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Abstract—Data loss in wireless communications greatly affects demonstrated in recent work. For example, in [6] the MicaZ
the reconstruction quality of a signal. In the case of images platform is used to evaluate the performance of turbo codes.
data loss results in a reduction in quality of the received image. It is shown that it is less energy consuming to use turbo codes

Conventionally, channel coding is performed at the encodeto . Lo
enhance recovery of the signal by adding known redundancy. than to retransmit lost data. However, this is true only &y |

While channel coding is effective, it can be very computatisally  data rate applications. Automatic Repeat reQuest (ARQ) is
expensive. For this reason, a new mechanism of handling data another way of handling losses that is based on timeouts and

losses in Wireless Multimedia Sensor Networks (WMSN) using retransmissions of missing/incorrect data. However, &al r
Compressed Sensing (CS) is introduced in this paper. This siem time data streams (i.e., video, VOIP), transmitting oldkeds

uses compressed sensing to detect and compensate for dataslo It in th dia bei ted out of ord t th
within a wireless network. A combination of oversampling ard an may result in the media being recreated out ot oraer at the

adaptive parity scheme are used to determine which CS same r€Celver.

contain bit errors, remove these samples and transmit addional Another challenge in WMSNSs is the need for compression.

samples to maintain a target image quality _ ~ The amount of data needed for many applications (such as
A study was done to test the combined use of adaptive parity jyages) requires that redundant information be remove fro

and compressive oversampling to transmit and correctly reover the data st bef i - thereb duci th

image data in a lossy channel to maintain Quality of Informaton € dala slream be ore ransmISS|on,_ ereby re gcmg €

(Qol) of the resulting images. It is shown that by using the amount of data transmitted. One negative effect of thisas th

two components, an image can be correctly recovered even inthe “importance” of each transmitted bit increases. In thsec

a channel with very high loss rates of 10%. The AP portion of of multimedia transmission, the loss of a small amount of

the system was also tested on a software defined radio testbétl  y4t4 can cause a dramatic effect in the quality of the redeive
is shown that by transmitting images using a CS compression content

scheme with AP error detection, images can be successfully - . .
transmitted and received even in channels with very high bit In this paper, as in [19] and our previous work [13], we
error rates. use Compressed Sensing (CS) [7], [3], [8], [4] for both com-

pression and channel coding of images. Compressed sensing
(aka “compressive sampling”) is a new paradigm that allows
Wireless Multimedia Sensor Networks (WMSN) [1] arehe faithful recovery of signals from/ << N measurements
self-organizing wireless systems of embedded devices déhere N is the number of samples required for the Nyquist
ployed to retrieve, distributively process in real-timégre, sampling. Hence, CS can offer an alternative to traditional
correlate, and fuse multimedia streams originated from heideo encoders by enabling imaging systems that sense and
erogeneous sources. Even though multimedia content cancbenpress data simultaneously. One major advantage to CS
transmitted successfully even with some losses, it is stdhcoded data is that the number of unique samples received
important to ensure that thgeiality of the received content (i.e. is the only factor in determining the successful recovery of
Quality of Information (Qol)) is maintained at an accepéablthe image. In other wordsjo sample is more important than
level for the end user. any other sample [12]. Because of this, the loss of any single
Wireless transmissions are notoriously prone to losses [Sample can be replaced by another different sample from the
Two main causes of data loss are bit errors due to noisgme image. The authors of [19] use this property to intreduc
channels and missing packets due to transmitter or receisemethod foroversampling a signal to increase the chance
errors. To combat this, forward error correction (FEC) itenf of recovering a signal that has been subjected to losses. We
used to add known redundancy into the data stream and allewtend this concept for use with real image signals.
the receiving node to detect and correct a fixed number of bitin a real channel, errors within an image transmission will
errors. The two types of FEC coding commonly used for thimanifest as the inversion of one or more bits within the image
purpose are block coding such as Reed-Solomon coding [E#jnal. These errors can be detected using an AdaptiveyParit
[18], and convolutional codes [15] [16] [17]. Although FEC(AP) scheme [13]. The AP scheme uses a simple parity scheme
coding is effective, it can be very computationally expeasi to determine which samples contain errors. Oversamplig an
The advantage of using FEC in sensor networks has bemtaptive parity are then used together to find both missing

