
interference value, shown as

P{ek|I = i} = P{ek|γ =
PH

i+ η
}, (26)

is essentially the bit error probability given the SINR γ, with
Gaussian noise η. (26) is readily available for additive white
Gaussian noise (AWGN) channels, and can be obtained
through training in other environments.

Let us assume a sequence of K bits is transmitted during
a strategy updating period. Therefore we have a sequence
of events {ek}k=1,...,K and

P{{ek}k=1,...,K |I = i} =
K∏
k=1

P{ek|I = i}. (27)

Thus, the a posteriori distribution of I can be estimated as
P{I = i|{ek}k=1,...,K} =∏K

k=1 P{ek|I = i}∫
j

∏K
k=1 P{ek|I = j}P{I = j}dj

· P{I = i}. (28)

The expression in (28) provides a procedure to estimate
the interference of link n → m on channel f . Starting with
some a priori distribution P{I = i}, once a sequence of bits
have been received (correctly or incorrectly) on channel f ,
the receiver computes the a posteriori distribution according
to the corresponding likelihood for events {ek}k=1,...,K .
This is done recursively for every transmission. For prac-
tical reasons, the integration in (28) is approximated by a
summation over a finite set I . Then, it can be rewritten as

P{I = i|{ek}k=1,...,K} =∏K
k=1 P{ek|I = i}∑

j∈I
∏K
k=1 P{ek|I = j}P{I = j}

· P{I = i}.

(29)
When the number of channels is large, it may not be

practical to compute (29) for each channel in every trans-
mission. In this case, the receiver can select some channel(s)
from F to update.

For attack mapping, without observable behavior of the
compromised node, the most obvious feature is the small
jamming scale. We design the classifier as

Not Attacked
P{Ilwr ≤ I ≤ Iupp} ≶ Pth.

Attacked
(30)

If the a posteriori probability that the interference is be-
tween a range is higher than a probability threshold, the
link is considered to be jammed. The thresholds Ilwr, Iupp,
and Pth correspond to the feature B in (5). The network
management entity can adjust these thresholds according
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to its information on whether the attack exists, how far the
jammer is likely to be, and so forth. The resulting jamming
detection scheme is described in Algorithm 3.

Algorithm 3 Bayesian learning-based jamming detection

1: Given node m ∈ N and a priori distribution P{Ifm = i};
2: while true do
3: if A node n ∈ N selects m as the receiver and wins the

channel competition then
4: n and m conduct channel estimation and get

Hf
nm,∀f ∈ F ;

5: Based on Hf
nm, n decides the strategy and transmits;

6: m selects a F ′ = {f ⊂ F : P f
n 6= 0};

7: for f ∈ F ′ do
8: Compute the likelihood in (27) based on the bit

reception events;
9: Update the a posteriori probability in (29);

10: end for
11: end if
12: if a posteriori distribution satisfies convergence condition;

then
13: Break;
14: end if
15: end while
16: if (30) holds for a certain number of f ∈ F then
17: Node m is considered jammed;
18: else
19: Node m is considered not jammed;
20: end if

5.3 Attack Mitigation

After the attack is detected, we further apply the proposed
framework to generate a mitigation scheme. Therefore, we
define a performance-security function as in (6) and opti-
mize it in the fashion of (7) - (9).

The performance component is simply the negative of
delay −Tn. The security component is the negative of the
attack gain, i.e., the amount of data that is routed to the com-
promised node c. However, this value may not be accurately
measured, since generally the location of the compromised
node is not detectable. In fact, a compromised node is de-
tectable only if it performs attacks with observable activities,
such as packet dropping for blackhole attack. For the sake of
generality, we do not assume such behaviors, and rely solely
on the detection results of small-scale jamming for security
level estimation. Specifically, we approximate the risk, i.e.,
the negative of security, for a strategy with the likelihood
that it leads to the compromised node. Since it is expected
that the jammer “drives” data to the compromised node, it
is reasonable to assume that the compromised node is on
an alternative route. Therefore, denoting the risk as Rn, we
set it to 1 for the strategy involving rerouting, and a small
value ε > 0 for the strategy staying on the currently jammed
route.2 The optimization problem can then be formulated as

maximize −αTn − βRn. (31)
To elaborate the possible defense mechanisms, we assume
that l is the best next hop candidate for n with jamming,
while the jammed node m is the second best one, in the
following discussion.

