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Abstract—This paper investigates the potential of the com-
pressed sensing (CS) paradigm for video streaming in Wireless
Multimedia Sensor Networks. The objective is to study perfor-
mance limits and outline key design principles that will be the
basis for cross-layer protocol stacks for efficient transport of
compressive video streams. Hence, this paper investigatesthe
effect of key video parameters (i.e., quantization, CS samples per
frame, and channel encoding rate) on the received video quality
of CS images transmitted through a wireless channels. It is shown
that, unlike JPEG-encoded images, CS-encoded images exhibit an
inherent resiliency to channel errors, caused by the unstructured
image representation; this leads to basicallyzero loss in image
quality for random channel bit error rates as high as 10

−4, and
low degradation up to10

−3. Furthermore, it is shown how, unlike
traditional wireless imaging systems, forward error correction is
not beneficial for wireless transmission of CS images. Instead, an
adaptive parity scheme that drops samples in error is proposed
and shown to improve image quality. Finally, a low-complexity,
adaptive video encoder, is proposed that performs low-complexity
motion estimation on sensors, thus greatly reducing the amount
of data to be transmitted.

I. I NTRODUCTION

Wireless Multimedia Sensor Networks (WMSN) [1] are
self-organizing wireless systems of embedded devices de-
ployed to retrieve, distributively process in real-time, store,
correlate, and fuse multimedia streams originated from het-
erogeneous sources. WMSNs will enable new applications
including multimedia surveillance, storage and subsequent
retrieval of potentially relevant activities, and person locator
services.

In recent years, there has been intense research and con-
siderable progress in solving numerous wireless sensor net-
working challenges. However, the key problem of enabling
real-time quality-aware video streaming in large-scale multi-
hop wireless networks of embedded devices is still open and
largely unexplored. There are two key shortcomings in systems
based on sending predictively encoded video (e.g., MPEG-4
Part 2, H.264/AVC, H.264/SVC) through a layered wireless
communication protocol stack, i.e.,encoder complexityand
low resiliency to channel errors.

• Encoder Complexity.Predictive encoding requires com-
plex processing algorithms, which lead to high energy
consumption [1]. Instead, new video encoding paradigms
are needed to reverse the traditional balance of complex
encoder and simple decoder, which is unsuited for embed-
ded video sensors. Recently developeddistributed video

coding [2] algorithms (aka Wyner- Ziv coding ) exploit
the source statistics at the decoder, thus shifting the
complexity at this end. While promising for WMSNs [1],
most practical Wyner-Ziv codecs require end-to-end feed-
back from the decoder [3], which introduces additional
overhead and delay. Furthermore, gains demonstrated by
practical distributed video codecs are limited to 2-5 dBs
PSNR. Distributed video encoders that do not require
end-to-end feedback have been recently proposed [4], but
at the expense of a further reduction in performance.

• Limited Resiliency to Channel Errors. In existing
layered protocol stacks based on the IEEE 802.11 and
802.15.4 standards, frames are split into multiple packets.
If even a single bit is flipped due to channel errors, after
a cyclic redundancy check, the entire packet is dropped
at a final or intermediate receiver1. This packet loss can
lead to the video decoder being unable to decode an
independently coded (I) frame, thus leading to loss of
the entire sequence of video frames that are dependent on
the I frame. Instead, ideally, when one bit is in error, the
effect on the reconstructed video should be unperceivable,
with minimal overhead. In addition, the perceived video
quality should gracefully and proportionally degrade with
decreasing channel quality.