I. INTRODUCTION



samples and incorrect samples, and compensate for both type
using oversampling in a CSEC-AP system. By using this joint
system, the transmitting node can both detect and corréct bi
errors with very little cost to the transmitting node in term
of both complexity and overhead.

In this paper, we propose a system for both determining bit
errors in a CS data stream, and consequently compensate for
those errors. Specifically:

« Integrated Adaptive Loss Detection and Compensa-
tion. In our previous work [13], we introduced an AP
scheme to find bit errors in a CS data stream. In this
work, we combine this concept with oversampling and
evaluate an integrated system which can both detect and
compensate for errored samples.

« Experimental Evaluation. We have implemented the AP
portion of the protocol on a USRP2 [9] testbed, and are
able to show that the results are comparable to those
obtained through simulation.
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Fig. 1. System Architecture for CSEC-AP System

The remainder of this paper is structured as follows. In Segdu@! to the solution of the following problem:

tion 1l we give a concise introduction to compressed sensing
In Section I, the joint error detection and oversampliyg-s
tem is presented. In Section IV, we introduce the Compressed
Sensed Erasure Coding (CSEC). Section V presents the
error detection scheme. Finally, the performance resuls a
presented in Section VI, while in Section VIl we draw the
main conclusions and discuss future work.

II. COMPRESSEDSENSING PRELIMINARIES

Py . minimize ||s||1

subjectto: |ly — Ws|[3 < e,

®3)

ﬁﬁeree is a small tolerance.

I1l. | MAGE ENCODING AND RECOVERY USING
COMPRESSEDSENSING WITH CSECAND AP

We propose a system for image transmission using both

CSEC and AP. The architecture for this system if shown in

We consider an image signal represented through a vedtdy.
x € RN, whereN is the vector length. We assume that there
exists an invertibleV x N transform matrix® such that

x = Ws 1)

where s is a K-sparse vector, i.el/s|lo = K with K <

N, and wherg|| - ||, representg-norm. This means that the
image has a sparse representation in some transformedmomai
e.g., wavelet. [10]. The signal is measured by takidg< N
measurements from linear combinations of the element x&cto
through a linear measurement operadarHence,

y = &x = ®Us = Us. (2)

We would like to recovek from measurements in. However,
since M < N the system is underdetermined. Hence, given a
solutions® to (2), any vectos* such thats* = s® +n, and

n € V(%) (where N (¥) represents the null space @), is
also a solution to (3). However, it was proven in [3] that iéth
measurement matri is sufficiently incoherent with respect
to the sparsifying matrix, and K is smaller than a given
threshold (i.e., the sparse representasiofithe original signal

x is “sparse enough”), then the origiratan be recovered by
finding the sparsest solution that satisfies (2), i.e., tlesgst
solution that “matches” the measurementssilHowever, the  «
problem above is in general NP-hard [2]. For matridesvith
sufficiently incoherent columns, whenever this problem &as
sufficiently sparse solution, the solution is unique, ands it

1. There are two main goals to this system.

Maintain Target Image Quality. The CSEC portion of
the system is charged with maintaining the image quality
given a lossy channel. This system takes as input both the
number of packets expected to be lost due to collision or
transmitter errors and the number of samples expected to
be lost due to bit errors that would be detected by the AP
system. Oversampling is then used to make up for these
errors and allow the receiver to recover the image as if
the original number of samples were sent. For example,
assume that the transmitter intended to transmit 10,000
samples to the receiver to recover some image. Also
assume that 5% of the packets will be lost due to collision
or transmission errors, and 3% of the remaining samples
will be lost due to bit errors, which results in a total error
rate of 7.85%. By oversampling the signal to compensate
for the expected loss (as in [19]), the total number of
samplesK can be found to be 10,852. This tells the
transmitter that, based on the loss estimate of 7.85%, if
10,852 samples are transmitted, roughly 10,000 samples
will eventually be received correctly at the receiver. The
details of the CSEC oversampling rate will be explained
in detail in Section IV.