2. The latter is not set to 0 because there is a chance that a down-
stream node of the currently jammed route reroutes to the compro-
mised nodes.

Two simple strategies for n are (i) to reroute to l or
(ii) to keep routing to m. We denote these strategies as
Sl and Sm, respectively. The delay for the two strategies
are then Tn(Sl) = Tn(l) and Tn(Sm) = Tn(m), respec-
tively. We set Rn(Sl) = 1 and Rn(Sm) = ε, with a small
ε ∈ (0, 1] to represent the normalized security level. Since
Rn(Sl) >> Rn(Sm), a desirable compromise between per-
formance and security may not be available with these two
strategies alone.

A more sophisticated strategy that may enable a better
compromise can be designed based on a secure network
coding strategy [41], which we denote as SSNC. We construct
the secure network coding scheme as follows:

1) Choose a suitable integer r and get the message
vector X from GF (r)(q), for some q;

2) Choose a suitable r-dimensional linear network
code E on GF (r)(q);

3) Encode the vector X by multiplying it with the en-
coding matrix, and get the encoded vector Y = EX ;

4) Among the r elements of the encoded vector Y , the
firstNl are transmitted through l, and the remaining
Nm are transmitted through m, (Nl +Nm = r).

GF stands for Galois Field. According to Theorem 2
in [41], there exists a code E guaranteeing that neither
l nor m can decode the messages if dim(E) = r and
max(dim(Vl),dim(Vm)) < r, with Vl and Vm being the
linear spans of the encoding vectors corresponding to l and
m, respectively. The symbol dim stands for dimension.

Since Nl and Nm out of Nl + Nm encoded messages
are transmitted through l and m respectively, the achievable
performance for this strategy is

Tn(SSNC) =
NlTn(l) +NmTn(m)

Nl +Nm
+

1

λn
(Nl+Nm−1). (32)

The second term on the RHS represents the additional delay
introduced by waiting for all theNl+Nm messages to arrive
to the destination before encoding. Since it is guaranteed
that neither m nor l can decode the message, the risk is
Rn(SSNC) = 0.

To sum up, node n chooses a strategy among (i) reroute
to l, (ii) keep sending through m, and (iii) use secure
network coding, according to the performance risk values
for each of them. The corresponding performance-security
functions are

hn(Sl) = −αT̂n(Sl)− β, (33)

hn(Sm) = −αT̂n(Sm)− βε, (34)

hn(SSNC) = −αT̂n(SSNC). (35)

Note that the performance is normalized to be comparable
to the risk, which takes values in [0, 1]. Then, the problem
(which can be solved using Algorithm 4) is

maximize
S∈{Sl,Sm,SSNC}

hn(S). (36)

5.4 Performance Evaluation
We now evaluate the performance of the FORMAT frame-
work when tackling the hammer-and-anvil attack through
both simulations and testbed experiments.

Simulation settings. A network of 25 nodes is randomly
generated in a 500 m × 500 m area, with one sink and one
compromised node. There is a jammer whose location is set
in accordance to the location of the compromised node. A
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(a) (b) (c)
Fig. 5. Example scenario: (a) topology; (b) traffic map without jamming; (c) traffic map with jamming, Pmax

j = 10 mW. Traffic in (b) and (c) are
shown in contour maps, with the lines representing contours for the traversing data rate. The numbers show the data rate in kbits/s. Values for
points without a node are interpolated for visual purpose.

(a) (b) (c)
Fig. 6. Detection results for small-scale jamming: (a) Pmax

j = 0; (b) Pmax
j = 10 mW; (c) Pmax

j = 100 mW.

Algorithm 4 Secure network coding based attack mitigation
Given a jammed link n→ m:
n finds the best next hop candidate l ∈ Vn, and the optimal
secure network code (Nl, Nm);
if (35) ≥ max[(33), (34)] then

proceed with the secure network coding scheme;
else if (34) ≥ max[(33), (35)] then

Transmit through m;
else

Transmit through l;
end if

typical example is shown in Fig. 5(a). For convenience, we
label the nodes with numbers.