We argue, and show through preliminary analysis and experi-
ments, that new cross-layer optimized communication protocol
stacks based on the recently proposed compressed sensing
(CS) paradigm [5], [6], [7], [8] can offer a convincing solution
to the aforementioned problems. However, as will become
clearer in the following, this may require a rethinking of
traditional wireless streaming functionalities across multiple
layers. Compressed sensing (aka “compressive sampling”) is
a new paradigm that allows the faithful recovery of signals
from far fewer measurements than traditional methods based
on Nyquist sampling. Hence, CS can offer an alternative to
traditional video encoders by enabling imaging systems that
sense and compress data simultaneously and much faster,at
very low computational complexity for the encoder. Image
coding and decoding based on CS has been recently explored
[9], [10]. So-called single-pixel cameras that can operate
efficiently across a much broader spectral range (including

1No forward error correction (FEC) is used in either IEEE 802.11 or
802.15.4, and hence a faulty bit corrupts the whole packet.
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infrared) than conventional silicon-based cameras have also
been proposed [11]. However, transmission of CS images
and video streaming in wireless networks, and their statistical
traffic characterization, are substantially unexplored.

In this paper, we study the potential of compressive video
streaming for Wireless Multimedia Sensor Networks by con-
ducting a cross-layer performance evaluation of wireless
streaming of CS video on resource constrained devices. Our
objective is to study performance limits and outline key design
principles that will be the basis for cross-layer protocol stacks
designed for efficient transport of compressive video streams
over multi-hop wireless networks. Our contributions can be
outlined as follows:

• We study the effect of key video parameters (i.e., quanti-
zation, CS samples per frame, and channel encoding rate)
on the received video quality of CS images transmitted
through a wireless channels;

• We show how, unlike JPEG-encoded images, CS-encoded
images exhibit aninherent resiliencyto channel errors,
caused by the unstructured image representation; this
leads to basicallyzero loss in image quality for random
channel bit error rates as high as10−4, and low degrada-
tion up to10−3. We discuss the profound impact of this
finding on wireless protocol design;

• We show how, unlike traditional wireless imaging sys-
tems, forward error correction is not beneficial in CS
images. Instead, we propose an adaptive parity scheme
that drops samples in error, thus improving the quality of
the image reconstruction process;

• We propose a low-complexity, adaptive video en-
coder, optimized for security videos, that performs low-
complexity motion estimation on sensors, thus greatly
reducing the amount of data to be transmitted.

The remainder of this paper is structured as follows. In
Section II, we discuss our system model. In Section III, we
discuss wireless transmission of intra-frame encoded CS video.
In Section IV we propose an adaptive parity based channel
encoding scheme, while in Section V we propose a CS-based
inter-frame encoder optimized for security videos. In Section
VI we draw the main conclusions and discuss future work.

II. SYSTEM MODEL

A. Compressed Sensing Preliminaries

We consider an image signal represented through a vector
x ∈ RN , whereN is the vector length. We assume that there
exists an invertibleN × N transform matrixΨ such that

x = Ψs (1)

wheres is a K-sparse vector, i.e.,||s||0 = K with K < N ,
and where|| · ||p representsp-norm. This means that the
image has a sparse representation in some transformed domain,
e.g., wavelet. The signal is measured by takingM < N
measurements from linear combinations of the element vectors
through a linear measurement operatorΦ. Hence,

y = Φx = ΦΨs = Ψ̃s. (2)

We would like to recoverx from measurements iny. However,
sinceM < N the system is underdetermined. Hence, given a
solution s0 to (2), any vectors∗ such thats∗ = s0 + n, and
n ∈ N (Ψ̃) (whereN (Ψ̃) represents the null space of̃Ψ), is
also a solution to (3). However, it was proven in [6] that if the
measurement matrixΦ is sufficiently incoherent with respect
to the sparsifying matrixΨ, and K is smaller than a given
threshold (i.e., the sparse representations of the original signal
x is “sparse enough”), then the originals can be recovered by
finding the sparsest solution that satisfies (2), i.e., the sparsest
solution that “matches” the measurements iny. However, the
problem above is in general NP-hard. For matricesΨ̃ with
sufficiently incoherent columns, whenever this problem hasa
sufficiently sparse solution, the solution is unique, and itis
equal to the solution of the following problem:

P1 : minimize ||s||1

subject to : ||y − Ψ̃s||22 < ǫ, (3)

whereǫ is a small tolerance. Note that problemP1 is a convex
optimization problem. The reconstruction complexity equals
O(M2N3/2) if the problem is solved using interior point
methods [12].