Minimize the Number of Transmitted Samples for

a Target Desired Quality. The AP portion of this
system uses thestimated bit error rate of the channel to
determine the optimal number of samples to include for



each parity bit. This system will then use this information ) »Pr‘ob .of Recovery vs Sparsity
to determine thesxpected number of correctly received e N e
samples. This is done by analytically determining the
optimal number of parity bits needed to maximize the
number of correctly received samples at the receiver. The
details of the AP calculation will be explained in detalil
in Section V.

The basis for both of these systems is that the compressec
samples which are created using the CS paradigm are all o : g
equally important and losing a single sample does not affect
the receivers ability to be able to recover any other sample.Fig. 2. Probability of exact recovery for recreation of Fyin [19]

Also, the specific samples chosen for use in the recovery of

the image is arbitrary. This means that, if a sample is lost, a

different sample can be transmitted in its place with noatffeafter a wavelet or DCT transform. Any image reconstructed

on the quality of the recovered image. this way will always be different from the original image,
and the more samples transmitted, the closer the recotestruc

IV. ERASURE CHANNEL CODING USING COMPRESSED image will be to the original.

SENSING (CSEC) To see how the recreation of an image is affected by

CSEC has the ability to recreate the signal with some deg@ersampling, we simulated the recovery of a 32x32 image
dation even if the errors exceed the threshold for recovémg  under three conditions; no loss, 20% sample loss, and CSEC
is possible by oversampling the signal to compensate for tgth 20% oversampling. The sampling matrix is assumed to
losses. The total number of samples needéddepends on be Gaussian with mean zero and variangg;. An image
the channel loss probability and is given by size 0f32 x 32 was chosen. The number of measurements in

m lossless casen) is taken to be 800. We choose PSNR as the
K=—- (4) reconstructed image quality indicator, which is defined as
(1-p) )
where K is the number of samples needed for a lossless PSNR =10-1log,, <%> , (5)
transmission and is a function of the sparsity of the signdl a MSE
m is the number of correctly received samples samples neegitere M/ AX; is the maximum possible pixel value for each
to achieve a desired image quality. Basically, the coding figame. MSE is the mean squared error, which is defined as
done such that the number of correctly received samples for a1
a given error probability is equal to the number of samples MSE — 1 116, §) — K (i, 7). (6)
in the original signal without errors, i.€1 —p) - (K) = m. mn 4~ 4 ’ ’

1
To demonstrate the effectiveness of oversampling, A Monte '

Carlo simulation of 1000 iterations is performed for a signé(v,e use the Discrete Cosine Transform (DCT) a; the sparsi-
of length 256 byte and of varying sparsity in a channelfYing transform and CVX to solve the reconstruction problem