Data sessions are generated at the leftmost 5 nodes.
The generation rates are randomly set, with a mean value
of 80 kbits/s. Each legitimate node has power budget
Pmax = 1 W. There are 10 mutually orthogonal channels,
with bandwidth of 10 kHz each. All channels have a path
loss with exponent 3 and i.i.d. Rayleigh fading with param-
eter 0.5. The spectral density of noise is 1×10−8 W/Hz. The
power budget of the jammer is set to 10−100 mW, i.e., only
1/100 − 1/10 as high as that of the legitimate nodes. Even
with this level of jamming power, the attack is effective.
This can be verified in 5 (b) and (c), which show traffic
maps corresponding to the example topology. Considering
the simulation settings, even with a jammer that only causes
interference around 10 times the noise level, a significant
amount of data can be “driven” to the compromised node.
Therefore, the efficiency and stealthiness is verified.

Detection results. Since we focus on small-scale jam-
ming, the considered interference range for the distribution
I is set to [0, 1×10−7]W, with a step size of 1×10−9W. The
proposed jamming detection scheme can effectively detect

the interference caused by small-scale jamming attack. For
node 7, which is the target node of the jammer, the a
posteriori distribution of I is shown in Fig. 6, for Pmax

j = 0,
Pmax
j = 10mW, and Pmax

j = 100mW. We assume uniform a
priori distribution P{I = i}. We observe that the interference
can be effectively and accurately estimated in all cases. For
Pmax
j = 0, which means no jamming attack, the distribution

converges to a single peak at I = 0 for all channels,
and provides a perfect estimation. For Pmax

j = 10 mW,
the a posteriori distribution of I concentrates at around
−51 dBm. Considering that the distance from the jammer
to node 7 is 40.2 m, the average jamming-caused interfer-
ence is −50.5 dBm. Therefore, the result is accurate. For
Pmax
j = 100 mW, the a posteriori distribution converges to

the largest possible value in I , i.e., I = −40 dBm, since in
this case the jammer creates relatively large interference.

To provide a better understanding, we list the corre-
sponding bit error rates (BER) in Table 3.3 We observe that
the difference in BER with or without jamming is small. This
implies that a detection scheme based on BER only may
not work well. Therefore, the proposed detection scheme
can better discriminate between jammed and unjammed
scenarios with small-scale jamming. This is confirmed by

3. It is couter-intuitive to observe a BER for Pmax
j = 100mW slightly

smaller than that for Pmax
j = 10 mW. This is due to the fact that

we have considered a scenario with high mutual interference between
different nodes, and the overall interference includes both the interfer-
ence caused by jamming and that caused by other nodes. According
to [15], with the hammer and anvil attack, the traffic in the network is
re-organized, with a portion rerouted to faraway nodes. With a higher
jamming power, more traffic is rerouted, and the interference from other
nodes is lowered. Therefore, a similar SINR (and consequently a similar
BER) is resulted. With the high mutual interference setting, and the
fact that jamming only contributes a portion of the overall interference,
Table. 3 still reveals small-scale jamming.
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TABLE 3
BER of node 7 for different jamming power

Jamming power budget Pmax
j (mW) 0 10 100

Bit error rate (%) 3.84 9.84 9.78

Fig. 7. ROC curves of the proposed detection and BER-based detection
methods.

the receiver operating characteristic (ROC) curves shown in
Fig. 7.

To obtain the ROC curve, we ran simulations for dif-
ferent topologies and varied the jamming power budget
between 10 mW and 100 mW with a step of 10 mW. For
each simulation, the learned distribution of interference is
fed to the classifier defined in (30). We point out that, there
is not yet a detection method for the considered attack
to compare with. We try to compare the ability of attack
activity detection, i.e., jamming detection, with traditional
method. Therefore, we set the upper bound Iupp to infinity
for fairness. True positive rates (TPR) and false positive rates
(FPR) are recorded for the threshold Ilwr ∈ [0, 1×10−4]mW,
with a step of 1 × 10−6 mW. For comparison, we also plot
the ROC curve for BER-based jamming detection, with the
classifier

unjammed
BER ≶ BERth,

jammed
(37)

and the threshold varying from 0 to 0.5, with a step of 0.001.
Comparing the two ROC curves, we find that the proposed
detection scheme results in a large area under the curve
(AUC), and can thus achieve very reliable detection results
in most cases. Conversely, the BER-based detection method
has much smaller AUC, and thus is inferior to the proposed
method.