B. Video Model

We represent each frame of the video by 8-bit intensity val-
ues, i.e., a grayscale bitmap. To satisfy the sparsity requirement
of CS theory, the wavelet transform is used as a sparsifying
base. A conventional imaging system or a single-pixel camera
[11] can be the base of the imaging scheme. In the latter case,
the video source only obtains random samples of the image
(i.e., linear combinations of the pixel intensities). In our model,
the image can be sampled using a scrambled block Hadamard
ensemble [13]

y = H32 · x, (4)

wherey represents image samples (measurements),H32 is
the 32 × 32 Hadamard matrix andx the matrix of the image
pixels. The matrixx has been randomly reordered and shaped
into a 32 × N

32
matrix whereN is the number of pixels in

the image. ThenM samples are randomly chosen fromx
and transmitted to the receiver. The receiver then uses theM
samples transmitted along with the randomization patternsfor
both randomizing the pixels intox and choosing the samples
out of x to be transmitted (both of which can be decided upon
before network setup) and recreates the image solvingP1 in
(3) through a suitable algorithm, e.g., GPSR2 [14], StOMP
[15].

III. T RANSMISSION OFINTRA-FRAME ENCODED V IDEO

In this section, we study the effect of key design parameters
on the received video quality of CS images transmitted through
a wireless channels; We first consider intra-coded frames,

2GPSR is used for image reconstruction in the simulation results presented
in this paper.
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Compression Rate of 37%

Fig. 1. Structural Similarity (SSIM) Index [16] for Images with a Constant
Bit Rate of 37% of the Original Image Size for Varying Quantization Levels

i.e., we temporarily ignore the temporal correlation among
different frames. For a given data rate at the transport layer
F [bit/s], number of frames per second, and end-to-end
bit error rate (BER), there are three main parameters that
determine the perceptual quality of the received video frame,
i.e., the quantization level of each sampleQ, the number of
samples per frameM , and the channel encoding rateR.

1) Sample Quantization Rate:Thesample quantization rate
Q [bit/sample] is the number of bits used to quantize each
sample. The smallerQ, the lower the amount of information
sent per sample, and therefore the greater the number of
samples that can be transmitted for a target data rateF , at the
expense of greater quantization distortion in each sample.We
empirically evaluated the video quality of CS images against
the optimal ratio of number of samplesM vs quantization
rateQ. To do so, we evaluated theStructural Similarity Index
(SSIM)3 [16] between the original and the encoded image for
a standardized set of 25 images. We kept the total image size
constant at 37% of the original image size, i.e., the image size
that allows sendingN samples (whereN corresponds to the
number of image pixels) with 3-bit quantization.

Figure 1 shows the average SSIM of the above-mentioned
images against sample quantization rate, with95% confidence
intervals. Clearly, the benefit of more samples outweighs
the distortion caused be less accurate samplesdown to
5 bit/sample. Intuitively, this is because the recovery algo-
rithm finds image with the sparsest transformthat minimizes
the difference between the samples received and the samples
generated from the reconstructed image. This means that even
though a small amount of samples (less than one in103) may
be corrupted, the reconstructed image is the same or very
similar to the image which would have been reconstructed
without bit errors.

