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Introduction 
Wireless  Multimedia  Sensor  Networks  
(WMSN)  [1]  are self-organizing wireless 
systems of embedded devices deployed to 
retrieve, distributively process in real-time, store, 
correlate, and fuse multimedia streams originated 
from heterogeneous sources. WMSNs will enable 
new applications including multimedia 
surveillance, storage and subsequent retrieval of 
potentially relevant activities, and person locator 
services. 

In recent years, there has been intense research 
and considerable progress in solving numerous 
wireless sensor networking challenges. However, 
the key problem of enabling real-time quality-
aware video streaming in large-scale multi-hop 
wireless networks of embedded devices is still 
open and largely unexplored. In fact, traditional 
video streaming systems based on transmitting 
predictively-encoded video through a layered 
communication protocol stack suffer from high 
complexity at the encoder and low resiliency to 
channel errors. 

• Encoder Complexity. Predictive encoding 
requires complex processing algorithms, leading 
to high energy consumption [1]. New video 
encoding paradigms are needed to reverse the 
traditional balance of complex encoder and 
simple decoder, which is unsuited for WMSN. 
Recently developed distributed video coding [2] 
algorithms exploit the source statistics at the 
decoder, thus shifting the complexity at this 
end.  While promising for WMSNs, most 
practical Wyner-Ziv codecs require end-to-end 
feedback from the decoder [3], which introduces 
overhead and delay. Furthermore, gains of 
practical distributed video codecs are typically 
limited to 2-5 dBs PSNR. 

• Limited Resiliency to Channel Errors. In 
existing layered protocol stacks based on the 
IEEE 802.11 and 802.15.4 standards, video 
frames are split into multiple packets. If even a 
single bit is flipped due to channel errors, after a 
cyclic redundancy check, the entire packet is 
dropped at a final or intermediate receiver. This 
packet loss can lead to the video decoder being 
unable to decode an independently coded (I) 

frame, leading to the loss of the entire sequence 
of video frames that are dependent on the I 
frame. Instead, ideally, when one bit is in error, 
the effect on the reconstructed video should be 
unperceivable, with minimal overhead. In 
addition, the video quality should gracefully and 
proportionally degrade with decreasing channel 
quality. 
 
Compressive Video Streaming for WMSN 

Our preliminary investigation reveals that new 
cross-layer optimized networking protocols 
integrated with video encoders based on the 
recently proposed compressive sensing (CS) 
paradigm [4], [5] can offer a convincing solution 
to the aforementioned problems. However, as 
will become clearer in the following, this will 
require a careful rethinking of traditional 
wireless networking functionalities across 
multiple layers. Compressed sensing (aka 
“compressive sampling”) is a new paradigm that 
allows the recovery of signals from far fewer 
measurements than methods based on Nyquist 
sampling. In particular, the main result of CS is 
that a N-dimensional signal can be reconstructed 
from M noise-like incoherent measurements as 
if one had observed the M/log(N)  most 
important coefficients in a suitable base [6]. 
Hence, CS can offer an alternative to traditional 
video encoders by enabling imaging systems that 
sense and compress data simultaneously at very 
low computational complexity for the encoder. 
Image coding  based  on  CS  has  been  recently  
explored  [7],  [6]. So-called single-pixel cameras 
that can operate efficiently across a much 
broader spectral range (including infrared) than 
conventional silicon-based cameras have also  
been studied [8]. However, wireless networking 
protocols optimized for transmission of CS video, 
and their statistical traffic characterization, are 
substantially unexplored areas. In particular, in 
this position paper we show that CS-based image 
representation shows an inherent resiliency to 
random wireless channel errors that should guide 
and inform protocol design optimized for 
wireless video streaming in WMSNs. 
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Fig.  1 Structural Similarity (SSIM) Index vs BER for (a) Reconstruction With and Without Incorrect 
Samples (b) CS vs JPEG images (c) Adaptive Parity 
 