Mitigation results. To demonstrate the performance of
the mitigation scheme, we used traces from the previous
simulations. We identified the jammed link in each topology,
i.e., n → m, and found the best next hop candidate l for n.
For the strategies of rerouting to l, staying on m, and using
secure network coding, we computed the performance-risk
functions defined in (33), (34) and (35), for different values
of (α, β). The results are shown in Fig. 8.

For α = 1, β = 0, i.e., when performance is the only
concern, secure network coding is not as good as using the
best unjammed link. However, it still achieves considerable
gain compared to the jammed link. When risk is taken
into account, the benefits of secure network coding become
obvious. For α = β = 0.5, i.e., when performance and risk
are equally important, secure network coding outperforms
the other two since it provides a better performance-risk
balance. For α = 0, β = 1, i.e., when the only concern is risk,

TABLE 4
Detection result and corresponding relative BER

Detection Result No Yes Yes
Relative BER 0.27% 1.28% 3.92%

the relationship between the three strategies is the same as in
the previous case, but the benefits of secure network coding
compared to using the jammed link become marginal, since
it is unlikely that a link leading to a compromised node is
jammed.

5.5 Testbed Evaluation

In real scenarios, there may not be a closed-form relation-
ship between BER and SINR, i. e., the likelihood for an event
to happen, shown in (2), may not be readily available. In this
case, a training process is required. We conducted testbed
experiments where we first trained a BER curve from the
transmission results without jamming; then, based on the
curve, we ran the jamming detection scheme with reactive
jamming to show its accuracy. We used two USRP N210 [20]
to form a transmitter-receiver pair, and another USRP X310
[20] is used as the jammer, emitting interference. We used a
channel with bandwidth of 10 kHz.

In the training period, the jammer constantly emits in-
terference with varying power. Meanwhile, the transmitter-
receiver pair conducts normal transmissions. The receiver
estimates the SNR and calculates the corresponding BER by
comparing the received file with the original one. Multiple
points are obtained, based on which a BER-SINR curve is
generated by using exponential fitting. The curve is shown
in Fig. 9.

To test the accuracy of the proposed detection, we run
more experiments with the reactive jamming model. The
receiver is able to estimate the SINR without jamming.
Along with the real bit reception events, the distribution
of interference can be learned. We use the interference-to-
noise ratio (INR) instead of absolute interference level to
reduce the error. In Fig. 10, we show the resulting PDF for
different jamming scenarios. Since the real interference level
at the receiver is unknown, we use the BER to distinguish
the scenarios. Note that there is an irreducible BER of 1.15%
caused by the multipath effect, representing the lowest BER
the transmitter-receiver pair is able to achieve.

Since our objective is to detect small-scale jamming, we
set INRth = 0 dB, and used Pb(INR > INRth) > 0.9
as the classifier. If the interference is at least at the same
level of noise with probability 0.9, then it is considered to
be jammed. With this classifier, the detection results and
the relative BER (real BER - irreducible BER) are shown in
Table 4. The proposed scheme is able to detect small scale
jamming resulting in very low relative BER, as long as it
is greater than 1%, which verifies the effectiveness of the
detection scheme.

6 USE-CASE EXAMPLE: TCP TIMEOUT

In this section, we show how the framework can be applied
to TCP timeout attacks. We will focus on the detection. For
this specific attack, the security performance tradeoff is not
obvious, and it can be mitigated by simply dropping the
packets of the detected DoS flows.

We consider a router n with multiple TCP flows ag-
gregated. There may be DoS flows among them, and the
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(a) (b) (c)
Fig. 8. Optimal performance-security tradeoff with different settings: (a) α = 1, β = 0; (b) α = 0, β = 1; (c) α = 0.5, β = 0.5.

Fig. 9. Trained BER curve.

objective is to detect if one of the flows is a DoS flow
performing TCP timeout attack. As is shown in [21], an
important characteristic of the DoS flow is the periodic ar-
rival process. Therefore, the burst inter-arrival time reveals
if the attack is taking place, and thus can be used as the
observations. We will denote the inter-arrival time between
the k-th burst and (k + 1)-th burst as ∆k.