3The SSIM index is preferred to the more widespread PSNR, which has
been recently shown to be inconsistent with human eye perception [16].
SSIM is a more accurate measurement of error because the human visual
system perceives structural errors in the image more than others. For example,
changes in contrast or luminance, although mathematicallysignificant, are
very difficult to discern for the human eye. Structural differences such as
blurring, however, are very noticeable. SSIM is able to weight these structural
differences better to create a measurement closer to what isvisually noticeable
than traditional measures of image similarity such as mean squared error
(MSE) or PSNR.
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Fig. 2. Structural Similarity (SSIM) vs Bit Error Rate (BER)for compressed
sensed images, and images compressed using JPEG
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Discarding Samples with Errors
Keeping Samples with Errors

Fig. 3. Compressed Sensed Images Reconstructed With and Without
Incorrect Samples

2) Samples per Frame:The number of samplesN needed
to reconstruct the image to a predefined quality level is
dependent on the sparsity of the transmitted image. The greater
the number of transmitted samples compared to the sparsity of
the image, the better the image quality of the received frame.
Depending on the desired video quality at the receiver, the
maximum number of samples per frame can be selected to
achieve that quality. We will discuss this further in Section V.

3) Effect of Channel Errors:In CS, the transmitted samples
constitute a random, incoherent combination of the original
image pixels. This means that, unlike traditional wireless
imaging systems, in CS no individual sample is more impor-
tant for image reconstruction than any other sample. Instead,
the number of correctly received samplesis the only main
factor in determining the quality of the received image. Also,
a small amount of random channel errors does not affect the
perceptual quality of the received imageat all, since, for
moderate bit error rates, the greater sparsity of the “correct”
image will offset the error caused by the incorrect bit. This
is demonstrated in Fig. 3. For any BER lower than10−4,
there is no noticeable drop in the image quality. Up to
BERs lower than10−3, the SSIM is above0.8, which is an
indicator of good image quality. CS image representation is
completelyunstructured: this factmakes CS video much more
resilient than existing video coding schemes to random channel
errors. This has important consequences andprovides a strong
motivation for studyingcompressive wireless video streaming
in WMSNs.

This inherent resiliency of compressed sensing to random
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Fig. 4. Adaptive Parity vs RCPC Encoding for Variable Bit Error rates

channel bit errors is even more noticeable when compared
to traditional image compression schemes. Figure 2 shows
the average SSIM of 25 images transmitted through a binary
symmetric channel with varying crossover probability. The
quality of CS-encoded images degrades gracefully as the BER
increases, and is still very high for BERs as high as10−3.
Instead, JPEG-encoded images very quickly deteriorate. This
is visually emphasized in Figs. 5 and 6. Figure 5 shows the
received imageLenaencoded with CS and transmitted with bit
error rates of10−5, 10−4, and10−3. Figure 6 shows the same
image, but encoded with JPEG. The difference is stunning -
the effect of channel errors is disruptive for structured data
like JPEG-encoded images. The reader will easily realize that
the effect of channel errors on predictively-encoded videois
even more disruptive, since even low bit error rates can lead
to the loss of I frames, causing the decoder to be unable to
decode long sequences of frames that depend on the I frame.

To determine thechannel encoding rate, we first must deter-
mine the channel coding strategy appropriate for compressed-
sensed imaging data transmitted over a multi-hop wireless
network. One of the biggest advantages of compressed sensing
is that the transmitted samples constitute a random, incoherent
combination of the original data. This means that no single
sample is any more important than any other sample. Instead,
only the numberof correctly received samples is the main
factor in determining the quality of the received image. Also,
following the same logic as for the quantization parameter
selection, a small amount of errors will not considerably
affect the perceptual quality of the received image, since,
for a moderate error rate, the greater sparsity of the correct
image will offset the error caused by the incorrect bit. Thisis
demonstrated in Figs 3 and 4. In Fig. 3, the same set of images
were reconstructed both with and without corrupted samples
after being transmitted through a binary symmetric channel.
Clearly, the image quality considerably improves when the
corrupted samples are dropped.