Effect of Channel Errors on CS Video  
We conducted a preliminary investigation of 

the effect of channel errors on wireless 
networked CS images and video. To assess 
the impact of channel errors and interference 
on CS video quality, we evaluated the 
Structural Similarity Index (SSIM) [9] between 
the original and the encoded image for a 
standardized set of 25 images. We represented 
each frame of a quarter common intermediate 
format (QCIF) video by 8-bit intensity values, 
i.e., a grayscale bitmap. To satisfy the sparsity 
requirement of CS theory, the wavelet 
transform is used as a sparsifying base. The 
image is sampled using a scrambled block 
Hadamard ensemble [10], and recreated through 
GPSR [11]. In CS, the transmitted samples 
constitute a random, incoherent combination of 
the original image pixels. This means that, 
unlike traditional wireless imaging systems, in 
CS no individual sample is more important for 
image reconstruction than any other sample. 
Instead, the number of correctly received 
samples is the only main factor in determining 
the quality of the received image. Hence, a 
peculiar characteristic of CS video is its 
inherent and fine-grained spatial scalability. 
The video quality can be regulated at a much 
finer granularity than traditional video encoders, 
by simply varying the number of samples per 
frame. Also, a small amount of random channel 
errors does not affect the perceptual quality of 
the received image at all, since, for moderate 
BERs, the greater sparsity of the “correct” 
image will offset the error caused by the 
incorrect bit. This is demonstrated in Fig. 
1(a). For any BER lower than 10—4 , there is 
no noticeable drop in the image quality. Up to 
BERs lower than 10—3, the SSIM is above 0.8, 

still an indicator of good image quality. CS 
image representation is completely 
unstructured: this fact makes CS video much 
more resilient than existing video coding 
schemes to random channel errors. This simple 
fact has obvious, deep, consequences on 
protocol design for end-to-end wireless 
transport of CS video. 

This inherent resiliency of compressed sensing 
to random channel bit errors is even more 
noticeable when compared to traditional 
compression schemes. Figure 1(b) shows the 
average SSIM of 25 images transmitted through 
a wireless channel with varying BER. The 
quality of CS-encoded images degrades 
gracefully as the BER increases, and is still 
very high  for  BERs  as  high  as  10—3 .  
Instead, JPEG-encoded images very quickly 
deteriorate. This is visually emphasized in Fig. 
4, which shows a frame from a surveillance 
camera at the University at Buffalo encoded with 
CS and JPEG and transmitted with end-to-end bit 
error rates of 10—5 , 10—4 , and 10—3 , respectively. 
The difference is stunning - the effect of bit errors 
is much more disruptive for structured data like 
JPEG-encoded images. The effect on 
predictively-encoded video is even worse, since 
even low bit error rates can lead to the loss of I 
frames, causing the decoder to be unable to 
decode long sequences of frames that depend on 
the I frame. 

Our preliminary investigation also reveals also 
that while forward error correction (FEC) is not 
beneficial for low to moderate values of BER 
up to 10—2 , the perceptual quality of CS 
images can be improved by dropping errored 
samples that would contribute to image 
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Fig.  2 Surveillance Image with CS (above) and JPEG (below) for BER (a) 10-5 (b) 10-4 (c) 10-3. 
 
 
reconstruction with incorrect information (Fig. 
1(c)). This calls for a data protection strategy 
based on using even parity on a predefined 
number of samples, which are all dropped at 
the receiver or at an intermediate node if the 
parity check fails. This is particularly 
beneficial in situations when the BER is still low, 
but too high to just ignore errors (above 10—5 ). 
We have analytically determined the optimal 
number of samples to be jointly protected, for a 
given BER and quantization level, based on 
which the encoder can adaptively regulate the 
level of protection to track the end-to-end 
BER. This simple strategy is shown in Fig. 1(c) 
to considerably improve the received video 
quality compared to protecting the CS samples 
FEC with different levels of protection using 
rate-compatible punctured codes (RCPC) with ¼ 
mother codes. 

Based on the encouraging results of this 
preliminary investigation, we are currently 
conducting a cross-layer analysis of the impact 
of functionalities handled at all layers of the 
communication protocol stack on the perceived 
video quality for competing CS-encoded video 
streams. In addition, we are developing a tool to 
perform network simulations of CS video 
applications. The tool will allow generating CS 
video traces and evaluating the impact of CS 
video on network protocols over the widely used 
ns-2 simulator.  
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