A normal flow and a DoS flow differ on the arrival
process, which composes the network state needed for the
detection of this attack. According to [21], to successfully
launch the attack, a DoS flow should have a period T at
the scale of minRTO, i.e., the minimum retransmission
timeout value. Moreover, the normalized thoughput of the
aggregated TCP flows with a DoS flow of period T is given
by

ρ(T ) =
dminRTOT e · T −minRTO

dminRTOT e · T
. (38)

Therefore, it is reasonable to assume the inter-arrival time
of a malicious flow is a fixed value T = minRTO, i.e., for a
DoS flow, the likelihood to observe inter-arrival time T = t
is:

P{T = t} =

{
1, t = minRTO,
0, otherwise.

(39)

According to [42], the interarrival time of a normal TCP
flow fits Weibull distribution, i. e.,

P{T = t} =
1

a

(
− t
a

)c−1
e−( t

a )
c

. (40)

Note the shape parameter c varies with application type and
operating time. In other words, different c values represent
different types of normal TCP flows. Therefore, we can
model the parameter as a random variable C and use it
directly as the network state to be detected. To cover the

case of DoS flow, we let C = 0 represent the arrival process
with period T = minRTO. Formally, C = c represents

c =

{
0, DoS TCP flow,
other, normal TCP flow with parameter c, (41)

For each flow, with a-priori distribution of C , we can
update the a-posteriori with the observation of a series of
inter-arrival time {∆k}k=1,...,K = {δ1, . . . , δK}, following

P{C = c|{∆k}1,...,K = {δk}1,...,K}

=

∏K
k=1 P{∆k = δk|C = c}P{C = c}∫

t

∏K
k=1 P{∆k = δk|C = c}P{C = c}

.
(42)

The a-priori distribution P{C = c} can be acquired by
sampling the interarrival time for normal TCP flows in the
network, with the probability for C = 0 given by the belief
that an attacker exists. In the simulations, we borrow the
a-priori distribution for C > 0 directly from [42], which
represents the histogram of AT&T WorldNet modem users
during a 12 minutes period. The distribution is normalized
by 0.95, i. e., the a-prori belief on the existence of a DoS flow
is set to 0.05. The distribution is shown in Fig. 11 (a).

We run simulations for both normal and DoS TCP flows.
Normal TCP flows are drawn with Weibull distribution with
c = 0.68, and DoS flows are generated with an interval of
minRTO = 1 s.4 Since there are always small discrepancies
between the real distribution and theoretical distribution,
and the attacker may not use a period strictly equal to
minRTO, we intentionally introduce a Guassian random
error with zero mean and a standard deviation of 100 ms.
The a-posteriori distributions of C for normal flow and DoS
flow are shown in Fig. 11 (b) & (c). Clearly, the detection
scheme is able to distinguish normal flows (c > 0) and DoS
flows (c = 0). Interestingly, according to [21], the traditional
detection methods do not perform well for the attack with a
period exactly equals to minRTO, therefore, we can verify
the advantage of the proposed detection method.

7 CONCLUSIONS

In this paper, we have proposed FORMAT, a framework to
detect and mitigate cross-layer attacks in wireless networks
based on Bayesian learning. The learning-based detection
is able to utilize observations of multiple layers to gen-
erate a hypothesis on whether a certain attack is taking
place, while the mitigation scheme uses optimization to
achieve the desired security-performance trade-off under

4. It is suggested that minRTO = 1 s, as argued in [7]
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(a) (b) (c)
Fig. 10. Detection results for small-scale jamming, with real BER: (a) 1.42%; (b) 2.43%; (c) 5.07%.

(a) (b) (c)
Fig. 11. Distribution of C: (a) a-priori; (b) a-posteriori, normal TCP flow; (c) a-posteriori, DoS TCP flow.

different requirements. We extensively evaluated the FOR-
MAT framework by considering two state-of-the-art cross-
layer attacks. Both simulation and testbed results conclude
that the FORMAT achieves superior detection scheme to
traditional single-layer approaches and thus tackles cross-
layer attacks effectively.
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