IV. A DAPTIVE PARITY-BASED CHANNEL CODING

As discussed in the previous section, for a fixed number
of bits per frame, the perceptual quality of video streams can
be further improved by dropping errored samples that would
contribute to image reconstruction with incorrect information.
This can be obtained by using even parity on a predefined

number of samples, which are all dropped at the receiver
or at an intermediate node if the parity check fails. This is
particularly beneficial in situations when the BER is still low,
but too high to just ignore errors. To determine the amount
of samples to be jointly encoded , the amount of correctly
received packets is modeled as

C =

(

Q · b

Q · b + 1

)

(1 − BER)Q·b+1, (5)

WhereC is the estimated amount of correctly received sam-
ples,b is the number of jointly encoded samples, andQ is the
quantization rate per sample. To determine the optimal value
of b for a given BER, (5) can be differentiated, set equal to zero
and solved forb. If the end-to-end BER can be estimated by
the transmitting node, the optimal channel encoding rate can
then be chosen and used to encode the samples. The received
video quality using the parity scheme described was compared
to different levels of channel protection using rate compatible
punctured codes (RCPC). Specifically, we use the1

4
mother

codes discussed in [17]. Briefly, a1
4

convolutional code is
punctured to decrease the amount of redundancy needed for
the encoding process. These codes are punctured progressively
so that everyhigher rate code is a subset of the lower rate
codes. For example, any bits that are punctured in the4

15

code must also be punctured in the1

3
code, the4

9
code, and

so on down to the highest rate code, in this case the8

9
code.

Because of this setup, the receiver can decode the entire family
of codes with the same decoder. This allows the transmitter
to choose the most suitable code for the given data. Clearly,
as these codes are punctured to reduce the redundancy, the
effectiveness of the codes decreases as far as the ability to
correct bit errors. Therefore we are trading bit error rate for
transmission rate.

Figure 4 shows the adaptive parity scheme compared to
RCPC codes. Clearly, for all reasonable bit error rates, the
adaptive parity scheme outperforms all levels of RCPC codes.
The parity scheme performs better for all levels of BER, and
it is also much simpler to implement than more powerful
forward error correction (FEC) schemes. The parity scheme
performs better because, even though the FEC schemes show
stronger error correction capabilities, the additional overhead
does not make up for the video quality increase compared to
just dropping the samples which have errors.

V. I NTER-FRAME ENCODED COMPRESSEDV IDEO

STREAMING

In this section, we present a method for inter-frame en-
coding. While the proposed method is general, it works
particularly well for security videos. Security videos area
special case of video in which we can assume that the camera
is not moving, but only the objects within the field of view
(FOV) of the camera are moving. Because of this, there will
often be a large amount of redundancy from one frame of
the video to the next. One way to exploit this redundancy
within the framework of compressed sensing is by taking
the algebraic difference between two frames, encoding this
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(a) (b) (c)

Fig. 5. Lena encoded using compressed sensing with (a)10
−5 BER (b) 10−4 BER (c) 10

−3 BER.

(a) (b) (c)

Fig. 6. Lena encoded with JPEG with (a)10
−5 BER (b) 10−4 BER (c) c10−3 BER.

difference, recreating an image representing this difference
and combining it with the reference frame at the receiver. If
the image being encoded and the reference image are very
similar (i.e. have a very high correlation coefficient), then this
difference image will be sparser than either of the original
images, and can therefore be transmitted at the same quality
using fewer samples than the original image. Note that while
the reference image is sparse only in the transformed domain
(e.g., wavelet), the difference image is sparse in the original
domain. Even though there are proposed algorithms that obtain
higher received video quality [18], [19], [20], these methods
all involve having access to at least some of the frames at the
transmitter. Because the proposed method works directly on
the samples and does not require knowledge of this original
image, it is suitable for use with a single pixel camera where
the original image is not available.