with a sample loss probability of 0.2. Since the number &p)- .
samples is the determining factor in the reconstructiorhef t !N the lossless case, the PSNR is found to2tel0 dB.
original signal, there should be no difference between tif¥ith @ sample loss rate of 20% and no oversampling, the
lossless reconstruction and the oversampled reconstructPSNR drops t016.78 dB. Finally, with 20% loss and 20%
The sampling matrix is incoherent Gaussian. As Fig. 2 shovi/€rsampling, the PSNR value8.10 dB. Comparing PSNR
as the sparsity increases, the probability of exact regovéf2!ues of the lossless and oversampled recovery cases,nwe ca
of the signal goes down for any channel condition, whicFE® .that the images in both cases have similar reconstnuctio
corresponds to the results obtained in [19]. Sparsity hereguality. Th.e differences between the errorless case aqd the
defined as the number of non-zero elements in a signal. TRETSampling case can be accounted for by variations in the
is because as sparsity increases, the information contenS@MPling matrix, which was different for each image.
the signal increases. If a sufficient number of samples are no
generated to compensate for this, all the information cpade
by the signal is not captured and exact reconstruction is notFor a fixed number of bits per frame, the perceptual quality
possible. We see that CSEC is able to recover the signaladsimages can be improved by dropping errored samples
well as in the case of no loss. This shows that oversamplitigat would contribute to image reconstruction with incotre
compensates for the losses in the channel. information. This is demonstrated in Fig. 3 which shows
Though this shows that oversampling is effective for “idealthe image quality both with and without including samples
sparse signals, using CS to compress and reconstruct ae imaantaining errors. Though the plots in Fig. 3 assume that the
could behave differently. This is because an image is naceiver knows which samples have errors, it does demadestra
inherently sparse, but is only sparse in the frequency domdhat there is a very large possible gain in received image
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V. ADAPTIVE PARITY-BASED TRANSMISSION
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SSIM vs BER With and Without Oversampling
quality is those samples containing errors can be foundowtth ‘ [
adding too much overhead. 4 O

We studied this for images in [12]. It was shown that in
CS, the transmitted samples constitute a random, incoheren
combination of the original image pixels. This means that,
unlike traditional wireless imaging systems, no indivitlesm-
ple is more important for image reconstruction than any rothe
sample. Instead, the number of correctly received samples i L "
the only main factor in determining the quality of the reeeiv Bit Error Rate (BER)
image. Because of this, a sample containing an error can
simply be discarded and the impact on the video quality,
as shown in Fig. 3, is negligible as long as the amount or

errors is small. This can be realized by using even parigy down to the highest rate code. Because of this setup, the
on a predefined number of samples, which are all droppgeteiver can decode the entire family of codes with the same
at the receiver or at an intermediate node if the parity cheglcoder. This allows the transmitter to choose the mosiisieit
fails. This is particularly beneficial in situations whe®tBER  ~qde for the given data. Clearly, as these codes are puddture

is still low, but too high to just ignore errors. To determingeqyce the redundancy, the effectiveness of the codesatmsre
the amount of samples to be jointly encoded, the amount & far as the ability to correct bit errors. Therefore, we are

£ e g b £

"‘n\ \‘E

Structural Similarity (SSIM)
o

Fig. 5. Performance of CSEC-AP System

correctly received samples is modeled as trading BER for transmission rate.
Q-b Figure 4 shows the adaptive parity scheme compared to
C = (m) (1- BER)??, (7) RCPC codes. For all reasonable bit error rates, the adaptive

parity scheme outperforms all levels of RCPC codes. The
where C' is the estimated amount of correctly receivedarity scheme is also much simpler to implement than more

samples)p is the number of jointly encoded samples, a@d powerful forward error correction (FEC) schemes. This is

is the quantization rate per sample. To determine the optink@cause, even though the FEC schemes show stronger error

value ofb for a given BER, (7) can be differentiated, set equaorrection capabilities, the additional overhead doesnmaite

to zero and solved fob, resulting in up for the video quality increase compared to just dropping

the samples which have errors.

1+ 1= —2
b— tog1=BER) ®) VI. PERFORMANCEEVALUATION

2Q We performed | .

performed two sets of experiments to assess the perfor

The optimal channel encoding rate can then be found framance of the proposed error correction architecture., Birsét

the measured/estimated value for the end-to-end BER affdmages was transmitted using CSEC with AP for different
used to encode the samples based on (7). The received vigg@ple loss rates. The image quality is shown for different
quality using the parity scheme described was comparedy® error rates, along with the increase in size necessary to
different levels of channel protection using rate competibmaintain a constant image quality. Secondly, the adaptive
punctured codes (RCPC). Specifically, we use thenother parity scheme is tested on a USRP-2 software defined ratio

codes discussed in [11]. Briefly, @ convolutional code is testbed to determine how many errors are correctly detected
punctured to decrease the amount of redundancy neededd@# the image quality of the detected samples.

the encoding process. These codes are punctured progigssiv. _

so that everyhigher rate code is a subset of the lower ratg® Smulations

codes. For example, any bits that are punctured inli‘gheode The results shown in Fig. 5 show the reconstruction of
must also be punctured in th§ code, the% code, and so images encoded using the CSEC-AP system, only the AP
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BER vs Frame Index

system (detecting and simply removing bad samples) and
with an ideal lossless situation. Clearly, the proposedesys
results in image quality very near to the ideal no-loss case a
reasonable BER rates. In all cases, it is assumed that asampl
is 8 bits and that even a single bit error within a sample tesul
in that entire sample being discarded. The cost in terms of
overhead for this error correction scheme is shown in Fig.
6, which shows the additional transmitted information as a PR S
function of the bit error rate. We can see that even for the Frame index
worst case of 1 error for every 10 bit (resulting in a sample
error rate of 0.5695), the CSEC-AP scheme only requires the
transmitter to send twice the required bits for a channdiovit

errors. As the error rate drops doyvn to more reasonablesalugf the bit error rate, calculates the new number of sampites/b
the overhead decreases very quickly. and the cycle continues. We assume the initial bit error rate
B. Testbed Experiments of the channel to be zero. So, the samples transmitted during

_ ) ) the first burst will not have any parity bits appended.
The adaptive parity portion of the scheme was also testedrhjs system was used to transmit and decode 50 frames of

using a USRP2 software defined radio platform. The pes-security video. The results of this simulation are shown in
formance of the algorithm was evaluated on a testbed th%_ 7, while the measured BER is shown in Fig. 8. Even with
comprised of USRP2s. A two hop network was setup @y high bit error rates, the algorithm was still able tooeer

evaluate the performance of the algorithm. the images nearly as well as predicted by the simulations.

The medium access control (MAC) layer protocol selectafihenever there were sample errors, the results using AP were

(DQPSK) was used as the modulation scheme to achieve a

physical layer data rate df Mbit/s. The maximum size of VII. CONCLUSION AND FUTURE WORK

each packet wa8100 bytes. The packets were transmitted in In this paper, we have presented a system which uses
burst mode with each burst consisting of at most six packet@mpressed sensing to compress an image and protect that
At the transmitter, a parity bit was appended for a certaimage from channel errors and packet losses. We have ex-
number of samples that was determined from the current panded on the work done in [19] and [13] to present a
error rate of the channel and on the encoding of the framemplete system which deals with the detection of bit errors
using (8). A100 byte header for bit error estimation precede@nd provides a system for compensating for these bit emors i
the data in the packet. Transmissions were made on a selectech a way as to maintain image quality at the receiver. We
frequency in the2.4 GHz ISM band. A CSMA/CA scheme also presented a testbed setup using USRP2 software defined
with random backoff time was implemented at the MAQCadios. We implemented a portion of the system on the testbed
layer to alleviate the effects of packet collisions. Theayel and demonstrated that the performance is very close to the
node has a queue structure that simply forwards the receighulation results.

packets to the destination node. The receiver after rewpivi Future plans for this work include expanding the use of CS
the packets decodes the data and determines which samplesoded images to video encoding. Also, we are using the
were corrupted during transmission based on the parity lptoperties of CS encoded images in other networking layers
If there is a parity bit inversion, all the samples that wersuch as the transport and MAC layers in order to create a
included in that parity bit calculation are dropped. Alsoe t system which will be able to transmit video from very simple
receiver estimates the bit error rate of the channel thrabigh low-cost image sensors. This system will be tested using the
100 byte header. The transmitter, after obtaining the estimatéSRP2 testbed.

Bit Error Rate (BER)

Fig. 8. Measured BER in Testbed Experiments
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