The procedure for encoding the video is based on the
amount of correlation between frames, as measured by the
correlation coefficient. In order to minimize the propagation
of errors between frames, areference frameis used to both
compare the current frame, and to base a difference frame
from for a slow moving video sequence. The correlation
coefficientα is calculated between the reference frame and the
current frame being evaluated. The sparsityβ of the recreated
difference frame can be calculated by a linear function ofα
defined by (6)

β = −A · α + B (6)

whereA andB can be estimated by regression techniques.
Since the amount of samples required to correctly decode the
image is based on the sparsity of the received image, the type
of compression used can be directly based onα. Two threshold

levels are set,θhigh andθmoderate, which determine what type
of encoding should be used.

• α < θmoderate. When the correlation between a frame
and the reference frame is low, the frame being consid-
ered is compressed using the standard intra-frame process
described in the previous section. Also, the frame being
considered is marked as the currentreference frame.

• θmoderate < α < θhigh. When there is moderate
correlation between the frame being considered and the
reference frame, adifference frameis calculated between
the frame being considered and the most recent reference
frame. The difference frame is generated by finding the
difference between the samples of the current frame and
the samples of the reference frame. Then, the firstL
samples are transmitted, whereL is calculated by a linear
function of the correlation coefficient.
These samples are then decoded at the receiver, thus
recreating the actual difference frame. That difference
frame can be added to the reference frame stored at the
receiver in order to reconstruct the frame at the source.
This method allows us to exploit the correlation between
similar frames while keeping the complexity at the source
low.
The three main advantages of this method are:

– The reference frame isinherently sparse, i.e., it is
sparse in the domain of random samples, not in
the transformed domain. Hence, it can be decoded
without using an additional sparsifying transform.
This can greatly speed up the performance of the
decoder;

– The reference frame can be quantized using less bits
than a reference frame. This is because there is less
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Fig. 7. Correlation and Sparsity for a Security Video

variance within the samples of the reference frame
than in a typical frame;

– Because the difference frame can be sparser than the
transform of a normal frame, less samples need to
be transmitted and decoded for the same quality;

• α > θhigh. If the correlation coefficient is very high, this
is an indication that there is no action is the frame. In
this case, there is no need to transmit anything and the
decoder can simple copy the reference frame directly (i.e.
the difference frame is zero).

This is demonstrated in Fig. 7. In this figure, we show
the amount of correlation between the two frames being
considered, the amount of sparsity as measured at the decoder
and the quality (SSIM) of the decoded frame as compared
to the original uncompressed frame. This simulation was
created using a surveillance camera in a mall. The ”spikes”
in the sparsity value indicate place where the intra-frame
compression was used. In the sections without those spikes,
clearly there is a negative linear relationship between thetwo.
Since the correlation can be measured using only information
at the video source, this allows the source node to estimate
the amount of sparsity at the receiver.

The mean value for the SSIM for this particular scenario
was 0.780, with a compression ratio of4.54. Though this
is clearly not as much compression as can be obtained from
MPEG-2 or other modern codecs, this protocol is only exploit-
ing the spacial correlationbetween between frames, without
considering the possibility of using motion vectors or huffman
coding as is used in most standard encoders. Further, the
algorithm is very simple to implement at the video source,
involving much less source complexity than most standard
encoders.

VI. CONCLUSIONS

We have investigated the potential of the compressed sens-
ing (CS) paradigm for video streaming in WMSNs. We have
shown that, unlike JPEG-encoded images, CS-encoded images
exhibit aninherent resiliencyto channel errors, caused by the
unstructured image representation; this leads to basically zero
loss in image quality for random channel bit error rates as
high as10−4, and low degradation up to10−3. Furthermore,
we have shown that, unlike traditional wireless imaging sys-
tems, forward error correction is not beneficial for wireless
transmission of CS images. Instead, we proposed an adaptive

parity scheme that drops samples in error thus improving the
quality of the reconstructed image. Finally, we have proposed a
low-complexity adaptive video encoder that performs motion
estimation on the video sensors, thus considerably reducing
the amount of data to be transmitted. Our future work will
be focused on designing cross-layer optimized communica-
tion protocols for CS-based WMSN based on the principles
outlined in this preliminary investigation.
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